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Abstract. Some recent results on the rotational dynamics of polymers
are reviewed and extended. We focus here on the relaxation of a poly-
mer, either flexible or semiflexible, initially wrapped around a rigid
rod. We also study the steady polymer rotation generated by a con-
stant torque on the rod. The interplay of frictional and entropic forces
leads to a complex dynamical behavior characterized by non-trivial
universal exponents. The results are based on extensive simulations of
polymers undergoing Rouse dynamics and on an analytical approach
using force balance and scaling arguments. The analytical results are
in general in good agreement with the simulations, showing how a sim-
plified approach can correctly capture the complex dynamical behavior
of rotating polymers.

1 Introduction

Polymers, as every system composed by many units, may display a complex dynam-
ical behavior. Even single polymers can show rich and nontrivial dynamical phases,
especially if they are subject to spatial or topological constraints [1,2]. The impossi-
bility to break the local connectivity of the polymeric chains is the key to understand
interesting global rearrangements of these macromolecules.

In this paper we discuss the rotational dynamics of polymers, where the polymers
are either relaxing from a highly entangled configuration by performing a rotational
motion or forced to rotate by an applied torque. We briefly review a series of pub-
lished results [3–6] and extend our analysis to some new cases not considered so far.
There are two main motivations to justify this study. First, the rotational motion
is a central instance in polymer dynamics. Our analysis is based on the results of
extensive numerical simulations, which are supported by analytical arguments. The
comparison between the two approaches can teach us about the validity and possi-
ble shortcomings of the approximations used in the analytical calculations. This is
a valuable input for other studies of polymer dynamics. Second, it has applications
to some interesting biological in vitro problems: the DNA double helix melting [7,8],
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Fig. 1. Examples of rotational dynamics of entangled polymers. (a) The unwinding dynamics
of two polymer chains dissociating from each other. (b) The unwinding of a single chain from
a rigid rod. (c) The stationary conformation of a polymer attached to a rod rotating with a
constant angular velocity Ω.

RNA unwinding during transcription [9,10] and the closure of denaturation bubbles
in DNA [11] are some examples (in vivo, the relaxation of topological constraints of
the DNA is achieved in various ways, often involving molecular motors like chromatin
remodellers, polymerases. . . ).

Examples of rotational dynamics are shown in Fig. 1. Consider for instance two
polymers wrapped around each other as in a double-stranded DNA helix as sketched
in Fig. 1(a). When brought at high temperatures or to specific solvent conditions,
DNA hydrogen bonds break [8] and the two strands dissociate from each other. The
dissociation must involve some rotational motion necessary to disentangle the two
strands, as those of Fig. 1(a). Studies of DNA denaturation dynamics have revealed
that the constraint of excluded volume slows down this relaxation [12,13,3,4,14], with
time scales that grow as a power-law of the chain length. A simpler system is the
unwinding of a single polymer from a rigid rod [5,6], see the sketch in Fig. 1(b). Here,
the advantage is the possibility to follow the dynamics by monitoring the winding
angle of the last monomer.

The winding angle plays the role of a reaction coordinate. Unfortunately, this
quantity cannot be defined for the unwinding of two strands. In the case of unwind-
ing from a rod, the knowledge of the equilibrium statistics of the winding angle [15,
16] simplifies considerably the theoretical treatment of single-polymer unwinding dy-
namics [5,6,10]. Here again excluded volume is the only interaction between rod and
polymer. The unwinding dynamics of a polymer from a rod can be viewed as a simple
model of the dynamics of a newly synthesized mRNA molecule that is clumped to
the DNA it was transcribed from [10]. Indeed, RNA polymerase moves as a train on
the three-dimensional railroad represented by a double stranded DNA: in the frame
where DNA is steady, the trajectory where the RNA is generated by polymerase is
a helix around the DNA backbone. As biological polymers are often stiff, a natural
extension of the previous work is the study of the unwinding dynamics of semi-flexible
polymers, which is discussed in this paper.

