Towards next generations of software for distributed
infrastructures : the European Middleware Initiative

Cristina Aiftimieiﬂ, Alberto AimarT, Andrea Ceccanti*, Marco Cecchi*, Alberto Di MeglioT, Florida Estrellan,
Patrick Fuhrmanni, Emidio Giorgio*, Baldzs K(’)nya§, Laurence FieldT, Jon Kerr Nilsenﬂ, Morris Riedel”, John White**

TfNational Institute of Nuclear Physics, INFN - Padua, on leave from NIPNE-HH (Romania)
email:cristina.aiftimiei @pd.infn.it
*National Institute of Nuclear Physics, INFN
email:{cristina.aiftimiei@pd, andrea.ceccanti@cnaf, marco.cecchi@cnaf, emidio.giorgio@ct}.infn.it
TEuropean Center for Nuclear Research, CERN
email: {alberto.aimar, alberto.di.meglio, florida.estrella, laurence.field} @cern.ch
{German Electron Synchrotron, DESY
email: patrick.fuhrmann@desy.de
$Institute of Physics, Lund University
email:balazs.konya@hep.lu.se
ﬂDepartment of Physics, University of Oslo
email:j.k.nilsen @fys.uio.no
I Juelich Supercomputing Centre, FZJ
email:m.riedel @fz-juelich.de
**Helsinki Institute of Physics
email:john.white @cern.ch

Abstract—The last two decades have seen an exceptional
increase of the available networking, computing and storage
resources. Scientific research communities have exploited these
enhanced capabilities developing large scale collaborations, sup-
ported by distributed infrastructures. In order to enable usage
of such infrastructures, several middleware solutions have been
created. However such solutions, having been developed sepa-
rately, have been resulting often in incompatible middleware and
infrastructures. The European Middleware Initiative (EMI) is a
collaboration, started in 2010, among the major European mid-
dleware providers (ARC, dCache, gLite, UNICORE), aiming to
consolidate and evolve the existing middleware stacks, facilitating
their interoperability and their deployment on large distributed
infrastructures, establishing at the same time a sustainable model
for the future maintenance and evolution of the middleware
components. This paper presents the strategy followed for the
achievements of these goals : after an analysis of the situation
before EMI, it is given an overview of the development strategy,
followed by the most notable technical results, grouped according
to the four development areas (Compute, Data, Infrastructure,
Security). The rigorous process ensuring the quality of provided
software is then illustrated, followed by a description the release
process, and of the relations with the user communities. The
last section provides an outlook to the future, focusing on the
undergoing actions looking toward the sustainability of activities.

I. BACKGROUND

European scientific research has benefited in the past two
decades from the increasing availability of computing and data
infrastructures that have provided unprecedented capabilities
for large scale distributed scientific initiatives. A number

of major projects and endeavours, like EGEE[?], DEISA[?],
WLCG][?], NDGF[?], OSG[?] and others, had been estab-
lished within Europe and internationally to share the ever
growing amount of computational and storage resources. This
collaborative effort involved hundreds of participating research
organizations, academic institutes and commercial companies.
The major outcome was a number of active production infras-
tructures providing services to many research communities,
such as High Energy Physics, Life Sciences, Material Science,
Astronomy, Computational Chemistry, Environmental Science,
Humanities and more.

At the core of these rich infrastructural facilities lies the
grid middleware, a set of High Throughput Computing (HTC)
and High Performance Computing (HPC) software services
and components that enable the users to access the distributed
computing infrastructures: manage data resources, discover
services, execute jobs, collect results and share information.

The idea of distributed computing infrastructures and the
underlying middleware followed the rapid development in
internet technologies and can be considered an indirect result
of internet standardization. Shortly after TCP/IP was accepted
as a standard in the late eighties of the last century, the first
approaches to harness distributed and yet interconnected com-
puting power, were made. The Condor project[?] is often con-
sidered as a precursor, by setting in 1988 the goal of creating
software that enabled a new type of computing environment
with heterogeneous distributed resources. Legion/Avaki[?] has
provided a wide-area distributed computing solution since

1993, and SETI@Home has released a distributed desktop
resource scavenging service 1993 followed by BOINCI[?] in
2002. While conceptually very sound, these approaches lack
two key features: security and an information system. These
features were added years later in the Globus Toolkit[?],
which pioneered the idea of a single sign-on to the computing
infrastructure. The Globus Toolkit became the first true open
source Grid software. Still, being a toolkit, Globus did not
offer a turnkey solution; the UNICORE project[?] in 1997
started developing the first European software that provided
end-to-end services as an alternative to Globus in the area of
high-performance computing.

The attraction of the Grid vision was its decentralized nature
based on open protocols and services. This allows for cross-
domain resource sharing as opposed to resource allocation
in traditional high-performance computing. This proved to be
particularly appealing for large distributed research communi-
ties in need of high-throughput computing services: physicists
working on the Large Hadron Collider at CERN were the
first to come with the idea of a worldwide computing Grid,
WLCGS, in 2003, and are still the single heaviest Grid user
community.

After the necessary initial period of research and consolida-
tion of the early middlewares, a handful of production quality
solutions emerged. In Europe, middleware like gLite[?] from
the EGEE project, ARC[?] from the NorduGrid Collaboration,
UNICORE and dCache[?] allowed thousands of scientific
researchers to access grid enabled resources and produce
scientific results.

UNICORE originally was conceived as a secure, unified and
seamless interface to high performance computing resources,
fitting neatly and non-intrusively into the existing infras-
tructure and administrative procedures at a large HPC site.
UNICORE also came integrated with workflow capabilities
allowing end users to tackle complex problems using the Grid
without the need to resort to custom tools.

ARC was designed and implemented as a reliable, efficient,
highly portable and easy-to handle middleware. It was opti-
mized for serial data-intensive computational tasks, such that
input and output data manipulation is considered an integral
part of a computing service.

The glLite middleware stack was a modular ensemble of
components that, in general, comprises a client, a job brokering
system, a computing element and execution (or worker) nodes
and data storage and management services. Integral to gLite
are the security and information systems that protect the in-
frastructure from misuse and damage and provide information
on capacity and usage respectively.

dCache is a data management technology designed for stor-
ing, retrieving and managing huge amounts of data, distributed
among a large number of heterogeneous server nodes, under a
single virtual file system tree. A variety of standard methods
is offered to access and manage data.

