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Zipping and collapse of diblock copolymers
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Using exact enumeration methods and Monte Carlo simulations, we study the phase diagram relative to the
conformational transitions of a diblock copolymer in two dimensions. The polymer is made of two homoge-
neous strands of monomers of different species which are joined to each other at one end. We find that,
depending on the values of the energy parameters in the model, there is either a first order collapse from a
swollen phase to a compact phase of spiral type, or a continuous transition to an intermediate zipped phase
followed by a first order collapse at lower temperatures. Critical exponents of the zipping transition are
computed, and their exact values are conjectured on the basis of a mapping onto percolation geometry, thanks
to recent results on path-crossing probabilities.
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[. INTRODUCTION the two strands: if the polymer is made of two blocks com-
posed of monomers of different speciéglock copolymey,
Polymers in solution typically undergo a coil-globule and there is a dominant attractive interaction acting between
transition from a high temperatu(€) swollen phase to alow these different monomers, one would expect such a transition
T phase where the polymer assumes compact conformation® be possible. Of course, the zipping occurring in biomol-
In the case of homopolymers, for which all the monomersecules results in general from higher degrees of inhomoge-
are identical, this transition is by now well understdagP]. neity than those of a simple diblock copolymer.
It is known as® collapse, and has been extensively investi- From a physical point of view one can think of diblock
gated in the past years using various methods such as meaapolymers with oppositely charged monomers in the two
field approximationg3], exact enumerations of interacting blocks; in the model discussed here the interactions are of
self-avoiding walks on latticelst], Monte Carlo calculations short range, and this would correspond to the case of
[5], transfer matrix calculation$], and field theoretical cal- screened Coulomb forces. Another possibility is that attrac-

culations[7]. In two dimensions the exponents of tBecol-  tive interactions between monomers of the two blocks are
lapse have been related to the fractal properties of the percestablished through a preferential formation of hydrogen
lation cluster, and are believed to be known exaf8ly bonds.

The study of the conformational properties and phase Attractive interactions between the two blocks, besides
transitions of macromolecules with inhomogeneous or ranzipping, also tend to produce collapse into a globular com-
dom sequences of monomers is an interesting frontier in curpact state, unless some contrasting effect limits the capability
rent polymer statisticf9]. These systems pose new theoret-of a given monomer to attract monomers of the other block.
ical and numerical challenges, compared to their mordn a recent pap€erl5], a model of a diblock copolymer with
standard, homogeneous counterparts. Particularly interestirgpme of the features discussed above was studied in both two
is the possibility that inhomogeneities along the chain couldand three dimensions. In this model the two blocks were
lead to transitions and universality classes of scaling behawepresented by two halves of a self avoiding wedlAW) on
ior, which are not realized for homopolymdt0,11]. More-  a hypercubic lattice with attractive interactions between
over, the most complex versions of models of this class ar@earest neighbor sitémmonomers visited by the two blocks.
also expected to be useful for descriptions of phenomena lik€o, apart from the steric constraints, there was no interaction
protein folding[12], DNA denaturationf13] and RNA sec- mechanism possibly opposing the tendency of a given mono-
ondary structure formatiofi4]. Thus, an investigation of the mer to be surrounded by as many monomers of the other
universal properties of the simplest among these systems cdafock as possible. The transition of the diblock copolymer
offer an important gauge of the relevant model ingredientdrom a highT swollen phase to a low compact phase, had
necessary in order to reproduce the basic conformationalnalogies with both polymer adsorption on a wall, and
mechanisms in more sophisticated descriptions. collapse, but turned out to belong to a universality class dif-

One of the most elementary conformational transitionsferent from both 15]. An intriguing question remained open
(not realized in homopolymersone can try to describe in concerning the very nature of this transition: indeed, the pos-
relatively simple terms is what we call heraeigpingtransi-  sibility that a zipped, swollen phase could exist for tempera-
tion. By zipping we mean a process in which two strandstures just below the transition could not be excluded. If this
composing the polymer come in contact in such a way as tavere the case, the adsorptionlike collapse found in Ré&i,
form a bound double structure, which remains swollen andvould correspond to a zipping, and a further transition to the
does not assume compact configurations. In order to induce@mpact globular phase should be expected to take place at a
transition from an unzipped state to a zipped state, the minitower T.
mal inhomogeneity required implies a distinction between In the present paper we extend the model of IRE3] in
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two dimensions to include an interaction among alternating 3
triplets of different monomers. Depending on its sign, this
additional interaction can enhance the tendency of the sys
tem either to form compact structures or to take zipped con-
formations. We draw an accurate phase diagram for the sys
tem, in which a zipping transition line is well identified and
characterized. Our analysis seems to indicate that the adsorj
tionlike collapse of Ref[15] belongs to the zipping univer-
sality class as well. Specifically, we find that, depending ong
the triplet interaction energy, one has either a continuous
swollen-zipped transition followed by a first order collapse
into compact conformations, or a direct first order swollen- 1
compact transition. Although we mainly focus on the zip-
ping, it turns out that the first order collapse has interesting COMPACT 3
features as well, since it shows remarkable analogies witr I
that found in homopolymers with orientation dependent in-

SWOLLEN

teractions, which attracted some attention recefritBj. 0 D . L .
We will argue that the exact exponents for the zipping -3 -2 -1 0 1 2 3
transition in two dimensions can be found through an iden- b
tification between the stochastic geometry of the blocks and
that of a percolation cluster backbofi£7]. A preliminary FIG. 1. Phase diagram in theT plane. Line(1) is the continu-

form of this argument was presented in Rgf5]. The rel- ous zipping transition line separating the high temperature swollen

evant dimensions of the percolation cluster can be identifie@hase from the zipped phase. Ling and (3) are of first order

thanks to some recent results for path-crossing probabilitie®y/pe.

