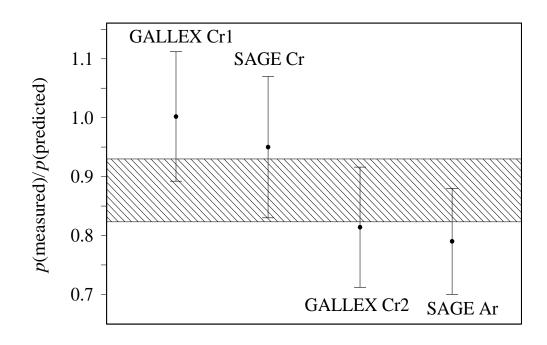
u_e Disappearance in Miniboone



MARCO LAVEDER

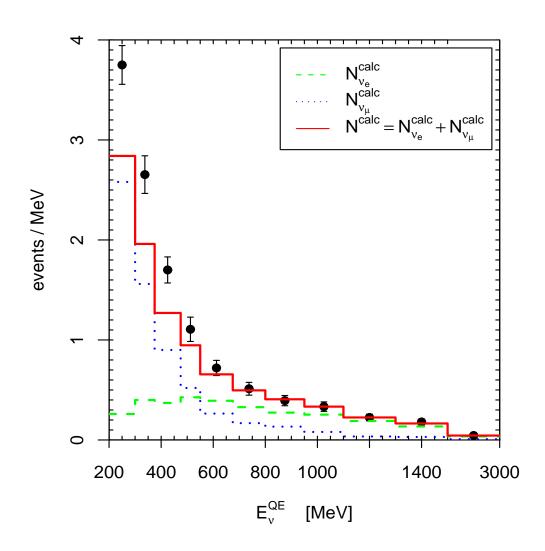
Padova University and INFN

Torino - 17 December 2007

Gallium radioactive source experiments

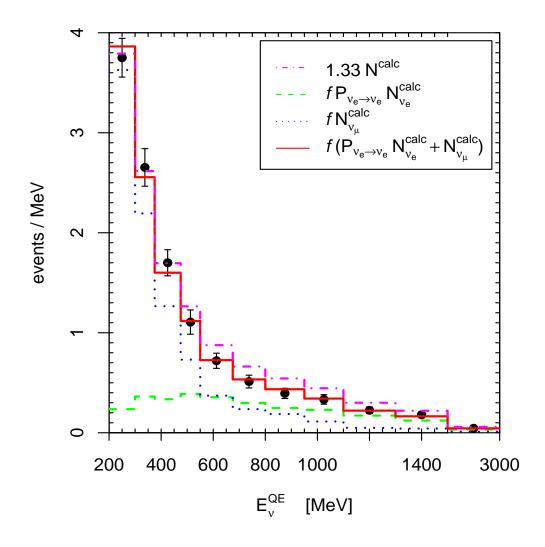
 $R\equiv$ wheighted average value of the ratio of measured and predicted ^{71}Ge production rates (p) :

$$R \equiv \frac{\text{p(measured)}}{\text{p(predicted)}} = 0.88 \pm 0.05(1\sigma)$$


nucl-ex/0512041

Ga radioactive source exp. results may be interpreted as an indication of the disappearance of ν_e due to active-sterile oscillations!

hep-ph/0610352 Carlo Giunti & ML


arXiv:0711.4222 Mario A. Acero, Carlo Giunti & ML.

Miniboone data: Low Energy Excess or ...

R.Tayle: Miniboone talk at LP07

u_e Disappearance in Miniboone

0707.4593.v2 C.Giunti & ML

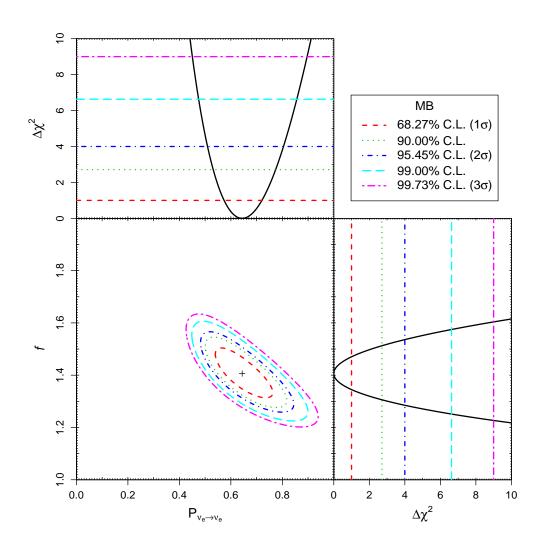
N.B. constant
$$P_{\nu_e \to \nu_e} \leftrightarrow \Delta m^2 \gtrsim 20 \, \mathrm{eV}^2$$

Baic idea: a renormalization of the absolute event rate $\equiv \phi \otimes \sigma(\mathrm{M_A})$ by a constant factor f with a simultaneous disappearance of the ν_e in the beam with a constant $P_{\nu_e \to \nu_e}$.