Historically the above middleware stacks had been devel-
oped simultaneously and even though there was overlap in
their capability domains, the delivered solutions were not

compatible, thus usage of these frameworks created isolation
of the infrastructures and separation of the user communities.
A clear need for interoperability and standardization-based
convergence appeared. The growing usage of these software
solutions required the transformation of the fragmented Eu-
ropean middleware landscape into a harmonized software in-
frastructure based on professionally managed and standardized
services. EMI was the first project proposed to bring together
four major European grid middleware providers, ARC, gLite
and UNICORE and dCache in order to capitalize on their long
history of competitive development, which has shaped their
approaches, but also contributed to the overall quality and clear
understanding of key grid propositions and problems.

By the start of the EMI project it became obvious that
a number of problems that still prevented users from easily
accessing and using the existing computing infrastructures
must be urgently addressed:

« Usability had to be enhanced, removing redundancy and
consolidating the services, simplifying the security man-
agement without compromising its strength

o Compatibility had to be improved by removing propri-
etary interfaces in the middleware services and ensur-
ing true interoperability through the adoption of agreed
community standards, thus leading to the removal of
implementation islands.

« Manageability had to be improved by providing standard
service configuration, monitoring and making accounting
and other operational information more readily accessi-
ble.

¢ Sustainability was an issue that had to be improved
by establishing long-term collaboration programs and
turning to open source models.

II. THE EMI IMPACT

EMI aims to deliver a consolidated set of middleware
components for deployment in EGI [?] and other distributed
computing infrastructures, extending the interoperability and
integration between grids and other computing infrastructures,
establishing a sustainable model to support, harmonize and
evolve the middleware, ensuring it responds effectively to
the requirements of the scientific communities relying on
it. The growing availability and use of compute and data
infrastructures now requires their transformation into a profes-
sionally managed and standardised service. It is of strategic
importance for the establishment of permanent sustainable
research infrastructures to lower the technological barriers
still preventing resource owners and researchers from using
grids as a commodity tool in their daily activities. The EMI
development roadmap is contributing to the realisation of this
vision, organizing the software development into the following
pillars:

1) Support existing infrastructures by providing reactive
and proactive maintenance for software components
used in production.

2) Implement best-practice, service-oriented procedures
based on clear Service Level Agreements (SLA) and

work out transition and phase-out plans. Harmonize
and consolidate the software portfolio originating from
the middleware consortia by removing duplications and
simplifying usage and maintenance. The EMI software
stack must be consolidated and streamlined by removing
unnecessary duplication, replacing proprietary technolo-
gies with off-the-shelf and community supported tech-
nologies wherever possible. The harmonization should
be carried out via the adoption of either standard inter-
faces from well- established international collaborations
or interfaces defined via EMI agreements reflecting de-
facto standards used by the majority of implementations.

3) Evolve the middleware by addressing the requirements
of the growing infrastructures as they become more
stable and pervasive. The focus is more on hardening the
reliability of existing services, evolving their operational
capabilities, implementing new requested features and
addressing clear and present needs, rather than produc-
ing new prototypal technology to be deployed in a few
years’ time. The development preferably should be based
on existing code or off-the-shelf 3rd party solutions, this
way avoiding the creation of yet another prototype-level
solution.

As the ultimate result of the EMI software development
activity, by the end of April 2013, EMI will deliver a high
quality consolidated middleware distribution of modular inter-
compatible components with unified interfaces offering ad-
vanced functionalities that can be swapped depending on what
kind of feature set is needed. The EMI-Final software stack
will consist of reliable and interoperable solutions for the core
capabilities needed to operate and manage a distributed com-
puting infrastructure. In particular, EMI will provide services
within the compute and data functionality areas, forming an
integrated ecosystem via the common security mechanism and
the information system backbone. On the user-side simplified
management of security credentials will hide the complexity
of Grid security and considerably lower the entry level barrier,
while usability and maintainability will be improved through
the unification of user interfaces, APIs, error messages, instal-
lation mechanisms and management procedures.

The development roadmap is divided into three phases

(years):

1) The first phase of the development is marked as EMI
1. This phase was completed with the Kebnekaise re-
lease delivered on 12 May 2011 [?]. During the first
EMI development phase important technical agreements,
component design and early implementations were de-
livered in addition to the enormous integration efforts
that had been deployed for EMI 1 release preparation.
Among these efforts, are worth mentioning the adher-
ence, for all EMI packages, to Filesystem Hierarchy
Standard (FHS, [?]), and the adoption of Fedora [?]
and EPEL [?] packaging guidelines. Endorsing these
well known open source practices marked a significant
step toward standardization, as well as grid middleware

usability and sustainability. Furthermore, most of the
Kebnekaise products came with numerous improvements
as a result of individual components evolution.

2) The second development phase, leading to the EMI
2 release [?], completed the work on the four area
consolidation plans (data, security, compute and infras-
tructure) that already had started back in year 1. The
second phase constituted the most development intensive
period of the EMI project. This was the phase that
delivered harmonized solutions based on the first year
agreements, products such as the EMI Execution Service
Interface implementations, the EMIR service and the
CANL security library.

3) During the third and final phase, the work will focus
on completing all the open development tasks and thus
bring the three-year EMI developments to production
level. Not yet released products such as STS and the
EMI datalib will be the new product highlights of
the third release. Apart from these, the final phase
development objectives are mostly targeting hardening
of existing EMI features, improving non-functional as-
pects such as reliability, usability and interoperability.
Another important objective is the roll-out of the latest
EMI products with the rest of the EMI software port-
folio. The broad usage of the EMIR information index
service and the migration to the CANL EMI security
library are such planned activities.The phase will con-
clude with the Monte Bianco release due February 2013.

In what follows, the planned and already ongoing development
work of the final two phases is presented along the four
technical areas of security, infrastructure, compute and data.