[18]. Our numerical estimates for the zipping exponents are

in very good agreement with the conjectured values. To oufationw the SAW hagw|=N vertices(monomery with N

knowledge, the mapping onto percolative stochastic geomeven, and consists df/2 consecutive monomers of tyge

etry we discuss here is the first example of exact resultéw,) followed by N/2 monomers of typ® (wg). A pair of

derived for a genuinely inhomogeneous polymer problemvertices @,B) form a contact if they are a unit lattice dis-

in two dimensions. The connection with percolation geom-tance apart. The interaction between the two blogksand

etry also shows that the physics of zipping is closely conwyg is taken into account by assigning an eneegle<0) to

nected with that of theé-point transition, for which a rep- eachA-B contact. In addition we introduce a second energy

resentation in terms of percolation geometry was establishegarameters, associated with contacts formed by a sequence

long ago[8]. A-B-A or B-A-B of neighboring monomers on a line. We
Besides the prototypical importance that zipping acquiresefer to these sequences asttiple contacts. The Hamil-

here also on the basis of our exact results, one should realizenian of the system in configuratiomis given by

that many of the conformational transitions occurring in bio-

molecules show aspects which, to some extent, are reminis- H(w)=Nag(W)e +N3(w)J (1)

cent of zipping. This is certainly the case for DNA, in which, i

upon lowering the temperature below the denaturation ond/he€reNas(w) andNs(w) are the number oA-B and triple

the conjugate bases form pairs, so that the molecule arrangggntaCtS’ respectively. , ) ,

itself in a double stranded helical structui&3]. Double For =0 we recover the model introduced in REES]; in

stranded, zipped structures also appear in the folding of'® Present work we consider both signs &fa positive

B-hairpin peptideg19]. In the philosophy mentioned at the value of d must prevent the poner from C‘?”aps? into com-

beginning of this section, one can hope that studies like th@act conformatlons and favor an intermediate .Z|pped phase,

one presented here can teach something about how to mod’gh”e f_or a negatives the tendency to collapse is enhanced.

these more complicated systems properly. . Lettllng CN(.NAB,Ng) be the number of copolymer con-
This paper is organized as follows: In Sec. Il we presenfigurations withN edgesNag contacts of typeA-B and Ng

the model and the main features of the phase diagram. IfiPIe contacts, we define the finité-free energy per mono-

Secs. lll and IV we discuss the numerical results obtained by"®"

exact enumerations and Monte Carlo simulations, respec-

—nN—1
tively. In Sec. V, using recent results for crossing probabili- Fn(B,8)=N""logZ\(B,6), 2
ties of percolation paths in two dimensions, we conjecturg,are
the exact values of the exponents of the zipping transition.
Section VI concludes the paper, with a summary of the re-
sults and a general discussion. ZN(B,5)=N > cn(Nag,Ng)e ANagetNsd) (3)
AB N3

II. MODEL AND PHASE DIAGRAM . . .
© S G is the partition function ang3=1/T [20]. Throughout the

We model the two-dimension&RD) diblock copolymer  rest of the paper we set=—1. By varyingT and é we have
by an interacting SAW on the square lattice. In the configu-explored the phase diagram of the mo@ede Fig. 1 on the
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the polymer can form compact conformations such as that
shown in Fig. 2e), which also avoids this type of contacts.
Hence the zipped-compact transition temperature also should
not depend ors, when § is positive and large enough. Both
lines(1) and(3) in Fig. 1 should be asymptotically horizontal
for large é.

IIl. EXACT ENUMERATIONS

Exact enumerations of interacting SAW'’s are standard
techniques for the study of the homopolym@krcollapse
transition[4]. In the present calculation we generated all pos-
sible configurations for copolymers up k=30 monomers,

a length which is already sufficient to characterize rather
well the critical behavior of the zipping transition.

The occurrence of phase transitions in interacting polymer
systems can be detected by studying the I&tdeehavior of
the canonical average squared radius of gyration,

FIG. 2. Typical Monte Carlo equilibrium configurations for an 2 exp:—,BH(W)]RZ(W)
N=60 diblock copolymeri{a) and (b) swollen chainsjc) and (d) 2 W
zipped chains;(e) and (f) compact chains with5=1.5 (e) and Rg_ ’ (4)
5=—15f). > exd —BH(W)]

w

basis of exact enumeration and Monte Carlo simulation rewhere the sums extend to alFstep configurationsv of the
sults. copolymer, with radiuk(w) relative to the center of mass.

