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Zipping and collapse of diblock copolymers
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Using exact enumeration methods and Monte Carlo simulations, we study the phase diagram relative to the
conformational transitions of a diblock copolymer in two dimensions. The polymer is made of two homoge-
neous strands of monomers of different species which are joined to each other at one end. We find that,
depending on the values of the energy parameters in the model, there is either a first order collapse from a
swollen phase to a compact phase of spiral type, or a continuous transition to an intermediate zipped phase
followed by a first order collapse at lower temperatures. Critical exponents of the zipping transition are
computed, and their exact values are conjectured on the basis of a mapping onto percolation geometry, thanks
to recent results on path-crossing probabilities.
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I. INTRODUCTION

Polymers in solution typically undergo a coil-globu
transition from a high temperature~T! swollen phase to a low
T phase where the polymer assumes compact conformat
In the case of homopolymers, for which all the monom
are identical, this transition is by now well understood@1,2#.
It is known asQ collapse, and has been extensively inves
gated in the past years using various methods such as m
field approximations@3#, exact enumerations of interactin
self-avoiding walks on lattices@4#, Monte Carlo calculations
@5#, transfer matrix calculations@6#, and field theoretical cal-
culations@7#. In two dimensions the exponents of theQ col-
lapse have been related to the fractal properties of the pe
lation cluster, and are believed to be known exactly@8#.

The study of the conformational properties and ph
transitions of macromolecules with inhomogeneous or r
dom sequences of monomers is an interesting frontier in
rent polymer statistics@9#. These systems pose new theor
ical and numerical challenges, compared to their m
standard, homogeneous counterparts. Particularly intere
is the possibility that inhomogeneities along the chain co
lead to transitions and universality classes of scaling beh
ior, which are not realized for homopolymers@10,11#. More-
over, the most complex versions of models of this class
also expected to be useful for descriptions of phenomena
protein folding@12#, DNA denaturation@13# and RNA sec-
ondary structure formation@14#. Thus, an investigation of the
universal properties of the simplest among these systems
offer an important gauge of the relevant model ingredie
necessary in order to reproduce the basic conformatio
mechanisms in more sophisticated descriptions.

One of the most elementary conformational transitio
~not realized in homopolymers! one can try to describe in
relatively simple terms is what we call here azippingtransi-
tion. By zipping we mean a process in which two stran
composing the polymer come in contact in such a way a
form a bound double structure, which remains swollen a
does not assume compact configurations. In order to indu
transition from an unzipped state to a zipped state, the m
mal inhomogeneity required implies a distinction betwe
1063-651X/2001/63~4!/041801~11!/$20.00 63 0418
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the two strands: if the polymer is made of two blocks co
posed of monomers of different species~diblock copolymer!,
and there is a dominant attractive interaction acting betw
these different monomers, one would expect such a trans
to be possible. Of course, the zipping occurring in biom
ecules results in general from higher degrees of inhomo
neity than those of a simple diblock copolymer.

From a physical point of view one can think of dibloc
copolymers with oppositely charged monomers in the t
blocks; in the model discussed here the interactions are
short range, and this would correspond to the case
screened Coulomb forces. Another possibility is that attr
tive interactions between monomers of the two blocks
established through a preferential formation of hydrog
bonds.

Attractive interactions between the two blocks, besid
zipping, also tend to produce collapse into a globular co
pact state, unless some contrasting effect limits the capab
of a given monomer to attract monomers of the other blo
In a recent paper@15#, a model of a diblock copolymer with
some of the features discussed above was studied in both
and three dimensions. In this model the two blocks w
represented by two halves of a self avoiding walk~SAW! on
a hypercubic lattice with attractive interactions betwe
nearest neighbor sites~monomers! visited by the two blocks.
So, apart from the steric constraints, there was no interac
mechanism possibly opposing the tendency of a given mo
mer to be surrounded by as many monomers of the o
block as possible. The transition of the diblock copolym
from a highT swollen phase to a lowT compact phase, had
analogies with both polymer adsorption on a wall, andQ
collapse, but turned out to belong to a universality class
ferent from both@15#. An intriguing question remained ope
concerning the very nature of this transition: indeed, the p
sibility that a zipped, swollen phase could exist for tempe
tures just below the transition could not be excluded. If t
were the case, the adsorptionlike collapse found in Ref.@15#
would correspond to a zipping, and a further transition to
compact globular phase should be expected to take place
lower T.