A. Security

Security area includes those services and components en-
abling the Grid security model, allowing the safe sharing
of resources on a large scale. Such services cover identity
management, Virtual Organization membership management,
authentication, delegation and renewal of credentials, and
authorization. Grid security has been largely based on a Public
Key Infrastructure [?]. Although strongly reliable, production
usage of PKI based mechanisms have shown in the years
some limitations, in particular on the usability aspects, that
eventually became barriers preventing wide usage of grid
infrastructures [?]. On another side, the middleware flavours
in EMI implemented slightly different security frameworks.
Therefore, the overall strategy in EMI-Security was two-
fold : firstly, to integrate the interoperable services of each
middleware, in order to reduce the duplications and paving
the way for an unification of the security models. At the
same time, simplification and ease of access have been taken
into account, pursuing interoperability with well established
security frameworks as Kerberos [?] and Shibboleth[?].

1) Common SAML and XACML profiles: Specification of
common authorization policies, formerly managed through
different, often non-standard services, was a mandatory step
pursuing interoperability of security services. In order to have

a common attribute authority that issues attributes either to
X.509 proxies or SAML assertions, a SAML common profile
was needed. A first agreement on a common set of SAML
authorization attributes was planned and delivered by the EMI
SAML group [?]. For the same reasons, a common XACML
profile[?] has been produced, in order to define a minimal
common set of security attributes to be used in policies.
The work performed for this objective started with a general
agreement that Argus will become the common authorization
system for the middleware stacks in EMI. The XACML group
thus

o Gathered the XACML profile requirements of the differ-

ent Compute Elements.

o Determined the work needed to modify/extend the current

(CREAM) CE XACML profile.
« Clarified that the full XACML specification is met within
Argus.

« Attempted to collect requirements from the EMI Execu-

tion Service (EES) and Data Management.

2) Security Token Services: A key aim in the EMI Se-
curity Area is to make the security credential management
more accessible to ordinary users. This is to be achieved by
simplifying the management of security credentials by reduc-
ing the complexity of handling certificates and transparently
integrating different security mechanisms such as Shibboleth
and Kerberos into the EMI stack. This development will allow
users to use their own authentication system to access a *Grid’.
In order to enable this access, a new security service, the
Security Token Service (STS) is needed to translate these
external credentials into the X.509 credentials needed by most
Grid infrastructures.

The STS implements the service defined by the WS-Trust
specification. STS is a Web service that issues security tokens,
a collection of claims, for the authenticated clients. As the
clients can authenticate to the service using different security
token formats, the service can be seen as converting a security
token from one format into another. The current plan is
that the STS will be implemented on top of the upcoming
Shibboleth IdP version 3 and OpenSAML3 implementations.
The advantage of reusing the Shibboleth / OpenSAML3 code
base is twofold, as it allows the reuse of non-trivial Web
service libraries, permitting at the same time to leverage the
STS from the beginning against the code base of the most
used AAI system in Europe.

3) EMI Common Authentication Library: The security area
consolidation of the EMI products is driven by the definition,
implementation and migration over to the common EMI au-
thentication library (CANL). EMI has provided common au-
thentication libraries supporting X.509 and optionally SAML
and is available for Java, C and C++. The implementations
of the libraries have almost completed and prototype versions
of CANI for all the three languages were included into the
EMI Matterhorn release. Adoption of the library in UNICORE
already started, at first the UNICORE Gateway and UNI-
CORE security libraries are updated to use the new library.
The adoption of the C library by other EMI components

is expected during the EMI 3 phase. EMI security is built
around X509 technology where proxies play a central role.
Therefore, a considerable part of the security area development
targets proxy functions, in particular proxy handling features to
address SHA?2 signing, default key-size and OCSP requests.
Grid sites will start to receive certificates and proxies from
Certificate Authorities that will be signed with a SHA2 hash
rather than the current SHA1 or even MDS5. The possibility to
configure a default key size for generated proxies is required
as currently this is not universally enforceable. The Online
Certificate Status Protocol (OCSP) is an Internet protocol,,
alternative to static revocation lists, used for obtaining the
revocation status of an X.509 certificate. In order to provide
a common solution, all these proxy handling features will be
implemented in the Common Authentication libraries (CANI).
Subsequent usage of these common libraries by other EMI
components will automatically provide these needed proxy
features.

4) Encrypted Storage: The security area is involved in
providing a transparent solution for encrypted storage utilizing
ordinary EMI Storage Elements. The realization of an en-
crypted storage within EMI is relatively simple: the necessary
services to protect data and user identities on a Grid have to be
provisioned. These services are requested by user communities
that have stringent data protection requirements. EMI offers
the pseudo-anonymity (pseudonymity) service and the key
storage service (Hydra) as a solution. Pseudonymity is a
certified EMI product, while Hydra is undergoing certification
and release for EMI-2.

B. Infrastructure

The Infrastructure Area embraces a wide set of topics,
from information services and service monitoring to client-side
accounting and messaging technology. Information services
enable users, applications and other services to discover which
services exists in a infrastructure along with further informa-
tion about their structure and state. It is clear how convergence
on this aspect was crucial to achieve the overall harmonization
and standardization goals pursued by the project. For this
reason, a strong focus has been placed on harmonization
and interoperability of the EMI middleware components [?],
developing on this purpose several new products.

1) GLUE2.0 support: To ensure interoperability between
the different EMI middleware components, it was agreed
to adopt the GLUE 2.0 information model from the Open
Grid Forum (OGF) [?] as a common information exchange
model. Support for GLUE 2.0 within the information services
themselves was delivered with the EMI 1 release and in the
EMI 2 release, all EMI services publish GLUE 2.0 based
information. By the EMI 3 release, it is anticipated that all
EMI services make use full use of the GLUE 2.0 information
model.

2) EMI Resource Information Service: The EMI Resource
Information Services (ERIS) has been introduced into the
EMI middleware stack as a common interface for obtaining
information directly from services themselves and is one of

the major results from the harmonization activity. The ERIS
provides an LDAP v3 interface to GLUE 2.0 information.
Information providers, in the classic sense, extract information
from the under laying Grid service and provide GLUE 2.0
information in the LDIF format. These two together represent
the external and internal interfaces for obtaining local informa-
tion from EMI services. This approach aims to be a minimal-
cost solution for existing EMI products and has a low-impact
on existing infrastructures. The definition of this common
interface not only ensures interoperability between the EMI
middleware components, the provided implementation also
reduces duplication of functionality an hence simplifies the
EMI middleware stack.