As expected, we find a zipped phase in the posive |ndeed, in the proximity of a conformational transition tem-
region, while for negative’ there is a direct transition from peratureT, we expect that

the swollen to the compact phase. The numerical results

show that the line(1) separating the swollen and zipped Rg(N,T)~NVcR[(T—TC)N¢], (5)
phases is continuous, while lif@) and (3) are first order.

Unfortunately, the numerical methods at our disposal are novherev, and ¢ are the exponents characterizing the transi-
sufficiently accurate to determine the precise location of thdion, andR is a scaling function that is assumed to approach
intersection point between the lines, nor the character of th@ positive constant if its argument approaches zero.

phase transition in this point, which could be of special type. Another important quantity is the specific he@(N,T)
The location of this intersection point seems to fall at slightly = (1/N)d(H)/dT, which for N large andT close toT; is

negative values o#. expected to obey the scaling
It is rather instructive to show some typical equilibrium 261 s
conformations of the copolymer for various valuesToénd C(N,T)~N=*"*C[(T—=T)N?], (6)

8, in the three different phasdsee Fig. 2 The configura- ) , , . )

tions are snapshots obtained by Monte Carlo simulati@s: Wherec is again a sunablg scaling function. -

and (b) are conformations in the swollen highphase, with F|gures 3 and 4 showRy/ds andC as functions of3 for

(b) close to the zipping transitior(c) and (d) are instead 0 (a) and 6=—1.5 (b). As the radius of gyration drops at

zipped configurations. Note that the pairing of the twoa transition, its derivativelR;/d shows a peak in corre-

strands in(d) follows an opposite orientation with respect to spondence to the transition point.

(c). Finally, (e) and (f) are both compact, but of different ~ For 6=—1.5 both quantities have a single isolated peak,

nature: the latter occurs at<0 where triple contacts are indicating that there is a single transition from a swollen

energetically favored. Therefore, the polymer assumes Bhase to a compact phase. Ber0, instead, the derivative of

spiral-like shape with straight segments turning around théhe radius of gyration has two distinct peaksig. 3(@)],

center in order to maximize the number of triple contacts. Inwhile the picture emerging from the specific hgig. 3(b)]

case(e), §is positive: the configuration is still of spiral type, iS somewhat more confusing, since tRedependence of the

but in this case the arms of the spiral are oriented prefererpeak positions and heights is rather irregular, and their ex-

tially at 45° with respect to the axes of the square lattice, irfrapolation toN—c becomes impossible. Therefore we fo-

order to avoid the formation of triple contacts. cus on the peaks an‘Rg/d,B Extrapolating their positions at
Now one can easily understand why linds and(3) for 6=0, we find the following two estimates of critical tem-

large S run practically horizontal in the phase diagram of Fig. peraturesT.=1.40(15) andT,.=1.1(20), which overlap

1. In the whole zipped phase triple contacts, which cost asomewhat within error bars. For this reason it is difficult to

energyd, seldom occufsee Fig. 2c)]; therefore, the zipping discern between two separate, but close, transitions, and a

temperature should depend rather weakly&nn addition  single transition. For positive values @f the two sets of
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15 30 . TABLE |. Extrapolated values o#. and ¢ from the exact enu-
5=-15 meration data relative to diblock copolymers up to leniyts 30.
(a) (b) ) The exponent/ is obtained from the scaling behavior of the radius
of one of the blocks.
10 20 - 6 Ve ¢ Ve
-~ 0.0 0.721) 0.6Q(5) 0.741)
= 0.5 0.731) 0.583) 0.7505)
%“’ 1.0 0.731) 0.573) 0.7505)
3.0 0.741 0.563 0.7505
s 0l 41) 63) as)
For the calculation of the critical exponents we first formed
the finite N approximants, for instance
0 0 IN(Ry(N+2)/Ry(N))
0 ve(N)=— N ©)
IN((N+2)/N)

[hereRy(N) is a shorthand notation fdR,(N,T.(N))], and

FIG. 3. Derivatives of the squared radius of gyration with re-
vatv au . dyration Wi then extrapolated,(N) to N—<. The same procedure was

spect to the inverse temperature #®+0 (a) and §=—1.5 (b) and
for N=12,14 . .. 30. Thedouble peak structure fa¥=0 suggests a followed for ¢. .
sequence of two transitions: swollen zipped and zipped collapsed. The extrapolated values are reported in Table |, together
with the exponent, which is that associated with the ra-
peaks are clearly separated and extrapolations yield two diglius of the half-chain, or single block, which at the critical
tinct transition temperatures. Here we focus on the charademperature should scale as
terization of the highr transition from the swollen phase to
the zipped phase. The scaling form of Ef) implies that
T.(N), the temperature wherd Ré/d,@ has a maximum,
scales for largN as T,(N) — T.~xoN~ ¢, with x, a suitable
constant. We calculated both the radius of gyration and spe- The values of the exponengsand v, vary slightly along

Ry(N, T=T)~

N) Ve
5] - (10

cific heat atT.(N); from Eq.(5) and(6), one has line (1) of Fig. 1 whend is increased, whiley, is rather
stable. We believe that the variationgf and ¢ is a spurious
R[N, T=T(N)]~N"R(Xo) (7)  effect, due to the vicinity of an additional transition in the
neighborhood of6=0. It is much more plausible that the
and exponents are constant along li(®; the most reliable esti-
CIN,T=T4(N)]~N24"1C(xo). ®) mates forv; and ¢ should be those for largg, where lines

(1) and (3) of Fig. 1 are clearly separated. The valuespf
1 ‘ 2 . . and v, are consistenfthe former only at large) with the

scaling behavior of a SAW, namelR,~N¥ The value of
¢ is instead consistent witlp=9/16=0.5625, which was
conjectured in Refl15] for the transition at=0, and will be

derived in detail in Sec. V.