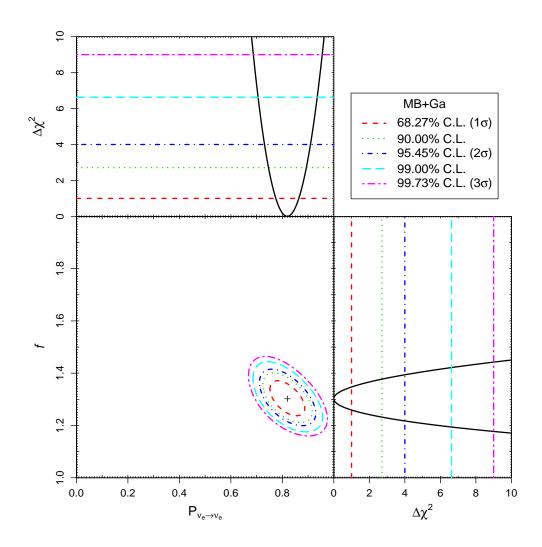
This hypothesis is allowed by the large error on the absolute event rate.

j	Energy Range [MeV]	$N_{ u_{m{e}},j}^{ ext{calc}}$	$N_{ u_{m{\mu}},j}^{ ext{calc}}$	$N_j^{ m caic}$	N_j^{meas}
1	200 - 300	26	258	284	375
2	300 - 375	30	117	147	199
3	375 - 475	37	90	127	170
4	475 - 550	32	39	71	83
5	550 - 675	49	33	82	90
6	675 - 800	41	21	62	64
7	800 - 950	41	20	61	59
8	950 - 1100	38	12	50	50
9	1100 - 1300	38	7	45	45
10	1300 - 1500	27	6	33	36
11	1500 - 3000	54	12	66	67

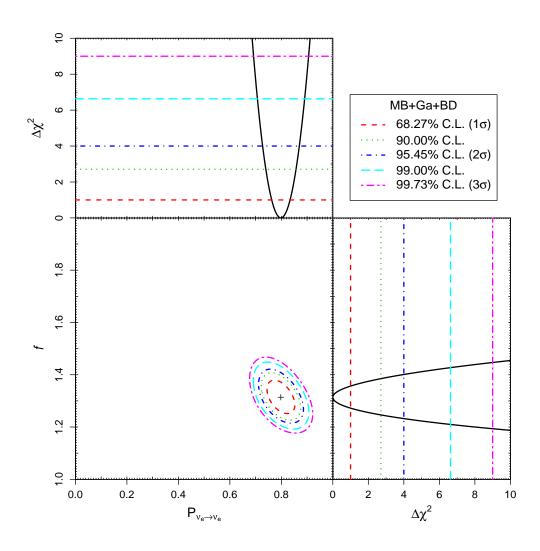
Table 1: $N_{\nu_e,j}^{\rm calc}$: number of expected ν_e -induced events ; $N_{\nu_\mu,j}^{\rm calc}$: number of expected ν_μ -induced events ; $N_j^{\rm calc}$: total number of expected events ; $N_j^{\rm meas}$: measured number of events .


Under this hypothesis, the theoretical number of events in the jth energy bin is given by

$$N_j^{\rm the} = f \left(P_{\nu_e \rightarrow \nu_e} N_{\nu_e,j}^{\rm calc} + N_{\nu_\mu,j}^{\rm calc} \right) \,, \label{eq:N_j_the}$$


We tested the ν_e -disappearance hypothesis with the Pearson's chi-square

$$\chi^2_{ extsf{MB}} = \sum_{j=1}^{11} rac{\left(N_j^{ ext{the}} - N_j^{ ext{meas}}
ight)^2}{N_j^{ ext{the}}} \,,$$


Fit to Miniboone data

Fit to Miniboone + Gallium data

Fit to Miniboone + Gallium + Beam Dump data

Possible Interpretations of the results

We have considered here an old indication in favor of ν_e disappearance found from the analysis of the results of Beam-Dump (BD) experiments : $\sin^2 2\vartheta = 0.48 \pm 0.10 \pm 0.05$ for the large squared-mass difference $\Delta m^2 = 377 \pm 27 \pm 7 \, \mathrm{eV}^2$ [G. Conforto Nuovo Cim. A103 (1990) 751] .