3) EMI registry: Another major result achieved has been
the development of a common service registry (EMIR), en-
abling the discovery of service endpoints and other information
about the services deployed in an infrastructure. EMIR aims
to facilitate reliable service discovery through provision of a
tailored service designed specifically for this task. An initial
version has been released in EMI 2 and is currently being
evaluated for use in productions infrastructures.

4) Accounting: Historically, there were a number of dif-
ferent accounting solutions in the accounting landscape,
which did not interoperate; APEL and DGAS[?] for gLite,
JURA/SGAS for ARC, and the OGSA-RUS interface in
UNICORE. As part of the harmonization activity within EMI,
accounting records have been defined for computing (CAR)
and storage (StAR), based on the OGF Usage Record [?]. The
compute and storage services are being modified to be able to
generate CAR and StAR records and furthermore, the transport
system that moves records from the resource to the accounting
server (APEL) is also being adopted to be used these records.
These modified records are being used as important input to
the next generation OGF Usage Record.

5) Messaging Services: Messaging services are increas-
ingly being used in distributed systems and solutions based
on such services have been chosen for Grid applications.
For example, messaging technology has been adopted as an
integration framework for service monitoring [?] and other
Grid operational tools including accounting, ticketing and
operational dashboards. It has been shown that the use of
messaging technology can simplify such tools and improve
their reliability through the adoption of either commercial or
open source implementations. In this respect, the EMI Mes-
saging Product Team has facilitated the adoption of messaging
technologies within EMI by selecting, testing and documenting
the available technologies as well as providing additional
software, documentation and consultancy to the other Product
Teams.

6) Service Monitoring: An early investigation looked into
the possibility of use of messaging technology, with the aim
of providing a common interface for service monitoring and
management that could be adopted by all EMI middleware
components and a survey of Grid sites was jointly conducted
with EGI to investigate the requirements in this field. The
feedback from this survey was that while there is general

agreement that such a solution is on everyones wish list,
this would only make sense within the wider context of
standards in data centers, which is out-of-scope for EMI. In
practice smaller more concrete objectives would have greater
impact for service monitoring and management. The result of
consultations with EGI has re-focused the plans with respect
to Service Monitoring and Management[?]. In particular, for
service monitoring, EGI requested that each service should
provide a Nagios probe which can be used to measure the
availability. 90% of the service Nagios probes were delivered
and released in the EMI 2. For service management, as a
number of different fabric management tools are used to
provision services based on EMI components, it was requested
that these components should conform to the operating system
guidelines for the platforms which EMI supports.

C. Compute

Compute area services include middleware services in-
volved in the processing and management requests concern-
ing the execution of a computational task. They cover the
interaction with Local Resource Management Services (as
LSF, Torque/Maui, PBS, SGE), the provision of a common
interface to the computational resources of a site (the so-
called Computing Element), and the availability of high-
level meta-scheduling, workflow execution and task tracking
functionality. As number of services were already present
and well established in the originary middleware stacks, the
focus on this area has been given on making such solutions
interoperable, through the support of common/standard tools,
such as Argus for authorization purposes, or, when needed,
the development of ad-hoc interfaces. The most notable results
achieved in the first two project years in this area follows:

1) Full support for GLUE 2.0: The EMI Computing Ele-
ments (CE, ARC CE, gLite CREAM and UNICORE/X) fully
support the publication of local-level resource information
expressed according to the GLUE2 OGF proposed recom-
mendation standard. The remaining activity for a complete
GLUE2 support in the compute area is the development of
GLUE?2 support in the match-making modules and client tools.
This concerns the implementation of a new module in the
WMS, responsible for querying over LDAP a GLUE2 enabled
BDII and for fetching information in the WMS internal cache,
ready to be queried by the clients through the Job Definition
Language (JDL).

2) Common job submission and management interface
through the EMI Execution Service: The so called EMI
Execution Service is a common job management interface to
be implemented and adopted by all the middleware Computing
Elements. This is one of the most distinguished developments
of the project, and, fostered by the adoption of the common
authentication library (CANL), will allow seamless execution
of user jobs to the three EMI CEs (ARC CE[?], gLite
CREAM[?] and UNICORE/X[?]). At the time of writing,
the overall completion status of EMI-ES implementation for
each middleware is estimated to be above 80%. Parallel to
the ongoing implementation of the EMI-ES specification,

interoperability tests have started already, involving all the
three middleware services in all the possible combinations of
clients and servers.

3) Definition and implementation of the EMI Compute Ac-
counting Record(CAR): A compute accounting record (CAR)
is typically defined in reflecting practical, financial and legal
requirements of resource consumption, including CPU time,
wall-clock time and memory usage. An agreement, in terms
of XML schema definitions, over detailed and aggregated
usage records was reached among all the EMI producers.
This was done by addressing the previous Usage Record
limitations and by extending accounting records to include
VO-aware storage usage accounting. This activity resulted in
a description document and two XML schemas, one for each
record type. Both were based on existing OGF standards, that
has been slightly modified both in syntactical and semantic
aspects to allow for extended interoperability of the existing
middleware layers and taking into consideration existing grid
use cases.

4) Integrated solutions to interface with batch systems: An
important compute area development task is to provide the
ability for all the EMI computing elements to fully support a
well advertised set of batch systems. This initial set included
PBS/Torque family, Sun/Oracle/Univa Grid Engine and LSF.
Then, SGE was added and now its fully supported by all the
three CEs. Support for SLURM is planned to be supported by
the end of EMI.

5) Common parallel execution framework: Another conver-
gence task within the EMI compute area is the identification of
a common parallel execution framework. In particular, rather
than simply trying to identify a common back-end, a somewhat
difficult and even not necessary step, it was decided to find
an agreement on a definition of parallel jobs across the three
middleware. The idea was to adopt the Parallel[Environment as
defined by the EMI-ES. This also leaves the implementation
of the back-end up to each single service, while the expected
behavior is defined by the interface. The implementation
of this solution required slight adaptations to the EMI-ES
definitions, that were promptly done in order to accommodate
for different kind of requests of parallel applications, coming
from the long experience of MPI-Start.