As for transition lineg2) and(3), the exact enumeration
analysis is not at all conclusive since the scaling behavior of
the peaks with the chain lengtN is rather irregular, and
precise extrapolations turn out to be impossible. This issue
will be clarified with the use of Monte Carlo simulations,
which allow one to achieve much larger copolymer lengths.

IV. MONTE CARLO SIMULATIONS

In order to sharpen and extend the results of exact enu-
merations, in particular concerning the properties of zipped
and collapsed phases, we performed Monte Carlo simula-
tions for variousN and & and for a wide range of tempera-
tures. Since the simulations considered involve sampling at

FIG. 4. Solid lines: specific heat from exact enumerations forpoints which include low values of, a standard Markov
N=12, 14,...,30 foré=0 (a) and =—1.5 (b). Circles: Monte  chain Monte Carlo approach is unlikely to be successful, it
Carlo results folN=30. being difficult to construct a Markov chain sufficiently “mo-
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bile” at low T where the interaction energies become rel- 05 .
evant. Instead we use a multiple Markov chain technique by
which one samples simultaneously at various valued,of
including T=0o where convergence is rapid. Most recently
this method was used successfully to investigate collaps¢
transitions in homopolymei®1], hetheropolymergl1], and 15
adsorption in® solvent[22].
First one defines a Metropolis based Markov chain for a
temperaturel. This procedure makes use of a hybrid algo-
rithm based on pivof23] as well as on local movel4].
Pivot moves are of global type, and operate well in the swol-
len regime, whereas local moves turn out to be essential ir
speeding up Monte Carlo convergence at low temperature:
[21]. In our calculations, each Monte Carlo step consists of
O(1) pivot moves andO(N) local moves. In this model,
however, we have to deal also with a zipped phase where th 0
most probable configurations are characterized by having thi
two blocks A and B paired together, but still nhot compact
[see_ F_igs. Qb)—l(_d)]. To increase the mobility of the Markov FIG. 5. 6=1.5: Plot of the specific heat vg, for chains of
chain in this reQ'O“ we a‘?'ded a set of bllqcal moves, such Aarious lengths. FoN=200, 300, and 400 the low temperature
end-end reptation and kink-ertend end-kink moves[25]. peak was not reached because of the considerable autocorrelation
These moves are particularly effective for dense chains, anine caused by low mobility of long collapsed chains. Inset: col-

even more effective for zipped chains, where typically ongapsed specific heaC/N24~1 vs (8—B.)N?, with $=9/16
side of each half-chain is free and can hold a new kink. The-g 5625 and3.=0.66.

resulting algorithm is slightly heavier, but enables the recip-
rocal sliding of the half-chains and a more efficient explora-Since a linear least squares fit of logs logN gives a very
tion of the configuration space. One may then run in parallelarge y? statistical error, we fit the data with a function
a numberm (typically 20—40) of these Markov chains at A N>*¢~1(1+B/N) where a scaling correction N/is in-
different temperatures. The sampling at IGwis then con-  cluded. The least squares fit in this case gige€.57+0.02,
siderably enriched by swapping configurations between Marin agreement with the valu¢=9/16=0.5625 conjectured in
kov chains contiguous iff. The whole process is itself a Ref.[15], and also with the estimates obtained by exact enu-
(composit¢ Markov chain, obeys detailed balance, and ismeration. This procedure yields results consistent with a di-
ergodic[21]. rect extrapolation of effective finit&l exponents. We have
Monte Carlo simulations were performed for three dis-also tried to fit the data by using the more general scaling
tinct values ofs: 6=1.5, 5=—1.5, ands=0. As a test of the correction IN*, and found that the best fits are those with
performance of the multiple Markov chain algorithm we 0.5<A<1 yielding a stable value fop. The estimated value
compared the Monte Carlo results with those obtained fromof ¢ allowed us to extrapolat€, by plotting T(N) vs 1IN?.
the exact enumeration for chains upNe=30 monomers. In  This givesT,=1.51(4)[ 8.=0.66(2)].
all cases analyzed the agreement turned out to be extremely The inset of Fig. 5 shows a plot oc€/N?¢~1 vs (B8
good[see, for instance, Fig.(&]. —B)N?, where we have used=9/16 and the estimatg,
=0.66. As expected, the high temperature peaks collapse
onto a single curve quite nicely. Conversely, for a set of
A. 6=15 peaks at lower temperatures, the same rescaling procedure