Another setup discussed in this work is shown in Fig. 1(c): here the rod rotates
under the influence of a constant applied torque that leads to a constant angular
velocity Ω. The polymer is attached to the surface of the rod by a single monomer and
is driven to a nonequilibrium steady rotational regime. In this setup the impenetrable
rod is fundamental to force the rotation of the flexible polymer, as opposed to the
case where a polymer with some torsional rigidity (e.g. double stranded DNA) is set
into motion by a torque applied at one end [17–19].
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Fig. 2. A polymer pulled from one end by a constant force displays three different dynamical
regimes. (a) At weak forces the polymer is not significantly perturbed with respect to the
equilibrium conformation. (b) At intermediate forces the polymer assumes the shape of a
trumpet. (c) At strong forces a part of the polymer close to the pulled end is fully stretched,
while a trumpet developes at the end part.

1.1 Polymers pulled from one end: a brief review

The processes discussed in this paper are in a sense the rotational counterparts of
processes that have been studied for quite some time in linearly stretched flexible
polymers [20–24] and in semi-flexible polymers [25].

Consider for instance a strong flow stretching a tethered polymer to its full elon-
gation. When the flow is stopped, the polymer recoils back into its equilibrium con-
formation, starting from its free end: the dynamics of Fig. 1(b) is the rotational
equivalent of the recoiling of a stretched polymer. Similarly, for a polymer forced to
rotate around a rigid rod at constant angular velocity (Fig. 1(c)), the counterpart is
a polymer pulled from one end by a constant force. As we will make use of scaling
arguments borrowed from the latter case, we recall briefly the three different dynam-
ical regimes one finds in polymers pulled from one end. In the weak force regime
the polymer shape is not perturbed appreciably compared to its equilibrium coiled
conformation (Fig. 2(a)). This occurs when f . kBT/RF where kB is the Boltzmann
constant, T the temperature and RF the equilibrium Flory radius of the polymer. For
a flexible polymer with L monomers separated by a distance a one has RF = aLν ,
where ν is the Flory exponent [26]. In an intermediate force regime, corresponding
to kBT/RF . f . kBT/a, the polymer assumes a “trumpet” shape as illustrated in
Fig. 2(b). It can be considered as being composed by a sequence of blobs of size ξ(x),
which increases starting from the pulled end (x is the direction along which the force
is applied). Finally, in the strong force regime where f & kBT/a the pulled end is
followed by a stretched portion of polymer (Fig. 2(c)), which converts into a trumpet
shape at some point along the chain. We will show that these concepts enter naturally
also in the characterization of rotational or unwinding dynamics.

1.2 Simulated models

In order to test the universality of the results, different on- and off-lattice models were
simulated in two and three dimensions. In this paper we focus on simulations of ideal
polymers, which are more efficient to implement. A polymer is composed of L links of
length a that is set to unity. Thus, in the following L means the length of the polymer
in unit of a. In 3D the only excluded volume interactions are between the polymer
and the rod whereas in 2D excluded volume interactions are between the polymer
and a disk in the plane. In simulations, the rod is chosen large enough to avoid the
polymer to cross it during a move. Specifically the following models were simulated:
Random Walks (RWs) on square (2D) and on FCC (3D) lattices and the discrete
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Fig. 3. Top: Snapshot of a simulation of a RW relaxing from an initial conformation tightly
wrapped around a rod. The snapshot suggests that the dynamics could be modeled by a
three phase model (bottom figure). The three phase are a tight (frozen) helix, a looser helix
and an end coil.

worm like chain (WLC) [27] off-lattice in 3D. In the WLC a polymer configuration
is characterized by angles αi (with 1 < i < L) between two consecutive bonds.
Each angle contributes to the bending energy with a term − cosαi. A configuration
at inverse temperature β thus carries a Boltzmann weight exp[β

∑
i cosαi] where

β ≡ 1/(kBT ) is the inverse temperature, T the temperature and kB the Boltzmann
constant. In the following, the inverse temperature β will be expressed in inverse unit
of kB that is set to unity. The WLC has the property to be rigid at the scale of
the persistence length lp that is an increasing function of the temperature. At low
temperature, lp ∼ β, whereas in the high temperature limit β → 0 one recovers the
freely jointed chain (FJC). The dynamics was implemented using either a kinetic
Monte Carlo update, with Metropolis accepting rules, or a Langevin thermostat [28].
Both schemes are implementations of Rouse dynamics [1]. In Monte Carlo simulations
the time unit corresponds to L attempted local moves.

2 Relaxation dynamics of a polymer wrapped around a rod

In this section we consider the relaxation dynamics of a polymer initially wrapped
around an infinitely long rod. We start from reviewing the predictions of the three
phase model for flexible polymers [5,6] and extend the analysis to semiflexible poly-
mers.