D. Data

The EMI-Data portfolio provides components to store,
manage, access and transfer data in the 100 Petabyte range,
supporting highly distributed infrastructures. An high-level
view of EMI-Data services shows systems both able to keep
track on data locations as well as to manage and operate on
the associated metadata. The major building blocks, as there
are dCache, DPM]?], StoRM[?], the LFC[?], AMGA[?] and
FTS[?], are already in production for several years and with
that reached a high degree of stability. One of the main goal of
EMI-Data is to allow costumers to combine those components
according to their needs and to build a scalable and easy
to maintain data infrastructure. Another, similarly important
objective is to equip EMI-Data components with standard

interfaces to allow them to be plugged into existing IT systems
or to easily replace parts or complete industry software stacks
by EMI open source software. Below, we briefly describe some
most prominent activities.

1) POSIX File access: With the second major release of
EMI, all provided storage elements support direct POSIX[?]
access to storage, either through their storage backend as
with StoRM or by implementing the new NFSv4.1/pNFS[?]
industry file system standard. As a consequence, applications
from all scientific communities can gain seamless access to
EMI storage without being modified or without providing
specific proprietary data access libraries.

2) From http(s) / WebDAV access to federated storage:
Initially implementing a location catalogue for all EMI storage
elements and local files, at the end of the second year of EMI,
LFC was released with an http/WebDAV interface , while a
WebDAV federation component was added with the beginning
of the third year. This component is supposed to incorporate
http/WebDV storage endpoints to a single storage space by
overlaying their namespaces. This is either done by probing
known endpoints for the requested data or by interrogating file
location catalogues. A plugging framework allows to find the
most appropriate storage endpoint for each individual client
request by using proximity, storage element load or network
topology information. Based on those pieces of information,
WebDAV requests to the central service are redirected to the
most appropriate endpoint.

3) Improved data transfer service, FTS: Based on the expe-
rience in transferring enormous amounts of data with the first
generation of the WLCG File Transfer Service, FTS, the FTS
team is building a second generation service, more flexible in
handling shared networks and being able to incorporate load
information from storage endpoints.

III. QUALITY ASSURANCE

The EMI software Quality Assurance (QA) process has been
created for providing adequate confidence that the software
products and processes in the project lifecycle conform to their
specified requirements and adhere to their established plans. In
order to provide a sound strategy for the whole EMI project,
the specific context in this project has to be taken into account:
the EMI middleware was developed by the major middleware
providers in Europe, ARC, gLite, dCache and UNICORE.
These middleware providers have been developing software in
the grid domain for the past several years and they all had their
own practices and tools therefore it has been very important
to plan these practices into a single EMI QA activity (EMI
Software QA Plan)[?].

The Quality Assurance activity had to define and foster
common practise and tools and facilitate the transition towards
an open source approach (standards, tools, repositories, etc),
which is the part of the model chosen by EMI in order to
ensure sustainability of the products after project completion.
The main services and quality assurance tasks provided to the
EMI projects are:

o Common policies, documents, templates (EMI QA Poli-
cies Documents)[?]

o Software metrics, with automated reports and dashboards

« Build infrastructure for all development teams (EMI QA
Tools Documentation)[?]

o Testing infrastructure for all EMI software (EMI Certifi-
cation and Integration Testbed)

A. Tools

ETICS[?] was the tool selected to integrate, build, test
and package the different pieces of software that are part
of EMI. After an initial survey circulated to collect the
different requirements and tools used, ETICS was the tool
better positioned. But some modifications were needed to
fulfill all the requirement: standard tools, such as Mock and
PBuilder were integrated to generate packages compliant with
the Fedora and Debian packaging guidelines. It was needed to
introduce support to new platforms, as Scientific Linux 5/6 and
Debian 32/64 bits (this requiring support to APT repositories)
These modifications include a new virtualization system and a
change of paradigm about how the worker nodes are started.
For generating the different reports, a complete new report
generator framework was developed to analyze the different
values collected by the plugins during the builds and generate
the different charts.

B. Results

The compliance level of QA policies and procedures have
been measured by the QC team which was mainly focused on:

o Verifying that software products, being included in major
releases, were compliant with the Production Release
Criteria as defined within the Software QA Plan

o Performing the security assessment of a sub-set of re-
leased products to ensure they were not containing any
vulnerabilities or security holes

o Verifying that released products were compliant with
EPEL packaging criteria

o Preparing reports where results of periodic control ac-
tivities are collected and any existing non-conformity or
deviation are pointed out.

Collected results and measurements, which are reported in
the following sections with more details, present a progressive
improvement on quality performance. The good improvement
made on regression testing and EPEL/Debian compliance
metrics has given a real impact on the quality of the product
and in its future sustainability after the end of the project.

Metrics reports have helped to detect deviations from the
EMI QA policies. A process to follow up these deviations
is also defined in the EMI Quality Model and the Quality
Control (QC) has been responsible for tracking the situation
and proposing the necessary corrective actions as described in
the rest of the document.

A general major improvement on all metrics occurred
moving from EMI 1 to EMI 2. Large part of the updated
products is accompanied with unit and regression tests and
the coverage of RfCs is clearly improving. Best results were

achieved for EMI 1 Updates as probably developers had more
time to fulfill agreed policies:

e 97% of the EMI 2 code passed all the mandatory checks

e 100% of High/Emergency RfCs are covered by associated
tests in all EMI 1 updates

e 90% of the products are basically EPEL compliant and
have less than 15 errors

e 90% have a trend improving their EPEL compliance

The measurements are collected either using the automatic
procedures provided by the other tasks of the QA activity
such as the above mentioned, RfC and Verification dashboards
and the statics metrics extracted by the ETICS tool. During
this second year the work started in the first year has been
completed and the QC task has verified all the EMI 1 Keb-
nekaise updates and the full EMI 2 release. Comprehensive
feedback has been provided to the Product Teams and EMI
products have always successfully passed the EGI acceptance
criteria[?].