In the case>=1.5 we considered diblocks of lengths up to turns out to be inappropriate. In particular, by using the res-
N=400, and sampled at a set =40 temperatures typi- caled variables adequate for the former set of peaks, the po-
cally in the rangeT € [0.5z]. In Fig. 5 we plot the specific Sitions of the latter set tend to move away from zero while
heat as a function of for different N values. Clearly each their heights still increase witN: this is only consistent with
curve displays a double peak structure indicating two subsed Scenario in which a new transition, at a lowes Ty,
quent transitions. We can rule out the possibility that sucteXists. This transition should be also characterized by a
double peaked structure is a finite size effect by noting tharossover exponent greater thgn-9/16. We have tried to
the peaks sharpen and grow with Let us focus first on the  Verify this by looking for two new valueg,. and ¢, that
set of peaks at higher temperatures, i.e., on the transitiopllow a reasonable fit of the scaling behavior of the second
from a swollen phase to a zipped phase. The correspondirgpt of peaks. In this way we obtained the rough estimates
T. and ¢ could be deduced from thid dependence of the B2c~1.0 and$,~0.7>9/16. Unfortunately the sampling at
height,h(N), and position,T.(N), of the peak maxima. In- oW temperatures is not good enough to make such estimates
deed, from the scaling behavifEq. (6)], we expect, adN sufficiently sharp. Moreover, in the zipped phase the effec-

)

C(N

0.5

increases, tive size of anN monomers system drops /2, making the
finite size corrections to scaling more pronounced.
h(N)~N?¢"1 and T (N)—T.~N"2. (11) The different nature of the two transitions can be better
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FIG. 6. Plot of P(E,N) with N=200 and for various tempera-
tures:(a) 8=0.3,(b) B=0.75,(c) B=1.4,(d) B=1.58,(e) B=1.66,
and(f) p=1.8. FIG. 7. RY/R} vs g for =1.5 and for various chain lengths. The

N=30 curve is calculated from exact enumerations, while the oth-
detected from the behavior &f(E,N), the probability dis- ers are obtained from Monte Carlo simulations. Inset: blowup of the
tribution of the energyE, for a chain of lengtiN. Figure 6  crossing region.
shows a plot oP(E,N) as a function oE/N for N=200. At
sufficiently high temperatures this quantity has a maximums /. =6.35+0.20, which is definitively different from
in E=0, and decreases rapidly witN [Fig. 6@]. As the  the amplitude ratio of the SAW universality class. The zip-
temperature is lowered the maximum shifts continuously tgying transition that cannot be distinguished from the swollen
larger values ofE/N [Figs. 8b) and @c)]. For lower tem-  phase in terms of the exponent, is, however, characterized
peraturesP develops a double peak structufeigs. Ga)— by a different value of the universal ratjg/pq [28].

6(f)]. In the case of Fig. @) the peaks have equal height, "t the temperature is further lowered tHR%/R2 curves
while at temperatures below or above it one of the two peak$zach a minimum value that decreasedldscreases. This is
dominates over the other. This behavior, which persists angdy, jngication that the end-to-end distance in the zipped phase
becomes more pronounced upon increadings an indica- g |onger scales like the radius of gyration, as assumed in
tion of phase coexistence; hence t.h.e transition at | OWvisr Egs.(12) and(13). For sufficiently low temperaturep,/pq

of first order type. In terms of specific heat '[hl$ would meang;a s to grow back, indicating that the compact phase is
C(T)~N asT=Ty, i.e. y,=1. By extrapolatingB,.(N)  characterized by an end-to-end distance and mean radius of
vs IN, we find B5c=1.2+0.2. , gyration that scale in the same way with As the typical

Another way to characterize the different phases of thgg,, T configurations are of spiral typsee Figs. @) and

model consists in looking at the scaling behavior of metricz(f)] with end points at opposite sides of the spiral, it is
guantities such a:RS defined in Eq.(4), and the mean atural to expect thaR,~ ngNuz_

squared end-to-end distanB&(N)={((rny—ro)?), wherer,
and ry are the two end monomers of the copolymer. For

large N we expect B.6=-15
5 5 For 6<0 triple contacts are favored and we expe@s the
Re(N)~peN<?, (120 exact enumerations already indidagesingle transition from
swollen directly to compact phase. To investigate the nature
Rg(N)~pgN2V, (13 of such transition we have performed runs wih —1.5, for

several values oN, sampling atm=30 different tempera-
and an interesting quantity to be computed is the raticures in the intervall e[1.3]. As in the case$=1.5, we
pelpg, Which is expected to be univerda@6]. For noninter-  have examined the probability of finding the copolymer in a
acting SAW'’s on a square lattice, exact enumerations andonfiguration with energye, as a function of the tempera-
Monte Carlo simulations give./py~7.13 (see Ref[27],  ture. A plot of P for N=200 and three different temperatures
and References in Rgi26]). Figure 7 shows the ratiEi/Ré is shown in Fig. 8. Close to the transition temperatlreas
as a function ofB for severalN. Note that in the range of two maxima[see Fig. 8)], one atE=0, and the other at
0<B<0.66 the curves tend to assume a constant valu&/N=0.7. This is a clear indication of a first order transition.
pelpg=7.145), in agreement with the value expected for The evidence of such behavior is stronger than in the case
non interacting SAW's. In the proximity of the zipping tran- 6=1.5, since here the coexistence is between two phéses
sition the curves start to bend downward, andBgt0.66,  swollen and compact phagesith a rather large difference in
they cross each other almost in a unique p@ee the inseét  energy; therefore, the double peak structur® abin already
At the crossing point our estimate of the universal amplitudebe seen for small.
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16 400 T .
300
100
00