In the present paper we extend the model of Ref.@15# in
©2001 The American Physical Society01-1
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two dimensions to include an interaction among alternat
triplets of different monomers. Depending on its sign, t
additional interaction can enhance the tendency of the
tem either to form compact structures or to take zipped c
formations. We draw an accurate phase diagram for the
tem, in which a zipping transition line is well identified an
characterized. Our analysis seems to indicate that the ads
tionlike collapse of Ref.@15# belongs to the zipping univer
sality class as well. Specifically, we find that, depending
the triplet interaction energy, one has either a continu
swollen-zipped transition followed by a first order collap
into compact conformations, or a direct first order swolle
compact transition. Although we mainly focus on the z
ping, it turns out that the first order collapse has interest
features as well, since it shows remarkable analogies w
that found in homopolymers with orientation dependent
teractions, which attracted some attention recently@16#.

We will argue that the exact exponents for the zippi
transition in two dimensions can be found through an id
tification between the stochastic geometry of the blocks
that of a percolation cluster backbone@17#. A preliminary
form of this argument was presented in Ref.@15#. The rel-
evant dimensions of the percolation cluster can be identi
thanks to some recent results for path-crossing probabil
@18#. Our numerical estimates for the zipping exponents
in very good agreement with the conjectured values. To
knowledge, the mapping onto percolative stochastic ge
etry we discuss here is the first example of exact res
derived for a genuinely inhomogeneous polymer probl
in two dimensions. The connection with percolation geo
etry also shows that the physics of zipping is closely c
nected with that of theQ-point transition, for which a rep-
resentation in terms of percolation geometry was establis
long ago@8#.

Besides the prototypical importance that zipping acqu
here also on the basis of our exact results, one should re
that many of the conformational transitions occurring in b
molecules show aspects which, to some extent, are rem
cent of zipping. This is certainly the case for DNA, in whic
upon lowering the temperature below the denaturation o
the conjugate bases form pairs, so that the molecule arra
itself in a double stranded helical structure@13#. Double
stranded, zipped structures also appear in the folding
b-hairpin peptides@19#. In the philosophy mentioned at th
beginning of this section, one can hope that studies like
one presented here can teach something about how to m
these more complicated systems properly.

This paper is organized as follows: In Sec. II we pres
the model and the main features of the phase diagram
Secs. III and IV we discuss the numerical results obtained
exact enumerations and Monte Carlo simulations, resp
tively. In Sec. V, using recent results for crossing probab
ties of percolation paths in two dimensions, we conject
the exact values of the exponents of the zipping transit
Section VI concludes the paper, with a summary of the
sults and a general discussion.

II. MODEL AND PHASE DIAGRAM

We model the two-dimensional~2D! diblock copolymer
by an interacting SAW on the square lattice. In the config
04180
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ration w the SAW hasuwu5N vertices~monomers!, with N
even, and consists ofN/2 consecutive monomers of typeA
(wA) followed by N/2 monomers of typeB (wB). A pair of
vertices (A,B) form a contact if they are a unit lattice dis
tance apart. The interaction between the two blockswA and
wB is taken into account by assigning an energy« ~«,0! to
eachA-B contact. In addition we introduce a second ener
parameterd, associated with contacts formed by a seque
A-B-A or B-A-B of neighboring monomers on a line. W
refer to these sequences as totriple contacts. The Hamil-
tonian of the system in configurationw is given by

H~w!5NAB~w!«1N3~w!d ~1!

whereNAB(w) andN3(w) are the number ofA-B and triple
contacts, respectively.

For d50 we recover the model introduced in Ref.@15#; in
the present work we consider both signs ofd: a positive
value ofd must prevent the polymer from collapse into com
pact conformations and favor an intermediate zipped ph
while for a negatived the tendency to collapse is enhance

Letting cN(NAB ,N3) be the number of copolymer con
figurations withN edges,NAB contacts of typeA-B andN3
triple contacts, we define the finite-N free energy per mono
mer

FN~b,d!5N21logZN~b,d!, ~2!

where

ZN~b,d!5 (
NAB ,N3

cN~NAB ,N3!e2b(NAB«1N3d) ~3!

is the partition function andb51/T @20#. Throughout the
rest of the paper we set«521. By varyingT andd we have
explored the phase diagram of the model~see Fig. 1! on the

FIG. 1. Phase diagram in thed-T plane. Line~1! is the continu-
ous zipping transition line separating the high temperature swo
phase from the zipped phase. Lines~2! and ~3! are of first order
type.
1-2
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ZIPPING AND COLLAPSE OF DIBLOCK COPOLYMERS PHYSICAL REVIEW E63 041801
basis of exact enumeration and Monte Carlo simulation
sults.