Besides the performing of quality checks on the software,
the QC collected also measurements to evaluate the work
package performance on the basis of quality indicators like
the respect of the published deadlines stated in the release
process.

IV. MAINTENANCE, SUPPORT AND RELEASE

The maintenance and evolution of the EMI software is
implemented inside Product Teams (PTs). PTs are small teams
of software developers, fully responsible for the successful
release of a particular software product, or a group of tightly
related products, compliant with agreed sets of technical spec-
ification and acceptance criteria. Individual PTs are requested
to implement the necessary processes and procedures and
respect established requirements and priorities as globally de-
fined and endorsed by the EMI project executive and technical
leadership.

The software development process is driven by two concur-
ring demands:

o Software evolution, harmonization and consolidation, as
defined in EMI Technical Development Plans, to address
user requirements for new functionality and rationalize
the EMI software stack.

o Software adaptive and corrective maintenance : to address
problems reported by the middleware users or changes in
the software operating environment.

A. Support and maintenance policies

The natural outcome of the maintenance activity is the
release of the updated components in production, following
the EMI updates release process, while the main new develop-
ments are released in periodic major releases, delivered once
a year. In particular, backward-incompatible changes to the
interface or to the behavior of a component that is part of the
EMI distribution can be introduced only in a new EMI major
release. Changes to interfaces that are visible outside the node
where the component runs need to be preserved even across

Users
(EGI, DCIs, VRCs)

oo}

support
requests

Release Manager

CAB: Change Advisory Board
PT: Product Team
RfC: Request for Change

- Prioritze Development Release
Open AX maintenance and Certification
RfCs — work Testing
GGUS —_ * ‘
= s - -
A -
; RiC g Prioritized Release PN Certified
trackers) RfCs Candidate Release
Support Unit 9 ;
CAB PT PT Qc
Open RfCs
Fig. 1. The EMI release process

major releases, according to end-of-life policies to be defined
on a case-by-case basis.

EMI distributes its software through the EMI repository
based on the AFS and HTTPD services provided by CERN.
The repository hosts all the software components developed
during the lifetime of the project, while EMI releases are
announced through various channels, e.g., the EMI website,
mailing lists and dedicated RSS feeds.

EMI major releases are supported and maintained for ap-
proximately two years after the release date. The availability
of a new major release of EMI does not automatically ob-
solete the previous ones and multiple major releases may be
supported at the same time according to their negotiated end-
of-life policies. It is foreseen, however, that only the latest
two EMI major releases will be supported at any time. For
each supported EMI major release, the maintenance schedule
is organized in the following periods:

1) Full maintenance, 12 months: in this period, updates
address issues in the code and provide new features.

2) Standard maintenance, 6 months: this period follows full
maintence. Updates address issues in the code, but no
new features are introduced.

3) Security updates, 6 months: after the standard mainte-
nance period, only updates targeting security vulnerabil-
ities are provided.

4) End-of-life: this ’period’ starts after the end of the se-
curity updates period. Provision of updates and support
cease.

Specific exceptions to the above maintenance periods can
be negotiated between the users and the PTs, depending on
various criteria that include critical run-time of experiments
or projects that do not allow upgrades to new versions,
particularly complex deployment and migration conditions,
etc.

B. The maintenance and release processes

The EMI software maintenance activity (see Figure ??) is
mainly driven by Request for Changes (RfCs) targeting EMI
components. RfCs are typically created as consequence of
incidents reported by users through the support channels when
the cause of the incidents is traced to an actual problem in the
code by EMI Support Units. RfCs also originate from PTs,
when problems are found in the code during development or
when introducing minor unplanned improvements. Although
RfCs are tracked in several independent PT bug trackers, the
RfC reporting and aggregation tools implemented by the EMI
QA team provide a common view on submitted RfCs. In
particular, a weekly report summarizes the status of Imme-
diate and High priority RfCs affecting released products. The
Change Advisory Board analyzes the content of the weekly
report to assess and validate the priority assigned to each
RfCs and select the items that need to be fixed in the next
maintenance release for the affected components. A task is
created in the EMI Release Tracker for each component which
links to the RfCs that will be addressed At this stage, PTs
start the development and testing work required to address
the problems reported in the task. Once PTs are reasonably
confident that all problems have been fixed and that changes in
the code do not break the ETICS continuous integration build,
the code is tagged in the VCS and the build configuration is
attached to the Release Candidate (RC) build for the targeted
EMI major release. At this stage, PTs complete the product
internal certification following the Testing and Certification
policies defined by the project. If required, the documentation
is updated and release notes for the new release are produced.
The task in the release tracker is moved to the Certified
status, and the release candidate is handed over to the QC
team and Release Manager for the final verification phase,
which includes deployment on the EMI testbed and additional
validation. If the final validation step yields positive results,
the EMI repository is updated with the new components and

VRCs/ GGUS)

PRACE/

0OSG/ ... Ticketing Processing Management
V7

7 EGI

Deployed Mi Support Unit
P A

Helpdesk
Y. N

Ve v AN

EMI generic support unit

[} I IR} Y\ ™ X ()
2 LA .S B/
dCache |UNICORE|UNICORE:
SU | Client SU|Server SU.

\AJ Al
gliteP, | ARC
- sU su

Bug Tracking Tool(s)

: Open Science Grid PRACE: Parinership for Advanced Computing in Europe; P: Product; SU: Support Unit
VRC: virtual research community

Fig. 2. The EMI support model

the release is announced.

C. The EMI support structure

The EMI support model (Figure ??) integrates in the
overall support structure adopted in EGI, which foresees an
organization in three levels. The EGI Helpdesk represents the
main contact point for a user where to get support. Within
the Helpdesk the Ticket Processing Management (TPM) is
responsible for the monitoring and routing of all active tickets
to the appropriate support units (SUs). In EGI the Helpdesk
is a distributed infrastructure consisting of a central Helpdesk
interconnected with a collection of local NGI Helpdesks. If the
Helpdesk is unable to resolve the incident, this is escalated for
further investigation to a 2nd- level support unit.