In this case, the average ν_e survival probability is

$$P_{\nu_e \to \nu_e}^{\rm BD} = 0.76 \pm 0.06 \,. \tag{1}$$

The large disappearance of ν_e found in this study may be due to oscillations into sterile neutrinos $\nu_e \to \nu_s$ with $\Delta m^2 \gtrsim 20\,{\rm eV}^2$, since

- ullet $u_e \to
 u_\mu$ transitions are restricted by the results of CCFR , KARMEN , NOMAD and MINIBOONE ;
- ullet $u_e
 ightarrow
 u_ au$ transitions are limited by the results of CHORUS and NOMAD .

Comparison with SBL reactor limits: Bugey 2 detectors

B. Achkar et al. / Nuclear Physics B 434 (1995) 503-532

527

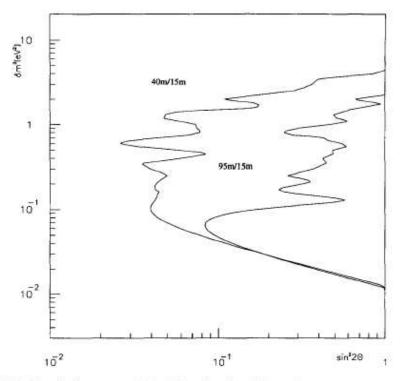
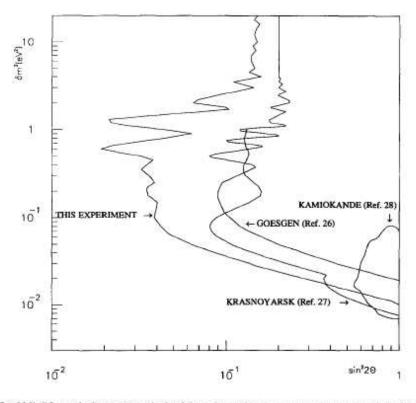
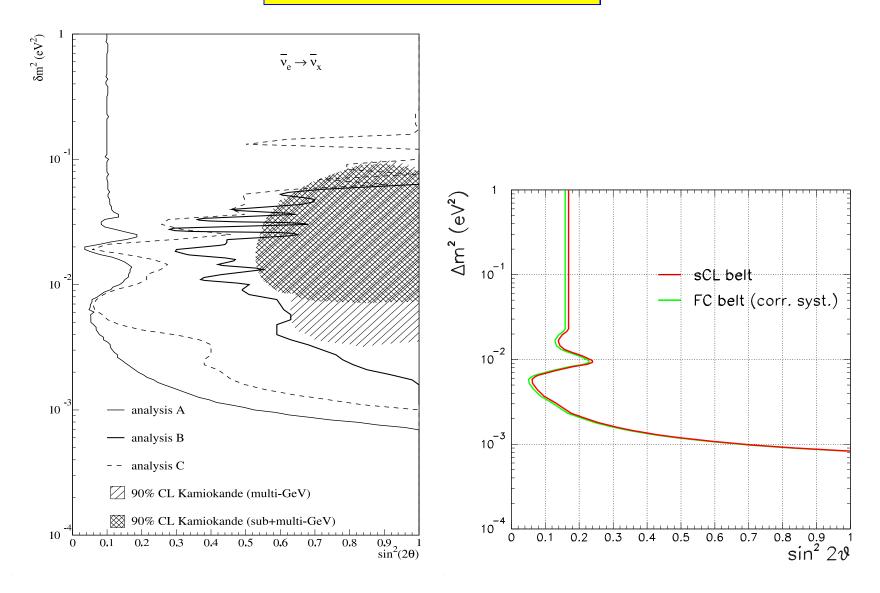


Fig. 16. 90% C.L. exclusion contours obtained from the ratios of the positron energy spectra measured at 40/15 and 95/15 meters.

2 detectors Bugey 90 % C.L. (raster scan) limits do not exclude active-sterile mixing with $\delta m^2 > 5\,{\rm eV}^2$

B. Achkar et al./Nuclear Physics B 434 (1995) 503-532




Fig. 18. The 90% C.L. exclusion contour obtained from the positron energy spectra measured at 40, 15 and 95 meters. Also shown is the hitherto excluded area in earlier reactor experiments with the region for a possible ν_e - ν_μ oscillation put forward by the KAMIOKANDE collaboration.