As expected, we find a zipped phase in the positived
region, while for negatived there is a direct transition from
the swollen to the compact phase. The numerical res
show that the line~1! separating the swollen and zippe
phases is continuous, while line~2! and ~3! are first order.
Unfortunately, the numerical methods at our disposal are
sufficiently accurate to determine the precise location of
intersection point between the lines, nor the character of
phase transition in this point, which could be of special ty
The location of this intersection point seems to fall at sligh
negative values ofd.

It is rather instructive to show some typical equilibriu
conformations of the copolymer for various values ofT and
d, in the three different phases~see Fig. 2!. The configura-
tions are snapshots obtained by Monte Carlo simulations~a!
and ~b! are conformations in the swollen highT phase, with
~b! close to the zipping transition.~c! and ~d! are instead
zipped configurations. Note that the pairing of the tw
strands in~d! follows an opposite orientation with respect
~c!. Finally, ~e! and ~f! are both compact, but of differen
nature: the latter occurs atd,0 where triple contacts ar
energetically favored. Therefore, the polymer assume
spiral-like shape with straight segments turning around
center in order to maximize the number of triple contacts
case~e!, d is positive: the configuration is still of spiral type
but in this case the arms of the spiral are oriented prefe
tially at 45° with respect to the axes of the square lattice
order to avoid the formation of triple contacts.

Now one can easily understand why lines~1! and ~3! for
larged run practically horizontal in the phase diagram of F
1. In the whole zipped phase triple contacts, which cost
energyd, seldom occur@see Fig. 2~c!#; therefore, the zipping
temperature should depend rather weakly ond. In addition

FIG. 2. Typical Monte Carlo equilibrium configurations for a
N560 diblock copolymer:~a! and ~b! swollen chains;~c! and ~d!
zipped chains;~e! and ~f! compact chains withd51.5 ~e! and
d521.5 ~f!.
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the polymer can form compact conformations such as
shown in Fig. 2~e!, which also avoids this type of contact
Hence the zipped-compact transition temperature also sh
not depend ond, whend is positive and large enough. Bot
lines~1! and~3! in Fig. 1 should be asymptotically horizonta
for larged.

III. EXACT ENUMERATIONS

Exact enumerations of interacting SAW’s are stand
techniques for the study of the homopolymerQ-collapse
transition@4#. In the present calculation we generated all po
sible configurations for copolymers up toN530 monomers,
a length which is already sufficient to characterize rat
well the critical behavior of the zipping transition.

The occurrence of phase transitions in interacting polym
systems can be detected by studying the largeN behavior of
the canonical average squared radius of gyration,

Rg
25

(
w

exp@2bH~w!#R2~w!

(
w

exp@2bH~w!#

, ~4!

where the sums extend to allN-step configurationsw of the
copolymer, with radiusR(w) relative to the center of mass
Indeed, in the proximity of a conformational transition tem
peratureTc we expect that

Rg~N,T!;NncR@~T2Tc!N
f#, ~5!

wherenc andf are the exponents characterizing the tran
tion, andR is a scaling function that is assumed to approa
a positive constant if its argument approaches zero.

Another important quantity is the specific heatC(N,T)
5(1/N)]^H&/]T, which for N large andT close toTc is
expected to obey the scaling

C~N,T!;N2f21C@~T2Tc!N
f#, ~6!

whereC is again a suitable scaling function.
Figures 3 and 4 showdRg

2/db andC as functions ofb for
d50 ~a! andd521.5 ~b!. As the radius of gyration drops a
a transition, its derivativedRg

2/db shows a peak in corre
spondence to the transition point.