Consider a polymer initially tightly wound around a long rod axis, to which it
is attached by one end. The free end then starts rotating around the rod until the
polymer gets fully unwound so as to maximize its entropy. Snapshots of simulation
runs [5,6] suggest that the polymer can be thought of as being composed of three
different phases as displayed in Fig. 3: a part of the polymer close to the end monomer
attached to the rod is “frozen” as in its initial helical configuration (phase 1); in its
central part the polymer is still wrapped around the rod, but more loosely compared
to the initial configuration (phase 2); finally there is a terminal region detached from
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the rod in a random coil configuration (phase 3). This suggests that a minimal model
of the dynamics of the system should include these three phases. To simplify the
description, we assume that phase 2 forms a homogeneous helix with a constant
pace and that the end coil assumes an equilibrium conformation (this assumption is
actually verified in simulations [6]). In the course of time phase 2 and 3 grow at the
cost of phase 1. However, ultimately also phase 2 vanishes and only phase 3 remains
because random coils are the typical equilibrium configurations (with null winding
in average, but fluctuations scaling as the logarithm of the chain length [16]). In this
paper we focus mainly on the early stage of the unwinding, when the three phase
coexist.

Two phase models have gained some popularity in recent studies of polymer dy-
namics [29,23,24]. Such models are simple enough, but also quite effective to capture
the non-equilibrium dynamics of polymers set into motion, for instance by a force
pulling one of their ends or during translocation. As the dynamics involves a mecha-
nism of tension propagation along the polymer backbone, some time is needed before
the effect of the perturbation reaches the opposite end of the polymer. In a two phase
picture one subdivides the polymer into a moving domain and a domain still at equi-
librium, and focuses on the dynamics of the boundary between the two phases. For
instance, in a model of polymer translocation, Sakaue [29] identifies a moving phase
close to the pore that propagates at the expense of a rest phase located far from the
pore. Two phase models have also been used recently in studies of polymers pulled
by one end [23,24] and for DNA hairpin dynamics [14]. Interestingly, in our case, a
minimal model of the relaxation dynamics of a polymer wrapped around a rod re-
quires three phases rather than two. We are not aware of other types of three phase
models in the context of polymer dynamics.

2.1 Theory

We briefly review some of the predictions of the three phase model, without entering
in the details. The Appendix provides additional schematic informations about the
derivation of the main results. More details can be found in [6]. Let us consider first
a fully flexible polymer. Using a force-balance argument [6] one can show that phase
1 shrinks as:

L− n ∼
√
t . (1)

The notation is also summarized in Fig. 3: L is the total length of the polymer, while
n and l are the lengths of phase 1 and phase 3, respectively. As phase 1 shrinks the
fraction of the polymer in phases 2 and 3 rotate in a corkscrew motion around the
rod. This is where the excluded volume of the rod-polymer system plays a crucial role:
if the polymer could trespass the rod, the initial phase would melt immediately. In
reality this does not happen and phase 2 can increase only if phase 3 is also rotating
around the rod. The unwinding of phase 2 and 3 is thus the only mechanism that
leads to a decrease of the total winding angle. The angular velocity is Ω ∼ 1/

√
t,

as obtained by differentiating Eq. (1) (see Ref.[6] and Appendix). Here Ω decreases
in time as during unwinding a growing fraction of the polymer is set into motion,
leading to an increase of the friction. A scaling argument (see Ref. [6] and Appendix)
yields the following prediction for the growth dynamics of phase 3:

l ∼ t1/(4ν+2) , (2)

where ν is the Flory exponent (ν = 1/2 for a Gaussian polymer and ν ≈ 0.59 for a
self-avoiding polymer [1]). Interestingly, the dynamics of the two boundaries (between
phase 1 and phase 2 and between phase 2 and phase 3) is characterized by different
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exponents (Eqs. (1) and (2), respectively). Also the scaling dynamics of the distance
of the free end monomer (point B in Fig. 3) from the rod, denoted by Re, can be
inferred from Eq. (2)

Re ∼ lν ∼ t1/z , (3)

where the dynamical exponent is given by z = 4 + 2/ν.
Semiflexible polymer are characterized by an additional length scale, lp, the per-

sistence length. At lengths l � lp the polymer behaves as a stiff rod. In the initial
stages of unwinding, when the phase 3 is still short so that l � lp, we expect the
following growth law:

l ∼ t1/6 . (4)

This can be obtained by formally setting ν = 1 in Eq. (2), as expected for a stiff
polymer segment. Similarly, one finds from Eq. (4):

Re ∼ l ∼ t1/z , (5)

with z = 6. These formulas work as long as the phase 3 is formed by a stiff straight
segment. We expect a crossover to the flexible case (characterized by Eqs.(2) and (3))
when the length of phase 3 exceeds the persistence length of the polymer, i.e., l & lp.