FIG. 8. P(E,N) vs E/N for 6=—1.5 andN=200 for three
different temperature&) =0, (b) 8=0.545, andc) 8=0.6. Inset: FIG. 10. 5=0. Thin lines: plot of the derivative of the half-chain
Plots ofP(E,N) vs E/N near phase coexistence =60, 3=0.66  squared gyration radius, as a function @&f Thick lines: two ex-
(solid line), N=100, 5=0.56 (dotted ling, andN =140, =0.545  amples of derivative of the total-chain squared gyration radhis (
(dashed ling =120 and 20D

From the analysis of the specific heat peaks we find that o
they become sharper &sincreases and their height appearsSmaller 8. When the copolymer length is increased the
to grow with a power oN slightly exceeding onéhe physi- ~ shoulder becomes hardly noticeable. From the specific heat
cal upper limi). At the same time, in a plot of energy vs Plot one cannot rule out the possibility that the shoulder
temperature we see curves that seem to approach step furRentually vanishes leaving out a single transition from a
tions. These data support the idea that the correspondirgyvollen phase to a compact phase. The other possibility is

transition should be of first order. that there are two separate transitions, but very close in tem-
perature.
C. =0 The presence of two distinct transitions is suggested by a

. : . ._plot of the temperature derivative of the total radius of gyra-
The more delicate region to be explored in the phase dla%)on Shown forFl)\|= 100 and 200 as thick lines in Fi 1ogy|n
gram is the neighborhood of=0, where three transition ' g. LY.

lines meet each other. We have chosen in particular the caddiS case one clearly detects two peaks, which although com-
5=0, since it was considered in R&L5]. ing closer to each other &increases are still noticeable and

In Fig. 9 we plot the specific heat as a function®for sharp forN rather large. The thin lines in Fig. 10 are the
severalN values. For the smallest chaintl£60 and 80), temperature derivatives of the radius of gyration of a single

one observes a peak in the specific heat with a shoulder ®0ck, which show only one peak in correspondence to the
low temperature peak of the derivative of the total radius of

1.5 gyration. This behavior is consistent with the following pic-
ture: coming from the swollen phagsmall B), one first has

a zipping transition characterized by a drop of the total ra-
dius of gyration, while the radius of gyration of a single
block still behaves as a SAW and is not sensitive to the
zipping transition. However, at lower temperatures, in corre-
spondence to the transition from zipped to compact phase

a both quantities drop and their derivatives show a peak.
g« Another quantity which we investigated is the universal
amplitude ratio between the end-to-end distance and radius
05 - of gyration squared, which is plotted in Fig. 11. Here, as for

the 6=1.5 case, this universal quantity takes the SAW value
~7.13 at highT and drops in correspondence with the tran-
sition. The fact that we find intersections witRZ/Rg
~0.635(the same value as fai=1.5) strongly suggests the
0 05 1 L5 presence of a zipping transition with the same universal
B properties as that at=1.5. Unlike Fig. 7, herdR3/R? drops
and increases again in a narrow ranggofalues, indicating
FIG. 9. §=0: Plot of the specific heat vg, for various chain the the zipped phase is restricted to a small temperature in-
lengths. terval.
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FIG. 12. Percolation cluster of connected occupied hexagons
2 (dashedl Each hexagon is centered on a site of the dual, triangular
lattice.

FIG. 11. 6=0: Square end-to-end distance over the square gycharacterized by attractive interactions. These originate from
ration radius as a function g3. the fact that, at thresholdp& p.=1/2), multiple visitations
[29] by the hull of the same occupied, or vacant, hexagon,

In summary, although the numerical evidence is not fu”ygive a higher probability to the realization of a ring configu-

conclusive, our data seem to favor the existence of two sepc{@tiqn' Indeed_, when the contour proceeds essentially in a
rate transitions fo6=0. As in the casé=1.5, it is natural to straight direction, to each new step then corresponds a new

expect that the lowl one (zipped-collapsedis of first order hgxagon vyhose stat(e)cpupigd or vacahthas to be deter-
type. mined. This each step implies a factmy=1/2 in the prob-

ability weight of the whole configuration. When the contour
folds on itself and revisits, after some steps, the perimeter of
the same hexagon, the factor 1/2 does not apply, resulting in
a higher global probability. This is equivalent to an attractive

In this section we present a conjecture on the relatiorinteraction favoring the multiple visitations of the same
between the statistics of some percolation paths at thresholtexagon.
and the diblock copolymer zipping transition. This conjec- Here it is convenient to summarize some very recent ex-
ture leads to a prediction of exact values of the exponents. &ct results concerning the fractal dimensions of various per-
preliminary, less precise, version of the arguments beloveolative sets. Following Ref.18] we consider an annular
was given in Ref[15]. region of the hexagonal lattice delimited by an inner circle of