For d521.5 both quantities have a single isolated pe
indicating that there is a single transition from a swoll
phase to a compact phase. Ford50, instead, the derivative o
the radius of gyration has two distinct peaks@Fig. 3~a!#,
while the picture emerging from the specific heat@Fig. 3~b!#
is somewhat more confusing, since theN dependence of the
peak positions and heights is rather irregular, and their
trapolation toN→` becomes impossible. Therefore we f
cus on the peaks ofdRg

2/db. Extrapolating their positions a
d50, we find the following two estimates of critical tem
peraturesTc51.40(15) andT2c51.1(20), which overlap
somewhat within error bars. For this reason it is difficult
discern between two separate, but close, transitions, a
single transition. For positive values ofd the two sets of
1-3
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BAIESI, CARLON, ORLANDINI, AND STELLA PHYSICAL REVIEW E 63 041801
peaks are clearly separated and extrapolations yield two
tinct transition temperatures. Here we focus on the cha
terization of the highT transition from the swollen phase t
the zipped phase. The scaling form of Eq.~5! implies that
Tc(N), the temperature wheredRg

2/db has a maximum,
scales for largeN asTc(N)2Tc;x0N2f, with x0 a suitable
constant. We calculated both the radius of gyration and s
cific heat atTc(N); from Eq. ~5! and ~6!, one has

Rg@N,T5Tc~N!#;NncR~x0! ~7!

and

C@N,T5Tc~N!#;N2f21C~x0!. ~8!

FIG. 3. Derivatives of the squared radius of gyration with
spect to the inverse temperature ford50 ~a! and d521.5 ~b! and
for N512,14, . . . 30. Thedouble peak structure ford50 suggests a
sequence of two transitions: swollen zipped and zipped collaps

FIG. 4. Solid lines: specific heat from exact enumerations
N512, 14, . . . ,30 ford50 ~a! and d521.5 ~b!. Circles: Monte
Carlo results forN530.
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is-
c-

e-

For the calculation of the critical exponents we first form
the finiteN approximants, for instance

nc~N![
ln~Rg~N12!/Rg~N!!

ln~~N12!/N!
~9!

@hereRg(N) is a shorthand notation forRg„N,Tc(N)…], and
then extrapolatednc(N) to N→`. The same procedure wa
followed for f.

The extrapolated values are reported in Table I, toget
with the exponentnc8 , which is that associated with the ra
dius of the half-chain, or single block, which at the critic
temperature should scale as

Rg8~N,T5Tc!;S N

2 D nc8

. ~10!

The values of the exponentsf andnc vary slightly along
line ~1! of Fig. 1 whend is increased, whilenc8 is rather
stable. We believe that the variation ofnc andf is a spurious
effect, due to the vicinity of an additional transition in th
neighborhood ofd50. It is much more plausible that th
exponents are constant along line~1!; the most reliable esti-
mates fornc andf should be those for larged, where lines
~1! and ~3! of Fig. 1 are clearly separated. The values ofnc

and nc8 are consistent~the former only at larged! with the
scaling behavior of a SAW, namely,Rg;N3/4. The value of
f is instead consistent withf59/1650.5625, which was
conjectured in Ref.@15# for the transition atd50, and will be
derived in detail in Sec. V.

As for transition lines~2! and ~3!, the exact enumeration
analysis is not at all conclusive since the scaling behavio
the peaks with the chain lengthN is rather irregular, and
precise extrapolations turn out to be impossible. This is
will be clarified with the use of Monte Carlo simulation
which allow one to achieve much larger copolymer lengt

IV. MONTE CARLO SIMULATIONS

In order to sharpen and extend the results of exact e
merations, in particular concerning the properties of zipp
and collapsed phases, we performed Monte Carlo sim
tions for variousN andd and for a wide range of tempera
tures. Since the simulations considered involve sampling
points which include low values ofT, a standard Markov
chain Monte Carlo approach is unlikely to be successfu
being difficult to construct a Markov chain sufficiently ‘‘mo

-

d.

r

TABLE I. Extrapolated values ofnc andf from the exact enu-
meration data relative to diblock copolymers up to lengthN530.
The exponentnc8 is obtained from the scaling behavior of the radi
of one of the blocks.

d nc f nc8

0.0 0.72~1! 0.60~5! 0.74~1!

0.5 0.73~1! 0.58~3! 0.750~5!

1.0 0.73~1! 0.57~3! 0.750~5!

3.0 0.74~1! 0.56~3! 0.750~5!
1-4
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ZIPPING AND COLLAPSE OF DIBLOCK COPOLYMERS PHYSICAL REVIEW E63 041801
bile’’ at low T where the interaction energies become r
evant. Instead we use a multiple Markov chain technique
which one samples simultaneously at various values oT,
including T5` where convergence is rapid. Most recen
this method was used successfully to investigate colla
transitions in homopolymers@21#, hetheropolymers@11#, and
adsorption inQ solvent@22#.