The total winding angle is defined as Θ ≡ 2πnturns, where nturns is the number
of turns (assumed to be a continuous variable) that the polymer performs around
the rod, starting from the fixed end to the free one. It is convenient to introduce
the mean density of winding ∆θ1 (for phase 1, the initial total winding angle is thus
Θ0 = L∆θ1) and ∆θ2 (for phase 2). One has:

Θ = n∆θ1 + (L− l − n)∆θ2 , (6)

as the coil (of length l) does not contribute to the winding. Combining Eqs. (1), (2)
and (6), we get:

Θ0 −Θ = (L− n)(∆θ1 −∆θ2) + l∆θ2 = At1/2 +Bt1/α ,

= At1/2
(

1 +
B

A

1

t1/2−1/α

)
, (7)

where α = 4ν + 2 (α = 6) in the flexible (semiflexible) case, respectively. Here A and
B are positive constants. The prediction is that Θ0−Θ scales as ∼

√
t, with a slowly

decaying correction term originating from the contribution of phase 3.
Note that in a fully analogous way we can define the winding angle for any

monomer. We indicate with θ(m) the local winding angle of the m-th monomer,
counted from the monomer fixed at the rod. The total winding angle is then Θ = θ(L).
The three phase model predicts the following linear piecewise profile for the local
winding angle:

θ(m) =

m∆θ1 if m ≤ n
n∆θ1 + (m− n)∆θ2 if n ≤ m ≤ L− l
n∆θ1 + (L− l − n)∆θ2 if L− l ≤ m ≤ L

(8)

2.2 Simulations

Having discussed the predictions of the three-phase model we focus now on results
from simulations, which turn out to be in very good agreement with the theory. As we
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Fig. 4. Log-log plot of the squared end-to-rod distance R2
e(t) vs. t for polymers of various

lengths L. The panel (a) shows result for a flexible polymer model (3D RW on a FCC lattice).
The short time regime fits the behavior predicted by Eq. (3) with z = 8, i.e. R2

e(t) ∼ t1/4.
The panel (b) displays the same quantity for the WLC. In the main graph (β = 3) it shows
a crossover between two regimes (t ≈ 2 000). A new regime R2

e(t) ∼ t1/3, i.e. z = 6 in Eq. (5)
appears at short times. Inset: The same quantity for the WLC at β = 5. Note that at lower
temperatures the regime scaling as R2

e(t) ∼ t1/3 extends to a wider time interval (t ≈ 50 000).
The persistence length being larger, the condition l & lp occurs later, as expected.

will only show results for ideal polymers, we can set ν = 1/2, which is the Gaussian
value. However, the results have also been tested for self-avoiding polymers [6]. We
consider first in Fig. 4 a log-log plot of the squared end-to-rod distance R2

e vs. time
t for different polymer lengths. We show in panel (a) the flexible case with (3D RW
on a FCC lattice) and (b) the semiflexible case (WLC at β = 3). In both cases we
observe a power-law behavior at short times. Deviations from this behavior at longer
times indicate a different type of relaxation, which is not discussed in this article. In
the flexible case (a), the dashed line has a slope 2/z with z = 2/ν + 4 = 8, in very
good agreement with the prediction of Eq. (3). In the semiflexible case (b) one notices
a crossover between two regimes: R2

e ∼ t2/z with z = 6 at short times moving back
to the flexible case z = 2/ν + 4 = 8 at longer times (t ≈ 2 000), when the random
coil becomes long enough. In the inset of Fig. 4(b), the simulations are performed at
β = 5 where the equilibrium persistence length lp is larger than the main graph. As
expected, we notice that the cross-over occurs at a larger time (t ≈ 50 000), indicating
that the random coil needs to grow larger to enter into the flexible polymer regime.