It is well known that, in two dimensions, the statistics of a small radiug, and an external one of radi&s>r. Two types
ring polymer at the® transition is identical to that of the of paths connecting the two circles are also considered.
external perimeter, or hull, of a percolation cluster. ThroughThese paths are formed by connected and self-avoiding se-
this identification the exact exponents of thetransition, quences of either occupied or empty hexagons. The so-called
ve=4/7 and¢e=73/7, were derived8]. Here we show how path-crossingorobability, namely, the probability th&tnon-
similar arguments can be invoked for the zipping transition.overlapping paths connect inner to outer circles, was found
The differences are mainly associated with the fact that théo behave asymptotically as
relevant percolative set appropriate for the zipping is not the
hull, as for the homopolyme® point, but the backbone of Pi(r,R)=(r/R)™, (14
the percolation cluster.

As in the ®-point case, here it is convenient to considerWhere
site percolation on a triangular lattice. For this problem the )
relevant percolation contours, like the hull of a cluster, are in x :l —1 (15)
fact strictly self-avoiding paths on the dual, hexagonal lat- " 12
tice. Thus the equivalent diblock copolymer problem real-
ized here by percolation paths will also be on a hexagonalhe formula is valid if there is at least a path of each type,
rather than square lattice. On the basis of universality, wand the probability depends only on the total number of these
expect our results to extend also to the square lattice casepaths, not on their typEl8].

Let us consider a percolation cluster as sketched in Fig. Figure 13 shows examples of crossing paths; without re-
12. Its external perimeter is a self-avoiding ring. The en-solving the underlying lattice structure, we draw them as
semble of all possible conformations of an external hull onsolid lines if they connect filled hexagons, while dashed lines
the lattice can be regarded as a problem of ring polymeare used for paths connecting empty hexagons. As a first
(grand canonical statistics, as discussed in R¢8]. One  exampldsee Fig. 18)] we consider the crossing probability
further realizes that this effective ring polymer problem isfor a continuous and a dashed path, which according to Egs.

V. PERCOLATION PATHS AND EXACT EXPONENTS OF
THE ZIPPING TRANSITION
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so called “dangling ends,” i.e., those branches of the cluster
connected to the main body by narrow briddes., by re-
gions in which only one occupied hexagon is available, mak-
ing it impossible for a self-avoiding path of hexagons to
penetrate and exit at the same tim&n example of dangling
end is also schematically shown by the double dashed area in
Fig. 13b).
. The two points we fix on the contour clearly divide into
( ) s two sides the perimeter of the backbone. Even if in this case
a) (b) o i . . . ;
it is not possible to give a simple expression for the effective
FIG. 13. Path crossing configurations faj a dashed line and a interactions determining the shape of the two backbone
solid line and(b) two dashed lines and two solid lines. The prob- sides, we expect them to be essentially local, as in the case of
abilities of the configurations yield the fractal dimensions of thethe hull, and to act differently according to whether they
external perimeter of the hul) and of the cutting hexagons of the involve close encounters of the same side, or between differ-
backboneb). The dashed region indicates the percolating cluster ofent sides. This is consistent with the idea that the two sides
occupied hexagons, while the double dashed regiofbJofhows a  of the backbone perimeter could represent the statistics of a
dangling end, a part of the cluster which does not belong to thging version of the diblock copolymer at the transition, the
backbone. two parts corresponding, respectively, to bloékand B.
To calculate the fractal dimension of the external perim-
(14) and(15) decays a®,_,~(r/R)Y% One recognizes im- ater of the backbone one can use Ed<) and (15), taking
mediately that the set of points for which two of such self-two continuous paths and a dashed path. This configuration
avoiding paths can be drawn are those of the external perintjearly identifies the perimeter of the backbone. Indeed, the
eter or hull of the percolative clust¢see Fig. 18)]. This  two continuous paths guarantee that occupied hexagons in-
identification allows one to derive the fractal dimension Ofside the interior Circ|e be'ong toa Who'e path Connecting two
the hull. Since the area enclosed by the annulus is proponfinjtely distant points. At the same time, a dashed path
tional to Rz, the perimeter of the hull enclosed in the annUIUSimp"es that the vacant hexagons facing the occupied ones
must scale ad o,~R?P|_,~R?*2=R"* Identifying the  pelong to the exterior of the cluster, and thus, are also part of
external hull as a polymer ring at th@ point, one then jts backbone.
derives that the latter has a fractal dimensibg=D, -, Therefore, we now take=3 for the exponents defined in
=2-x_,=7/4. Eg. (15). In this case we find that the external perimeter of
In order to make contact with the diblock copolymer zip- the backbone scales &s,~R?*s=R*3 which implies a
ping, let us now imagine to identify two points 1 and 2, fractal dimensiorD ;= 4/3[30]. This dimension is consistent
dividing the cluster hull into two equally long partsee Fig.  with that found for the diblock copolymer at the zipping
14). By fixing these two points on the cluster perimeter, onetransition. Furthermore, it is natural to associate the switch-
automatically defines a backbone as a subset of the wholgg on of effective attractive interactions between the two
cluster. The backbone is the union of all connected paths ddackbone sides to the existence of narrow bottlenecks in the
occupied hexagons, which are strictly self-avoidiing., in  packbone itselfcorresponding to only one hexagoifhese
each path a given hexagon appears at most)oreel join  are the so-called cutting or “red” hexagons of the backbone
points 1 and 2. Therefore the backbone does not include thg 7], which are visited by the two blocks simultaneously. In
order to determine their fractal dimension one has to con-
sider a percolative configuration with two continuous and
two dashed paths joining the circles, as sketched in Fig.
13(b). These paths identify a dimensidd,=2—x,=3/4.
Thus, for a backbone with external perimeter equal tand
an average oN,g contacts we findN~RPs andN g~ RP4.
Consequently, the average number of contacts between the
backbone sides grows likid,g~NP4+/P3=N%16 By identi-
fying the external perimeter of the backbone with the ring
2 diblock copolymer at its transition, one eventually finels
=3/4 and¢$=9/16. The numerical determinations of and
1 ¢ at the zipping transition are remarkably consistent with
these values, making the conjecture extremely plaufgile