First one defines a Metropolis based Markov chain fo
temperatureT. This procedure makes use of a hybrid alg
rithm based on pivot@23# as well as on local moves@24#.
Pivot moves are of global type, and operate well in the sw
len regime, whereas local moves turn out to be essentia
speeding up Monte Carlo convergence at low temperat
@21#. In our calculations, each Monte Carlo step consists
O(1) pivot moves andO(N) local moves. In this model
however, we have to deal also with a zipped phase where
most probable configurations are characterized by having
two blocks A and B paired together, but still not compac
@see Figs. 1~b!–1~d!#. To increase the mobility of the Marko
chain in this region we added a set of bilocal moves, such
end-end reptation and kink-end~and end-kink! moves@25#.
These moves are particularly effective for dense chains,
even more effective for zipped chains, where typically o
side of each half-chain is free and can hold a new kink. T
resulting algorithm is slightly heavier, but enables the rec
rocal sliding of the half-chains and a more efficient explo
tion of the configuration space. One may then run in para
a numberm ~typically 20–40) of these Markov chains a
different temperatures. The sampling at lowT is then con-
siderably enriched by swapping configurations between M
kov chains contiguous inT. The whole process is itself
~composite! Markov chain, obeys detailed balance, and
ergodic@21#.

Monte Carlo simulations were performed for three d
tinct values ofd: d51.5,d521.5, andd50. As a test of the
performance of the multiple Markov chain algorithm w
compared the Monte Carlo results with those obtained fr
the exact enumeration for chains up toN530 monomers. In
all cases analyzed the agreement turned out to be extre
good @see, for instance, Fig. 4~a!#.

A. dÄ1.5

In the cased51.5 we considered diblocks of lengths up
N5400, and sampled at a set ofm.40 temperatures typi
cally in the rangeTP@0.5,̀ #. In Fig. 5 we plot the specific
heat as a function ofb for different N values. Clearly each
curve displays a double peak structure indicating two sub
quent transitions. We can rule out the possibility that su
double peaked structure is a finite size effect by noting t
the peaks sharpen and grow withN. Let us focus first on the
set of peaks at higher temperatures, i.e., on the trans
from a swollen phase to a zipped phase. The correspon
Tc and f could be deduced from theN dependence of the
height,h(N), and position,Tc(N), of the peak maxima. In-
deed, from the scaling behavior@Eq. ~6!#, we expect, asN
increases,

h~N!;N2f21 and Tc~N!2Tc;N2f. ~11!
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Since a linear least squares fit of logh vs logN gives a very
large x2 statistical error, we fit the data with a functio
A N2f21(11B/N) where a scaling correction 1/N is in-
cluded. The least squares fit in this case givesf50.5760.02,
in agreement with the valuef59/1650.5625 conjectured in
Ref. @15#, and also with the estimates obtained by exact e
meration. This procedure yields results consistent with a
rect extrapolation of effective finiteN exponents. We have
also tried to fit the data by using the more general sca
correction 1/ND, and found that the best fits are those w
0.5<D<1 yielding a stable value forf. The estimated value
of f allowed us to extrapolateTc by plottingTc(N) vs 1/Nf.
This givesTc51.51(4) @bc50.66(2)#.

The inset of Fig. 5 shows a plot ofC/N2f21 vs (b
2bc)N

f, where we have usedf59/16 and the estimatebc
50.66. As expected, the high temperature peaks colla
onto a single curve quite nicely. Conversely, for a set
peaks at lower temperatures, the same rescaling proce
turns out to be inappropriate. In particular, by using the r
caled variables adequate for the former set of peaks, the
sitions of the latter set tend to move away from zero wh
their heights still increase withN: this is only consistent with
a scenario in which a new transition, at a lowerT5T2c ,
exists. This transition should be also characterized b
crossover exponent greater thanf59/16. We have tried to
verify this by looking for two new valuesb2c and f2 that
allow a reasonable fit of the scaling behavior of the seco
set of peaks. In this way we obtained the rough estima
b2c'1.0 andf2'0.7.9/16. Unfortunately the sampling a
low temperatures is not good enough to make such estim
sufficiently sharp. Moreover, in the zipped phase the eff
tive size of anN monomers system drops toN/2, making the
finite size corrections to scaling more pronounced.