Bugey 90 % C.L. high δm^2 (raster scan) limit do not exclude active-sterile mixing with $\sin^2 2\theta \lesssim 0.15$ if the neutrino flux is **known with 2.8 % error**

Reactors Exp.: Errors on the Normalization

	KAMLAND	CHOOZ	BUGEY
References	TAUP 2007	hep-ex/0301017	NPB434(1995)
Total reactor related	3.43 %	0.94 %	2.8 %
Cross section	0.20 %	1.90 %	0.20 %
Total detector related	2.24 %	1.67 %	4.14 %
Combined	4.10 %	2.70 %	5.00 %

CHOOZ high δm^2 limits

90%C.L. limit : $\sin^2 2\theta < 0.1$

FC limit: $\sin^2 2\theta < 0.16$

u_e versus $\bar{\nu}_e$ data tension

Taken the Bugey error as a reference value (5% error on $P_{\bar{\nu}_e \to \bar{\nu}_e}$) we face 2 possibilities (3% is the error on $P_{\nu_e \to \nu_e}^{\text{MB+Ga+BD}}$):

- \bullet The error in $\bar{\nu}_e$ data may be >5% and therefore $(P_{\nu_e\to\nu_e}^{\rm MB+Ga+BD}-P_{\bar{\nu}_e\to\bar{\nu}_e})<4\sigma\;.$
- The error in $\bar{\nu}_e$ data is <5% and therefore $(P_{\nu_e\to\nu_e}^{\rm MB+Ga+BD}-P_{\bar{\nu}_e\to\bar{\nu}_e})>4\sigma\;.$

This possibility seems to need new physics that violates CPT.

In hep-th/0610252 R.Casalbuoni showed as the infinite component wave Majorana equation [E.Majorana Nuovo Cimento 9 (1932) 335], were no negative energy solutions are presents, violates CPT !!!

MAJORANA NEUTRINO THEORY 1937

Majorana, E.;

Symmetrical Theory of Electrons and Positrons

Nuovo Cim. 14 (1937) 171


Abstracts

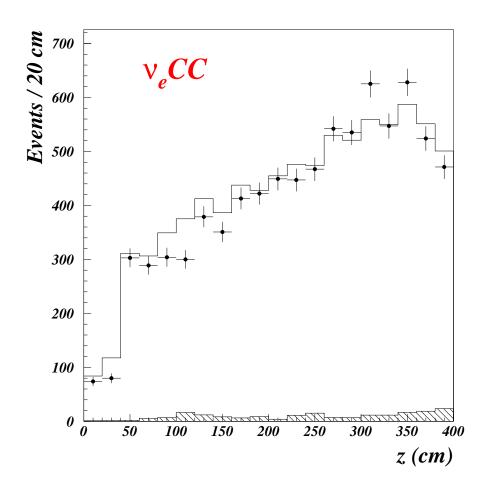
A new method of quantization is proposed which allows Dirac's theory of the positron to be built up in such a form that there is complete symmetry between the positive and negative charge throughout the formalism of the theory, while in Dirac's original form this symmetry applied only to the results of the theory, which had to be obtained by using ambiguous mathematical operations such as subtraction of infinities. It is also claimed that

the new method of quantization is capable of describing a neutral particle without states of negative kinetic energy and without introducing a "mirror image" like the positron.

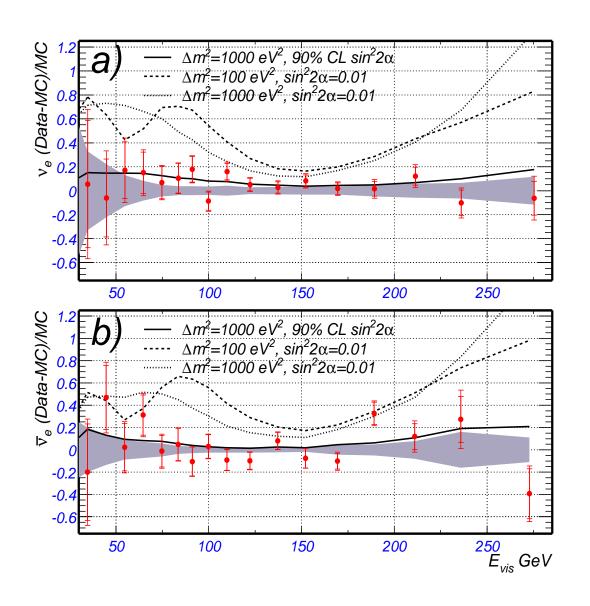
(Science Abstracts. 1937, 4685. R. P.).

Future SBL experimental CPT tests with β beams

Future SBL Beta-Beam experiments [P.Zucchelli PLB 532 (2002) 166] with a pure ν_e or $\bar{\nu}_e$ beam from nuclear decay of accelerated ions have the potentiality to check the possible SBL disappearance of ν_e and $\bar{\nu}_e$ with high accuracy .


... if they are roses they'll flower...

... GOOD LUCK to Majorana ν physics !!!


Backup slides

NOMAD ν_e measurement

Before [$z_{VTX}>184~{\rm cm}$] cut : observed = 7969 ; predicted = 8329 (4% absolute normalization error) $\Rightarrow 1\sigma$ deficit hep-ex/0306037

NUTEV u_e , $\bar{ u}_e$ measurements