The Deployed Middleware Support Unit (DMSU) ensures
the availability of more specialized skills than those offered by
the Helpdesk in the investigation and resolution of incidents.
The DMSU includes people that together can cover all middle-
ware areas: job and compute management, data management,
security, information systems, accounting, etc. The DMSU is
an integral part of EGI. If the DMSU is unable to resolve
the incident, this is escalated for further investigation to a
3rd- level SU. 3rd-level SUs offer the most specialized skills
needed for the investigation and resolution of an incident and
are typically represented by the developers of the affected
software component. 3rd-level SUs are not normally part of
EGI but are integrated in the organization of the software
providers, such as EMI.

This industry-standard model provides the most effective
use of resources, for it involves the ultimate technical experts
only when their detailed knowledge is indispensable for the
investigation of an incident. Support tickets should not nor-
mally flow from the Helpdesk directly to the EMI SUs, unless
it is evident that the incident is caused by a software problem.
Incidents occurring to users on the production infrastructure,
even if initially reported through other means (typically mail-
ing lists) should always be reported through GGUS and their
processing tracked through GGUS tickets. This allows EMI to
compute user-oriented metrics completely from GGUS data.

V. OUTLOOK TO THE FUTURE

The aforementioned fruitful results of collaboration among
ARC, dCache, gLite, and UNICORE raise the question of how
the significant parts of these harmonization activities can be
sustained in the future. Although not every aspect is clear,
there are some activities that give a glimpse into the future of
the Grid middleware solutions in Europe.

The EMI partners have committed themselves to take over
maintenance to the most possible degree supporting their
strongly-related scientific communities. At the time of writing,
we foresee that at least all the major scientific communities
taking advantage of EGI and PRACE can expect that EMI
products will exist after the project end. At the same time, EMI
activities will expand to the market of distributed services. The
simplification and standardization work done will permit an
alternative approach, allowing exploitation of single products
instead of the traditional full-featured middleware solutions.

These activities will be conveyed into the ScienceSoft Open
Software for Open Science initiative [?], which emerged from
the EMI collaboration in order to expand the activities into
the broader open science market, promoting a community
driven approach. ScienceSoft aims to explore the feasibility
of creating an open source community for software specific to
scientific communities. This inherently includes the sustain-
ability of the EMI collaboration on a more loosely coupled
basis in order to let new partners to join collaborations beyond
the currently middleware focused work. The fundamental goal
of ScienceSoft would be thus to use open source software for
science in a more transparent manner making it truly collabo-
rative across communities and projects. Future activities in this
market are expected to also have side effects in implementing a
potentially mixed sustainable business model over time based
on existing examples such as Apache [?] or Eclipse [?].

VI. CONCLUSIONS

This paper has been written right after the EMI 2nd major
release, EMI 2 Matterhorn. After an intense 24 months of plan-
ning, development, integration and harmonization, the project
has delivered a consolidated software stack for deployment
in distributed computing infrastructures. A streamlined set of
compute, data, infrastructure and security services have been
made available to resource providers addressing requirements
from its communities, some of them heavy users from the
fields of high energy physics, life sciences and biology.

EMI takes pride in being part of the discovery of a new par-
ticle consistent with the Higgs boson based on data collected
and processed in 2011 and 2012. This exceptional discovery
has been attributed to the global effort of the experiments,
the infrastructure and the grid computing[?]. A significant
number of EMI products have been released by EGI, the
largest research infrastructure in Europe with an estimated
20,000 users to date. This is a major milestone in providing a
consistent platform, software and infrastructure, for all users
in the European Research Area to gain access to suitable and
integrated computing resources. EMI’s last year will be no
less demanding, with the release of its final distribution EMI 3

Monte Bianco. An even wider adoption of core EMI services is
the target for the last year, with many service owners pledging
to continue supporting and maintaining its services after the
end of the project.

The EMI project vision is part of a more general context
of European and international collaborations, where relevant
stakeholders actively take part in establishing a functional
distributed computing infrastructure ecosystem. Interactions,
collaborations and cross-fertilization of expertise, ideas and
results are paramount to achieving this objective. The EMI
collaboration represents engagement and commitment of a
significant number of, on one side, middleware developers and
resource providers, and on the other side, users of distributed
computing resources, an important step in shaping the dis-
tributed computing ecosystem.

Complementing this commitment is the implementation of
ScienceSoft, an EMI initiative to build a network of developers
and users. The target communities are those leveraging open
source solutions - developers, service providers, researchers,
platform integrators, projects, companies and funding bodies.
These communities will have access to an information hub of
software catalogues, service catalogues, people directory and
profiles. ScienceSoft will provide a marketplace for scientific
communities to find open source software and services they
need and the people who can provide them. The plan is
to make available in ScienceSoft information about EMI-
developed software for everyone’s use, even after the end of
the project.

ACKNOWLEDGMENT

This work has been partially funded by the European
Commission as part of the EMI (Grant Agreement INFSO-
RI-261611) project.

REFERENCES

[1] EGEE (Enabling Grids for E-sciencE) web site, retrieved July 2012,
http://www.eu-egee.org/

[2] DEISA (Distributed European Infrastructure for Supercomputing Appli-
cations) web site, retrieved July 2012, http://www.deisa.eu/

[3] WLCG (Worldwide LHC Computing Grid) web site, retrieved July 2012,
http://wlcg.web.cern.ch/

[4] NDGF (Nordic DataGrid Facility) web site, retrieved July 2012,
http://www.ndgf.org

[5] OSG (Open Science Grid)
http://www.opensciencegrid.org/

[6] M. Litzkow, M. Livny and M. Mutka Condor - A Hunter of Idle Work-
stations, Proceedings of the 8th International Conference of Distributed
Computing Systems, pag. 104-111, June 1988

[7]1 A.1J. Ferrari, A. S. Grimshaw et al. From Legion to Avaki: The Persistence
of Vision, chapter 10 in Grid Computing: Making the Global Infrastruc-
ture a Reality, published by John Wiley & Sons in March 2003, pages
265-298, ISBN 0-470-85319-0