The different nature of the two transitions can be bet

FIG. 5. d51.5: Plot of the specific heat vsb, for chains of
various lengths. ForN5200, 300, and 400 the low temperatu
peak was not reached because of the considerable autocorre
time caused by low mobility of long collapsed chains. Inset: c
lapsed specific heatC/N2f21 vs (b2bc)N

f, with f59/16
50.5625 andbc50.66.
1-5
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detected from the behavior ofP(E,N), the probability dis-
tribution of the energyE, for a chain of lengthN. Figure 6
shows a plot ofP(E,N) as a function ofE/N for N5200. At
sufficiently high temperatures this quantity has a maxim
in E50, and decreases rapidly withE/N @Fig. 6~a!#. As the
temperature is lowered the maximum shifts continuously
larger values ofE/N @Figs. 6~b! and 6~c!#. For lower tem-
peraturesP develops a double peak structure@Figs. 6~a!–
6~f!#. In the case of Fig. 6~e! the peaks have equal heigh
while at temperatures below or above it one of the two pe
dominates over the other. This behavior, which persists
becomes more pronounced upon increasingN, is an indica-
tion of phase coexistence; hence the transition at lowerT is
of first order type. In terms of specific heat this would me
C(T);N as T5T2c , i.e. f251. By extrapolatingb2c(N)
vs 1/N, we findb2c51.260.2.

Another way to characterize the different phases of
model consists in looking at the scaling behavior of me
quantities such asRg

2 defined in Eq.~4!, and the mean
squared end-to-end distanceRe

2(N)5^(r N2r 0)2&, wherer 0

and r N are the two end monomers of the copolymer. F
largeN we expect

Re
2~N!;reN

2n, ~12!

Rg
2~N!;rgN2n, ~13!

and an interesting quantity to be computed is the ra
re /rg , which is expected to be universal@26#. For noninter-
acting SAW’s on a square lattice, exact enumerations
Monte Carlo simulations givere /rg;7.13 ~see Ref.@27#,
and References in Ref.@26#!. Figure 7 shows the ratioRe

2/Rg
2

as a function ofb for severalN. Note that in the range o
0,b,0.66 the curves tend to assume a constant va
re /rg57.15(5), in agreement with the value expected f
non interacting SAW’s. In the proximity of the zipping tran
sition the curves start to bend downward, and, atbc'0.66,
they cross each other almost in a unique point~see the inset!.
At the crossing point our estimate of the universal amplitu

FIG. 6. Plot ofP(E,N) with N5200 and for various tempera
tures:~a! b50.3, ~b! b50.75,~c! b51.4, ~d! b51.58,~e! b51.66,
and ~f! b51.8.
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is re /rg56.3560.20, which is definitively different from
the amplitude ratio of the SAW universality class. The z
ping transition that cannot be distinguished from the swol
phase in terms of then exponent, is, however, characterize
by a different value of the universal ratiore /rg @28#.

If the temperature is further lowered theRe
2/Rg

2 curves
reach a minimum value that decreases asN increases. This is
an indication that the end-to-end distance in the zipped ph
no longer scales like the radius of gyration, as assume
Eqs.~12! and~13!. For sufficiently low temperatures,re /rg
starts to grow back, indicating that the compact phase
characterized by an end-to-end distance and mean radiu
gyration that scale in the same way withN. As the typical
low T configurations are of spiral type@see Figs. 2~e! and
2~f!# with end points at opposite sides of the spiral, it
natural to expect thatRe;Rg;N1/2.

B. dÄÀ1.5

For d,0 triple contacts are favored and we expect~as the
exact enumerations already indicate! a single transition from
swollen directly to compact phase. To investigate the nat
of such transition we have performed runs withd521.5, for
several values ofN, sampling atm.30 different tempera-
tures in the intervalTP@1.3,̀ #. As in the cased51.5, we
have examined the probability of finding the copolymer in
configuration with energyE, as a function of the tempera
ture. A plot ofP for N5200 and three different temperature
is shown in Fig. 8. Close to the transition temperatureP has
two maxima@see Fig. 8~b!#, one atE50, and the other at
E/N'0.7. This is a clear indication of a first order transitio
The evidence of such behavior is stronger than in the c
d51.5, since here the coexistence is between two phases~the
swollen and compact phases! with a rather large difference in
energy; therefore, the double peak structure ofP can already
be seen for smallN.

