
Introduction Static Extern Source files and libraries

Storage and linkage specifiers

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ Storage and linkage - 1



Introduction Static Extern Source files and libraries

Variables life cycle

C++ variables have a “life cycle”, i.e. they’re created at some
point of the execution, and destroyed at another one

Dynamic variables are created and destroyed when the
corresponding “new” and “delete” operators are called
Other variables are created and destroyed automatically:

for that reason they’re sometimes called “automatic
variables”
by default they’re created when they’re declared,
by default they’re destroyed when they go “out of scope”,
this behaviour can be modified by adding a “storage
specifier”.

In standards c++98 and c++03 the default behaviour does
correspond to adding an “auto” specifier.
In standard C++11 the “auto” keyword has a different
meaning (automatic type determination).

Object oriented programming and C++ Storage and linkage - 2



Introduction Static Extern Source files and libraries

Variables linkage

C++ variables are accessible in some parts of a program, and
not in others: this is referred to as their “linkage”

Variables and objects are, by default, directly accessible in
the scope where they’re declared

usually they’re declared in a function or a block ({})
they can be declared outside all functions,
making them “global”
their visibility through different translation units can be
modified by adding a “linkage specifier”

Otherwise they can be accessed everywhere, provided a
pointer to them is visible (if it has been already created and
it has not yet been destroyed, of course)

Object oriented programming and C++ Storage and linkage - 3



Introduction Static Extern Source files and libraries

Static storage
A variable declared in a block is destroyed when the block
ends:

if the block is executed in a for loop, the variable is created
and destroyed at each iteration,
the value stored in the previous execution is lost.

A static variable is created once and never destroyed
until the execution ends:

the inizialization is performed only once
the value stored in the previous execution is preserved

int i;
for(i=0;i<10;++i){
static int j=0;
std::cout << ++j << std::endl;

}

A variable declared inside a function (or block)
has “function scope” (or “block scope”)

Object oriented programming and C++ Storage and linkage - 4



Introduction Static Extern Source files and libraries

Internal linkage

A variable declared outside all functions
has “static storage” and, by default, “external linkage”:

it’s created at the execution start, before main execution
(unless it’s in dynamic libraries),
it’s by default visible by all the functions,
it can be hidden to functions in other translation units by
adding a “static” specifier, giving it “internal linkage”.

int i=0; // visible by all functions
static int j=0; // visible in this

// translation unit only
void f() {
std::cout << "f:i=" << ++i << std::endl;
std::cout << "f:j=" << ++j << std::endl;

}

The static specifier has a different meaning when applied to
variables declared outside all functions.

Object oriented programming and C++ Storage and linkage - 5



Introduction Static Extern Source files and libraries

Extern linkage

A variable, declared outside all functions, with “external linkage”
is visible by all functions:

functions in other translation units can access it, too,
a declaration is necessary in each translation unit, anyway,
an "extern" specifier is added to the declaration, in a
translation unit, of a variable defined in another translation
unit: the name is declared but the variable is NOT created
in the memory, because it’s created elsewhere,
a definition, i.e. a declaration without "extern", must be
included in one and only one translation unit,
otherwise an “undefined reference” or “multiple definition”
error arises (as for fuctions).

Object oriented programming and C++ Storage and linkage - 6



Introduction Static Extern Source files and libraries

Extern variables declaration and definition

int i; // global variable definition
...
int main() {
i=12;
g();

}

extern int i; // defined in another
// translation unit

...
void g() {
std::cout << "g:i=" << ++i << std::endl;

}

Object oriented programming and C++ Storage and linkage - 7



Introduction Static Extern Source files and libraries

Multiple files

The program is (usually) scattered over multiple files.

They can be compiled all toghether to produce an
executable:
c++ -o exec file1.cc file2.cc

They can be compiled one by one and linked into an
executable only later:
c++ -c file1.cc
c++ -c file2.cc
c++ -o exec file1.o file2.o

c++ -c : compile without link

The code contained in one file together with all the included
ones is called “translation unit”.

Object oriented programming and C++ Storage and linkage - 8



Introduction Static Extern Source files and libraries

Static libraries

Source file(s) can be compiled to a “static” library:
c++ -c file2.cc
ar -r libTestS.a file2.o

The library can be linked to the executable:
c++ -o exec file1.cc -L. -lTestS

ar -r : create a library
c++ -Ldir : look for libraries in directory dir
c++ -lname : look for the library libname.a

The code is copied to the executable:
the libraries are only needed when compiling,
the libraries are not needed at runtime.

Object oriented programming and C++ Storage and linkage - 9



Introduction Static Extern Source files and libraries

Dynamic libraries

Source file(s) can be compiled to a “dynamic” library:
c++ -fPIC -shared -o libTestD.so file2.cc
c++ -o exec file1.cc -L. -lTestD

c++ -fPIC -shared : produce a dynamic library
c++ -Ldir : look for libraries in directory dir
c++ -lname : look for the library libname.{a,so}

The code is only referred by the executable:
the libraries are needed
both when compiling and at runtime,
the path to the library must be defined
both when compiling and at runtime,
e.g. in the environment variable ${LD_LIBRARY_PATH} ,
the main itself can stay inside a library, provided it’s
unique.

Object oriented programming and C++ Storage and linkage - 10



Introduction Static Extern Source files and libraries

Initialization order rules

The initialization order of global variables or objects is defined
only inside the same translation unit:

global objects/variables defined in the same translation unit
are initialized following the definition order,
global objects/variables defined in different translation units
are initialized in undefined order.

Object oriented programming and C++ Storage and linkage - 11



Introduction Static Extern Source files and libraries

Initialization order pitfalls

Care needed!
For native variables initialization order is mostly not
important, unless the value of a variable is used to initialize
another one.
For more complex objects, to be seen later, any
dependence in the initialization of a global object from
another global object defined in another translation unit
must be avoided. Otherwise, an error called “Static order
initialization fiasco” does occur.
Some techniques to avoid the problem will be shown in the
following parts of the course.

Object oriented programming and C++ Storage and linkage - 12


	Introduction
	

	Static
	

	Extern
	

	Source files and libraries
	


