Storage and linkage specifiers

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Universita di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ Storage and linkage - 1

Introduction

[1o}

Variables life cycle

C++ variables have a “life cycle”, i.e. they'’re created at some
point of the execution, and destroyed at another one

@ Dynamic variables are created and destroyed when the
corresponding “new” and “delete” operators are called
@ Other variables are created and destroyed automatically:
e for that reason they’re sometimes called “automatic
variables”
e by default they’re created when they’re declared,
e by default they’re destroyed when they go “out of scope”,
e this behaviour can be modified by adding a “storage
specifier”.
@ In standards ¢++98 and c++03 the default behaviour does
correspond to adding an “auto” specifier.
@ In standard C++11 the “auto” keyword has a different
meaning (automatic type determination).

Object oriented programming and C++ Storage and linkage - 2

Introduction
oe

Variables linkage

C++ variables are accessible in some parts of a program, and
not in others: this is referred to as their “linkage” ’

@ Variables and objects are, by default, directly accessible in
the scope where they'’re declared
e usually they’re declared in a function or a block ({ })
o they can be declared outside all functions,
making them “global”
e their visibility through different translation units can be
modified by adding a “linkage specifier”
@ Otherwise they can be accessed everywhere, provided a
pointer to them is visible (if it has been already created and
it has not yet been destroyed, of course)

Object oriented programming and C++ Storage and linkage - 3

Static
0

Static storage

@ A variable declared in a block is destroyed when the block
ends:
e if the block is executed in a for loop, the variable is created
and destroyed at each iteration,
o the value stored in the previous execution is lost.
@ A static variable is created once and never destroyed
until the execution ends:
e the inizialization is performed only once
o the value stored in the previous execution is preserved
int 1i;
for (i=0;1i<10; ++1i) {
static int 3=0;
std::cout << ++3j << std::endl;

A variable declared inside a function (or block)
has “function scope” (or “block scope”)

Object oriented programming and C++ Storage and linkage - 4

Static
oce

Internal linkage

@ A variable declared outside all functions
has “static storage” and, by default, “external linkage”:
e it’s created at the execution start, before main execution
(unless it’s in dynamic libraries),
e it's by default visible by all the functions,
e it can be hidden to functions in other translation units by
adding a “static” specifier, giving it “internal linkage”.
int i=0; // visible by all functions
static int Jj=0; // visible in this
// translation unit only

void f() {
std::cout << "f:i=" << 4++1 << std::endl;
std::cout << "f:J=" << ++7j << std::endl;

}

variables declared outside all functions.

The static specifier has a different meaning when applied to J

Extern linkage

A variable, declared outside all functions, with “external linkage”
is visible by all functions:

@ functions in other translation units can access it, too,
@ a declaration is necessary in each translation unit, anyway,

@ an "extern" specifier is added to the declaration, in a
translation unit, of a variable defined in another translation
unit: the name is declared but the variable is NOT created
in the memory, because it’s created elsewhere,

@ a definition, i.e. a declaration without "extern", must be
included in one and only one translation unit,

@ otherwise an “undefined reference” or “multiple definition”
error arises (as for fuctions).

Object oriented programming and C++ Storage and linkage - 6

Extern
oe

Extern variables declaration and definition

int i; // global variable definition

int main () {
i=12;
g();

}

extern int 1i; // defined in another
// translation unit
void g () {
std::cout << "g:i=" << ++1i << std::endl;

Object oriented programming and C++ Storage and linkage - 7

Source files and libraries
@0000

Multiple files

The program is (usually) scattered over multiple files. |

@ They can be compiled all toghether to produce an
executable:
ctt -0 exec filel.cc file2.cc

@ They can be compiled one by one and linked into an
executable only later:
ct++ —-c filel.cc
ct+ —-c file2.cc
ct++ -0 exec filel.o file2.o

@ c++ —c: compile without link

The code contained in one file together with all the included
ones is called “translation unit”.

Object oriented programming and C++ Storage and linkage - 8

Source files and libraries
(o] lelele]

Static libraries

@ Source file(s) can be compiled to a “static” library:
ct+ —c file2.cc
ar -r libTestS.a file2.o0

@ The library can be linked to the executable:
ctt -o exec filel.cc -L. —-1TestS

@ ar —r:create alibrary
@ c++ —-Ldir: look for libraries in directory dir
@ c++ —lname : look for the library 1ibname.a

The code is copied to the executable:
@ the libraries are only needed when compiling,
@ the libraries are not needed at runtime.

Object oriented programming and C++ Storage and linkage - 9

Source files and libraries
[e]e] Tele]

Dynamic libraries

@ Source file(s) can be compiled to a “dynamic” library:
c++ —fPIC -shared -o libTestD.so file2.cc
ct++ —-o exec filel.cc -L. —-1TestD

@ c++ —fPIC -shared : produce a dynamic library
@ c++ -Ldir: look for libraries in directory dir
@ c++ —lname : look for the library 1ibname. {a, so}

The code is only referred by the executable:
@ the libraries are needed
both when compiling and at runtime,
@ the path to the library must be defined
both when compiling and at runtime,
e.g. in the environment variable $ { LD_LIBRARY_PATH} ,

@ the main itself can stay inside a library, provided it's
unique.

Object oriented programming and C++ Storage and linkage - 10

Source files and libraries
[e]ele] o]

Initialization order rules

The initialization order of global variables or objects is defined
only inside the same translation unit:

@ global objects/variables defined in the same translation unit
are initialized following the definition order,

@ global objects/variables defined in different translation units
are initialized in undefined order.

Object oriented programming and C++ Storage and linkage - 11

Source files and libraries
[eele]e]]

Initialization order pitfalls

@ For native variables initialization order is mostly not
important, unless the value of a variable is used to initialize
another one.

@ For more complex objects, to be seen later, any
dependence in the initialization of a global object from
another global object defined in another translation unit
must be avoided. Otherwise, an error called “Static order
initialization fiasco” does occur.

@ Some techniques to avoid the problem will be shown in the
following parts of the course.

Object oriented programming and C++ Storage and linkage - 12

	Introduction
	

	Static
	

	Extern
	

	Source files and libraries
	