FIG. 7. Re
2/Rg

2 vs b for d51.5 and for various chain lengths. Th
N530 curve is calculated from exact enumerations, while the o
ers are obtained from Monte Carlo simulations. Inset: blowup of
crossing region.
1-6
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From the analysis of the specific heat peaks we find
they become sharper asN increases and their height appea
to grow with a power ofN slightly exceeding one~the physi-
cal upper limit!. At the same time, in a plot of energy v
temperature we see curves that seem to approach step
tions. These data support the idea that the correspon
transition should be of first order.

C. dÄ0

The more delicate region to be explored in the phase
gram is the neighborhood ofd50, where three transition
lines meet each other. We have chosen in particular the
d50, since it was considered in Ref.@15#.

In Fig. 9 we plot the specific heat as a function ofb for
severalN values. For the smallest chains (N560 and 80),
one observes a peak in the specific heat with a shoulde

FIG. 8. P(E,N) vs E/N for d521.5 andN5200 for three
different temperatures~a! b50, ~b! b50.545, and~c! b50.6. Inset:
Plots ofP(E,N) vsE/N near phase coexistence forN560, b50.66
~solid line!, N5100, b50.56 ~dotted line!, andN5140, b50.545
~dashed line!.

FIG. 9. d50: Plot of the specific heat vsb, for various chain
lengths.
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smaller b. When the copolymer length is increased t
shoulder becomes hardly noticeable. From the specific h
plot one cannot rule out the possibility that the should
eventually vanishes leaving out a single transition from
swollen phase to a compact phase. The other possibilit
that there are two separate transitions, but very close in t
perature.

The presence of two distinct transitions is suggested b
plot of the temperature derivative of the total radius of gy
tion, shown forN5100 and 200 as thick lines in Fig. 10. I
this case one clearly detects two peaks, which although c
ing closer to each other asN increases are still noticeable an
sharp forN rather large. The thin lines in Fig. 10 are th
temperature derivatives of the radius of gyration of a sin
block, which show only one peak in correspondence to
low temperature peak of the derivative of the total radius
gyration. This behavior is consistent with the following pi
ture: coming from the swollen phase~smallb), one first has
a zipping transition characterized by a drop of the total
dius of gyration, while the radius of gyration of a sing
block still behaves as a SAW and is not sensitive to
zipping transition. However, at lower temperatures, in cor
spondence to the transition from zipped to compact ph
both quantities drop and their derivatives show a peak.

Another quantity which we investigated is the univers
amplitude ratio between the end-to-end distance and ra
of gyration squared, which is plotted in Fig. 11. Here, as
the d51.5 case, this universal quantity takes the SAW va
;7.13 at highT and drops in correspondence with the tra
sition. The fact that we find intersections withRe

2/Rg
2

'0.635~the same value as ford51.5! strongly suggests the
presence of a zipping transition with the same univer
properties as that atd51.5. Unlike Fig. 7, hereRe

2/Rg
2 drops

and increases again in a narrow range ofb values, indicating
the the zipped phase is restricted to a small temperature
terval.

FIG. 10. d50. Thin lines: plot of the derivative of the half-chai
squared gyration radius, as a function ofb. Thick lines: two ex-
amples of derivative of the total-chain squared gyration radiusN
5120 and 200!.
1-7
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In summary, although the numerical evidence is not fu
conclusive, our data seem to favor the existence of two se
rate transitions ford50. As in the cased51.5, it is natural to
expect that the lowT one~zipped-collapsed! is of first order
type.

V. PERCOLATION PATHS AND EXACT EXPONENTS OF
THE ZIPPING TRANSITION

In this section we present a conjecture on the relat
between the statistics of some percolation paths at thres
and the diblock copolymer zipping transition. This conje
ture leads to a prediction of exact values of the exponent
preliminary, less precise, version of the arguments be
was given in Ref.@15#.

It is well known that, in two dimensions, the statistics o
ring polymer at theQ transition is identical to that of the
external perimeter, or hull, of a percolation cluster. Throu
this identification the exact exponents of theQ transition,
nQ54/7 andfQ53/7, were derived@8#. Here we show how
similar arguments can be invoked for the zipping transiti
The differences are mainly associated with the fact that
relevant percolative set appropriate for the zipping is not
hull, as for the homopolymerQ point, but the backbone o
the percolation cluster.