VI. CONCLUSIONS

FIG. 14. (@ Schematic representation of a percolation cluster In this paper we studied the phase diagram for the col-
with dangling endgdashed areasWhen these are eliminated one lapse transition of a diblock copolymer with attractive inter-
remains with the cluster backboft®. The dashed segments cut the actions between monomers of different species and a triple
cluster in corresponding to the so-called “red” hexagons. contact interactiod, which, according to its sign, may either
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favor, or unfavor, compactification. In the region of negativecontacts between parallel or antiparallel segments of the

Sswe find a first order transition from a swollen to a compact,chain. In fact the analogy between the diblock copolymer in

spiral phase, while in the positivé region there is a se- a zipped state and an oriented polymer is very appropriate: in

quence of a continuous zipping transition and a collapse othe zipped diblock parallel contacts are AB type, while

first order type to compact conformations at a lower tempera@ntiparallel ones are contacts between monomers of equal

ture. type. Different energies are clearly associated with the two
Our exact enumerations and Monte Carlo simulationdYPes of contacts.

yield numerical estimates of the critical exponengsand ¢ Itis worthwhile to recall that simple polymer models with
of the zipping transition, which are consistent with those weSCMe sort of zipping transition already have attracted some

could conjecture using recent results for the fractal dimen@tention in recent literaturg32,33, mainly because of the

sions of the percolation cluster backbone, from which Werelevance that suc_h transitio_n can have for biopolymers. Im-
expecty, = 3/4 andg=9/16. The numerically determined ex- bertet al.[32] considered a diblock formed by two strands of

ponents, therefore, support the hypothesis that the transitio?IOpos'tely charged monomers interacting with each other

admits a description in terms of percolative stochastic geomt—hroug'h long range Coulomb forces and found evidence of

etry: the two blocks of the copolymer have the same fracta{he existence of a zipping transition foIIow_ed by a col!apse at
geometry as the two sides of a cluster backbone, and thelpWer temperatures. Causgi al. [33] considered a simple

contacts correspond to the cutting hexagons, or links of thEnOdel for the D.NA denaturation transition, in which only the
same backbone. This is, to our knowledge, the second e nonomers which are at equal distances along the sequence

ample of a percolative representation for a polymer conforirom the center of the chain interact. They found evidence of

mational transition in two dimensions, besides that of@he a first order transition, from a swollen phase to a zipped

point. The common percolative roots of these transitions su __hase. By its construction thelr_ model has_ no ather transi-
gests the possibility of a deep link between them whichfions to a compact state. In the_|r case the _flrst order zipping
ought to be elucidated by further studies ' seems to be due to the selective interactions of monomers

The results obtained for the various transitions appearin long the chain. Also, in our model, if we turn on interac-
in the phase diagram help in clarifying the nature of the"°NS only betwe_erAB_monomers at equal dls_tan_ces from_
adsorptionlike collapse occurring &0 and first detected in the center, we find evidence of a first order zipping transi-
Ref.[15]. In spite of the fact that most tests are not able toton- . .
put into clear evidence the existence of two successive tran- Finally, we point oqt that there_ are several possmlt_e exten-
sitions, the only multicritical behavior which can be charac-S'0"S O_f this work. First of all, It WOL.'Id be Interesting to
terized as coming from the high temperature region seem eneralize the model to three dimensions and to investigate

definitely to belong to the universality class of the continu-t€ properti(_as of the Zipping transit?on in that Céﬁl An-
ous zipping transition identified for positive values fBe- other open issue is the effect of disorder on the interaction

sides the compatibility of the exponent estimates, a Ver)petween monomers for the zipping transition, which would

strong support for such conclusion comes from our determif’1IIOW one to understarjd the behavior (?f modelg of polymers
nation of the universal amplitude ratio between the squareEﬂOre relevant for applications to chemistry or biology than a

end-to-end distance and the radius of gyration of the poly-s’Imple diblock.

mer.
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