[8] SETI@Home web site, retrieved
http://setiathome.berkeley.edu/sah_about.php

[9] Anderson, D.P. BOINC: a system for public-resource computing and
storage Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on Digital Object Identifier: 10.1109/GRID.2004.14
Publication Year: 2004 , Page(s): 4 - 10

[10] I. Foster, C. Kesselman Globus: A Metacomputing Infrastructure Toolkit,
Intl J. Supercomputer Applications, 11(2): pag. 115-128, 1997.

web site, retrieved July 2012,

September 2012,

[11] M. Romberg The UNICORE Architecture: Seamless Access to Dis-
tributed Resources,Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing (HPDC-1999), Redondo
Beach, USA, IEEE Computer Society Press, 1999, pages 287-293

[12] E. Laure, F. Hemmer, A. Di Meglio et al. Middleware for the Next
Generation Grid Infrastructure. Proceedings of Computing in High
Energy and Nuclear Physics (CHEP) 2004, September 2004

[13] M. Ellert et al. Advanced resource connector middleware for lightweight
computational grids, Future Generation Computer Systems, Vol. 23, Issue
2, February 2007, Pag. 219-240

[14] P. Fuhrmann et al. dCache, a distributed storage data caching system,
Proceedings of Computing in High Energy and Nuclear Physics (CHEP)
2001, September 2001

[15] EGI official web site, retrieved July 2012 : http://www.egi.eu

[16] EMI 1 Kebnekaise page, retrieved July 2012 http://www.eu-
emi.eu/emi-1-kebnekaise/

[17] Filesystem Hierarchy Standard Group web page, retrieved September
2012 : http://www.pathname.com/fhs/pub/fhs-2.3.html

[18] Fedora Packaging Guidelines, retrieved September 2012
http://fedoraproject.org/wiki/Packaging:Guidelines
[19] EPEL Packaging Guidelines, retrieved September 2012

http://fedoraproject.org/wiki/EPEL/GuidelinesAndPolicies

[20] EMI 2 Matterhorn page, retrieved July 2012 : http://www.eu-emi.eu/emi-
2-matterhorn/

[21] Neuman, B.C., Kerberos: an authentication service for computer net-
works, Communications Magazine, IEEE, vol. 32, issue 9, pag. 33-38

[22] Shushan Zhao, A.Aggarwal, R.D. Kent PKI-Based Authentication Mech-
anisms in Grid Systems. Proceedings of International Conference on
Networking, Architecture, and Storage, 2007. NAS 2007. Page(s): 83 -
90

[23] Bruce Beckles, Von Welchb, Jim Basney Mechanisms for increasing
the usability of grid security International Journal of Human-Computer
Studies, Volume 63, Issues 12, July 2005, Pages 74101

[24] R. Sinnott, J. Jiang, J. Watt, O. Ajayi Shibboleth-based Access to and
Usage of Grid Resources Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, Pag. 136-143

[25] First set of common SAML authorization attributes, retrieved July 2012,
https://twiki.cern.ch/twiki/bin/view/EMI/CommonSAMLProfileV102

[26] The XACML profile commonly agreed for
the EMI components, retrieved July 2012,
https://twiki.cern.ch/twiki/bin/view/EMI/EmiJral TAXACML

[27] L. Field, S. Andreozzi, B. Konya, Grid Information System Interoper-
ability: The Need For A Common Information Model, eScience ’08. IEEE
Fourth International Conference on, pag. 501-507

[28] A. Guarise, R.M. Piro and A. Werbrouck An Economy-based Accounting
Infrastructure for the DataGrid, 4th Int. Workshop on Grid Computing
(GRID2003), November 17, 2003, Phoenix, AZ

[29] R. Mach, R. Lepro-Metz and S. Jackson Usage Record - Format Recom-
mendation, OGF recommendation (GFD-R-P.098) obtained through the
Internet, July 2012 : http://www.ogf.org/documents/GFD.98.pdf

[30] P. Nyczyk, Z. Sekera et al. Monitoring the Availability of Grid Services
Using SAM and Gridview,Grid Computing - proceedings of International
Symposium on Grid Computing (ISGC2007),Springer US 2009, isbn 978-
0-387-78417-5, pag. 163-168

[31] Towards an Integrated Information System workshop minutes,
https://indico.egi.eu/indico/conferenceDisplay.py ?confld=654

[32] M. Sgaravatto et al. Design and implementation of the gLite CREAM
Jjob management service, Future Generation Computer Systems Vol. 26,
Issue 4, April 2010, Pag. 654667

[33] A. Streit, P. Bala et al. UNICORE 6 Recent and Future Advancements
Annals of Telecommunications, Vol. 65, Numbers 11-12 (2010), 757-76

[34] R. Zappi et al. StoRM, an SRM Implementation for LHC Analysis Farms
Computing in High Energy Physics (CHEP 2006), India, Feb. 13-17,
2006.

[35] A. Frohner et al. Data management in EGEE, Journal of Physics:
Conference Series, 2010, Vol. 219 par. 6

[36] POSIX standard specifications (IEEE Std 1003.1,2004 Edition)
http://www.unix.org/version3/ieee_std.html, retrieved July 2012

[37] pNFS web site, retrieved July 2012 : http://www.pnfs.com/

[38] M. Alandes et al. Why are common quality and development policies
needed ? http://cdsweb.cern.ch/record/1457987/files/ CHEP-poster-paper-
policies-reviewed.pdf

[39] EMI Quality assurance tools documentation, EU deliverable,
http://cdsweb.cern.ch/record/1277591/files/EMI-DSA2.2.3-1277591-
QA _Tools_Documentation-v1.0.pdf

[40] A. Di Meglio et al. ETICS: the International Software Engineering
Service for the Grid Journal of Physics Conferences Series, 2008: Conf.
Ser. 119 042010 (11pp)

[41] Software Provisioning Process, EU deliverable 508, retrieved in August
2012, https://documents.egi.eu/document/505

[42] Science Soft web site, July 2012 : http://www.sciencesoft.org

[43] Apache foundation web site, July 2012 : http://www.apache.org/

[44] Eclipse Foundation web site, July 2012 : http://www.eclipse.org/

[45] Press release: CERN experiments observe parti-
cle consistent with the Higgs boson, July 2012
http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html