We continue the analysis of simulation results to test of the validity of Eq. (1). To
identify the boundary between phase 1 and phase 2, we consider the local winding
angle θ(m) as a function of the monomer number m. A plot of θ(m) vs. m for different
times is shown in Fig. 5 for (a) a flexible polymer (2D RW of length L = 512) and
for (b) a semiflexible polymer (WLC of length L = 400). At t = 0 the polymer is
prepared in phase 1 so the local winding angle is θ(m) = m∆θ1 (dashed lines in both
figures). At intermediate times the three phase model predicts that the local winding
angle is a piecewise linear function (Eq. (8)). The numerical results for θ(m) instead
do not show sharp boundaries: the average over different simulation runs produces a
smooth continuous curve. We note that while in the flexible case the local winding
angle decreases monotonically in time, this is not the case for the semiflexible polymer.
Starting from the t = 0 tight helix configuration (dashed line in Fig. 5(b)) there is
a slight increase in θ(m) in the phase 1, as indicated by the horizontal arrows (three
largest times only). This appears to be a small effect though. To determine n(t), the
length of the phase 1, we took in the semiflexible case the intersection of the θ(m)
vs. m curve with the line θ(m) = m∆θ1. In the flexible case we took the value of
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Fig. 5. Plot of local winding angle θ(m) vs. monomer number m for different times for (a)
the flexible case (2D RW of length L = 512 on a square lattice, curves for t = 104 up to
t = 32 × 104 doubling t) and (b) the WLC at β = 2 and for a length L = 400. From top to
bottom, the times run from t = 100 × 24 to 100 × 212, multiplying t by 4. The horizontal
arrows point (for the three largest times only) to the start of the slight increase of θ(m) in
the phase 1, which does not occur in (a). (Insets) Log-log plot of the length L− n of phase
2, vs. t for the (a) flexible and (b) semiflexible case. The dashed lines have slope 1/2, as
predicted from Eq. (1).
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Fig. 6. Amount of unwinding for (a) a flexible polymer (RW on a FCC lattice) and (b) a
semiflexible polymer (WLC at β = 5). Insets: corrections to scaling. In (b) the two insets
show that there is a crossover also in the correction to scaling from the exponent −1/3 at
small time and −1/4 at large time.

m from which θ(m) drops to 95% of the initial t = 0 value. In both cases the data
follow the expected

√
t behavior (see insets of Fig. 5). The results are in agreement

with Eq. (1).

We focus next on the dynamics of the total winding angle and test the validity of
Eq. (7). A log-log plot of Θ0−Θ as a function of time is shown in Fig. 6. This quantity
approaches the

√
t behavior predicted by Eq. (7), but with strong corrections to the

dominant scaling. To investigate the leading corrections to scaling reported in Eq. (7),
we plot in the insets (Θ0 −Θ)/

√
t as a function of 1/t1/2−1/α. According to Eq. (7),

this quantity should follow a straight line. This is indeed the case as can be seen in
the inset of Fig. 6(a). Note that for the flexible case the correction term is t−1/4 (for
RW, ν = 1/2) while it is equal to t−1/3 for semiflexible polymers. In the insets of
Fig. 6(b), we observe the crossover between the term t−1/3 at small time and t−1/4

at large time, confirming the prediction of our model.
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3 Stationary rotating polymer

We focus now on the case of a polymer fixed by one end monomer to a rod to which a
constant torque is applied, as sketched in Fig. 1(c). We restrict ourselves to the flexible
case. After a transient regime, the polymer enters a stationary nonequilibrium state
where it rotates around the rod with a constant angular velocity Ω. Analogous to
the case of a polymer pulled by a constant force by one end, we expect that a weak
torque would not be able to perturb the polymer significantly from its equilibrium
conformation. The relation (17), derived in the Appendix, characterizes the weak
torque regime. This inequality can be interpreted as follows: polymers rotating with
an angular velocity Ω, but shorter than a critical length

Lc =

(
kBT

aγ0Ω

)1/(1+2ν)

, (9)

will rotate around the rod maintaining their random coil shape. Polymers with length
L > Lc will instead be partially wrapped around the rod: only the Lc monomers at the
free end may form an equilibrated coil. To test the validity of these scaling arguments
we analyzed the behavior of the squared end distance from the rod, R2

e, as a function
of Ω. In the weak torque regime the full chain rotates in an equilibrium configuration
around the rod, and thus R2

e ∼ L2ν . In the high torque regime only Lc monomers can
be in an equilibrium configuration, hence R2

e ∼ L2ν
c ∼ Ω−2ν/(1+2ν). The two regimes

can be connected by means of a scaling function:

R2
e = L2ν g

(
LΩ1/(1+2ν)

)
(10)

where the natural scaling variable is x = LΩ1/(1+2ν). The scaling function in the large
Ω limit behaves as limx→∞ g(x) = x−2ν , while it tends to a constant limit for small
values of its argument.

We simulate a polymer composed by L beads on a continuum using a Langevin
thermostat [28]. Each bead interacts with its neighbors along the polymer via a FENE
potential. The interaction with the rod is modeled by a repulsive truncated Lennard-
Jones potential with radius rrod = 0.75a. The distance a between beads was normal-
ized to one, just as kB and the mass of a bead m. The equations of motion were
integrated using a time step of ∆t = 0.001. The bath was at a temperature T = 80
and the friction coefficient set to γ0 = 103. The FENE potential had a spring constant
of 2.36 ·105 and a maximal extensibility of 1.5a. In the simulation we apply a constant
force F perpendicular to the axis of the rod to one end monomer. This monomer is
constrained to move on a radius rrod from the axis of the rod. The applied torque
M = Frrod induces a constant angular velocity to the polymer which can be obtained
by averaging over the velocities of all monomers, once the polymer has reached the
stationary regime. Figure 7(a) shows a log-log plot of the squared end-to-rod distance
as a function of Ω for polymers of various lengths. The dashed line, in agreement
with the data at high Ω, corresponds to a scaling R2

e ∼ 1/
√
Ω which is the behavior

predicted from the scaling argument derived above (again we use ν = 1/2, which is
the value for a gaussian polymer). In addition appropriately rescaled data collapse in
good agreement with the scaling form (10), as shown in the inset of Fig. 7(a).

A rigid body rotating in a viscous medium under the effect of a torque M is
characterized by a linear relationship between torque and angular velocity Ω

M = ΓΩ, (11)

where Γ is the rotational friction. We can estimate Γ for a polymer rotating around
the rod for some specific polymer conformations. Let us suppose first that the polymer



10 Will be inserted by the editor

10
-6

10
-4

10
-2

10
0

Ω

10
0

10
1

10
2

R
e

2
(Ω

)

L = 40
L = 50
L = 100
L = 150

10
-1

10
0

10
1

10
2

x = Ω
1/2 

L

10
-2

10
-1

10
0

R
e

2
 /

 L

~x
-1

~Ω
-1/2

(a)

10
-6

10
-4

10
-2

10
0

Ω

10
-2

10
0

10
2

10
4

10
6

M
(Ω

)

γL(L+1)Ω/2

γLr
2
Ω

(b)

Fig. 7. (a) The end-to-rod distance as a function of the angular velocity for differents sizes.
For low angular velocities the polymer rotates in equilibrium configuration around the rod.
For higher velocities the two phase model predicts that Re should scale as Ω−0.5. Inset:
rescaling according to Eq. (10). (b) Torque vs. angular velocity, for L = 50. Only for low
and high angular velocities a linear relation is expected, at intermediate values of Ω a more
complicated behavior emerges. The straight lines represent predicted asymptotic scalings,
while the dashed line is the scaling from a simple two phase model.

is in an equilibrated coiled conformation, which is what we expect to observe at low
Ω’s. In equilibrium the l-th monomer is at an average distance r2(l) = a2l from the
rod. Assuming that each monomer contributes a term γ0r

2(l) to the friction we get

Γcoil =

L∑
l=1

γ0a
2l =

γ0a
2

2
L(L+ 1). (12)

As a second case consider a polymer fully and tightly wrapped around the rod, i.e.
as in a helix where each monomer is at a distance rrod from the rod. The rotational
friction is equal to

Γhelix = γ0r
2
rodL . (13)

In Fig. 7(b) we show a log-log plot of M vs. Ω as obtained from simulations. The
two solid lines are M = ΓcoilΩ and M = ΓhelixΩ from Eqs. (12) and (13) without
any fitting parameters. The simulation data interpolate between these two limits: as
expected the polymer is coiled at low torques and gets fully wrapped around the rod
at high torques. We can get an interpolating formula for Γ in the intermediate regime
using a two phase model. We assume that there are two distinct contributions to the
friction coming from an end coil of length l and of a wrapped part of length L − l
leading to:

Γtot(L, l) = Γcoil(l) + Γhelix(L− l). (14)
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We use Eq. (9) to estimate l and set l = L̃c = min(Lc, L). In Fig. 7(b) we plot the

curve M = Γtot(L, L̃c)Ω, which is shown as a dashed line. Again, there are no fitting
parameters in this computation. Note that Γtot depends on Ω through Lc, see Eq. (9).
The analytical calculation reproduces qualitatively the crossover behavior between
the two regimes, although there are some systematic deviations. In particular, the
analytical computation underestimates the friction.This is because the helical phase
is assumed to be tightly wrapped around the rod with all monomers at distance
r(l) = rrod from the rod axis. In reality, the monomers are expected to be more
loosely wrapped around the rod, producing a larger friction than the estimate of
Eq. (13). Future work will focus on a construction of a better approximation for Γ .

4 Conclusions

In this paper we have reviewed some recent results about the rotational dynamics of
a single flexible polymer around a rod [5,6] and extended the analysis to new cases.
Two situations have been discussed: the relaxational dynamics of a polymer initially
wrapped around a rigid rod and a polymer forced to rotate by a constant applied
force. In the former case we have shown how a force-balance argument, relying on a
three phase model, allows to derive the universal exponents describing the relaxational
dynamics of various quantities as the end-distance from the rod or the winding angle.
The results have been extended here to the case of semiflexible polymers which show
a crossover between different regimes. In general, a very good agreement between
theory and simulations is found. In a polymer rotating under the influence of an
applied torque we have analyzed the dependence of the end-distance from the rod
on the angular velocity, which matches the predictions from scaling theory. We have
shown that there is a non-linear relationship between torque and angular velocity
which is due to a conformational transition in the polymer from a coiled to a wrapped
state. A two phase model calculation, without any adjustable parameters, reproduces
semi-quantitatively the torque vs. angular velocity curves obtained from simulations.

In conclusion, although the models discussed are rather simple, our analysis shows
that there is an underlying rich and complex dynamics. The analytical and scaling
arguments developed to study these simple systems can guide us towards the un-
derstanding of more complex cases of polymer dynamics. The study of polymers
disentangling from linear objects is also of interest for a better understanding of some
aspects of RNA and DNA dynamics.
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Appendix

We provide some details about the derivation of the results of Section 2 (see also
Ref. [6]). To describe the dynamics of the polymer rotating around the rod we neglect
first the contribution of phase 3. The total free energy of the system is given by
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F(n) = f1n + f2(L − n), where f1 and f2 are the free energies per unit of polymer
length for the phase 1 and 2 respectively. When phase 1 shrinks the phases 2 and
3 rotate in a corkscrew motion; neglecting phase 3, the friction associated with the
dynamics comes from phase 2 and scales as the length of this phase γ2 ∼ L− n. The
balance of frictional and entropic forces gives:

γ2
dn

dt
= −∂F

∂n
(15)

Using the above forms for γ2 and F one can easily integrate the previous differential
equation to get the square root growth predicted by Eq. (1). To derive Eq. (2) we use
the analogy with a polymer pulled from one end by a constant force f . As discussed
in the introduction the weak force regime of Fig. 2(a) is given by

fRF . kBT (16)

Consider a polymer rotating around an axis with an angular velocity Ω. The average
distance from the axis is RF , so the linear velocity is v ≈ ΩRF and the frictional force
is thus f ≈ γΩRF . In Rouse dynamics the friction is proportional to the polymer
length γ ≈ γ0l [1]. Summarizing, the inequality (16) for a rotating polymer becomes:

aγ0 l
1+2νΩ . kBT. (17)

Hence a polymer of length l rotating around its axis with an angular velocity Ω
sufficiently small such that Eq. (17) is satisfied will maintain its equilibrium shape. If
Ω is large enough such that Eq. (17) is not fulfilled, then part of the polymer will be
wrapped around the rod. For a polymer relaxing from an entangled state around a
rod, we need the time evolution of Ω stated in Section 2. Using Eq. (6), and assuming
a faster growth for L− n compared to l, we find to leading order in t:

Ω =
dΘ

dt
∼ dn

dt
∼ 1√

t
, (18)

where we have used Eq. (1). Then, one can use the relation (17) in the form of an
equality to obtain Eq. (2).
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