As in the Q-point case, here it is convenient to consid
site percolation on a triangular lattice. For this problem
relevant percolation contours, like the hull of a cluster, are
fact strictly self-avoiding paths on the dual, hexagonal l
tice. Thus the equivalent diblock copolymer problem re
ized here by percolation paths will also be on a hexago
rather than square lattice. On the basis of universality,
expect our results to extend also to the square lattice ca

Let us consider a percolation cluster as sketched in
12. Its external perimeter is a self-avoiding ring. The e
semble of all possible conformations of an external hull
the lattice can be regarded as a problem of ring polym
~grand canonical! statistics, as discussed in Ref.@8#. One
further realizes that this effective ring polymer problem

FIG. 11. d50: Square end-to-end distance over the square
ration radius as a function ofb.
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characterized by attractive interactions. These originate fr
the fact that, at threshold (p5pc51/2), multiple visitations
@29# by the hull of the same occupied, or vacant, hexag
give a higher probability to the realization of a ring config
ration. Indeed, when the contour proceeds essentially
straight direction, to each new step then corresponds a
hexagon whose state~occupied or vacant! has to be deter-
mined. This each step implies a factorpc51/2 in the prob-
ability weight of the whole configuration. When the conto
folds on itself and revisits, after some steps, the perimete
the same hexagon, the factor 1/2 does not apply, resultin
a higher global probability. This is equivalent to an attracti
interaction favoring the multiple visitations of the sam
hexagon.

Here it is convenient to summarize some very recent
act results concerning the fractal dimensions of various p
colative sets. Following Ref.@18# we consider an annula
region of the hexagonal lattice delimited by an inner circle
small radiusr, and an external one of radiusR@r . Two types
of paths connecting the two circles are also consider
These paths are formed by connected and self-avoiding
quences of either occupied or empty hexagons. The so-ca
path-crossingprobability, namely, the probability thatl non-
overlapping paths connect inner to outer circles, was fou
to behave asymptotically as

Pl~r ,R!'~r /R!xl, ~14!

where

xl5
l 221

12
. ~15!

The formula is valid if there is at least a path of each typ
and the probability depends only on the total number of th
paths, not on their type@18#.

Figure 13 shows examples of crossing paths; without
solving the underlying lattice structure, we draw them
solid lines if they connect filled hexagons, while dashed lin
are used for paths connecting empty hexagons. As a
example@see Fig. 13~a!# we consider the crossing probabilit
for a continuous and a dashed path, which according to E

y-

FIG. 12. Percolation cluster of connected occupied hexag
~dashed!. Each hexagon is centered on a site of the dual, triang
lattice.
1-8
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~14! and~15! decays asPl 52'(r /R)1/4. One recognizes im-
mediately that the set of points for which two of such se
avoiding paths can be drawn are those of the external pe
eter or hull of the percolative cluster@see Fig. 13~a!#. This
identification allows one to derive the fractal dimension
the hull. Since the area enclosed by the annulus is pro
tional toR2, the perimeter of the hull enclosed in the annu
must scale asLeh;R2Pl 52;R22x25R7/4. Identifying the
external hull as a polymer ring at theQ point, one then
derives that the latter has a fractal dimensionDQ5Dl 52
[22xl 5257/4.

In order to make contact with the diblock copolymer zi
ping, let us now imagine to identify two points 1 and
dividing the cluster hull into two equally long parts~see Fig.
14!. By fixing these two points on the cluster perimeter, o
automatically defines a backbone as a subset of the w
cluster. The backbone is the union of all connected path
occupied hexagons, which are strictly self-avoiding~i.e., in
each path a given hexagon appears at most once!, and join
points 1 and 2. Therefore the backbone does not include

FIG. 13. Path crossing configurations for~a! a dashed line and a
solid line and~b! two dashed lines and two solid lines. The pro
abilities of the configurations yield the fractal dimensions of t
external perimeter of the hull~a! and of the cutting hexagons of th
backbone~b!. The dashed region indicates the percolating cluste
occupied hexagons, while the double dashed region of~b! shows a
dangling end, a part of the cluster which does not belong to
backbone.

FIG. 14. ~a! Schematic representation of a percolation clus
with dangling ends~dashed areas!. When these are eliminated on
remains with the cluster backbone~b!. The dashed segments cut th
cluster in corresponding to the so-called ‘‘red’’ hexagons.
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so called ‘‘dangling ends,’’ i.e., those branches of the clus
connected to the main body by narrow bridges~i.e., by re-
gions in which only one occupied hexagon is available, m
ing it impossible for a self-avoiding path of hexagons
penetrate and exit at the same time!. An example of dangling
end is also schematically shown by the double dashed are
Fig. 13~b!.

The two points we fix on the contour clearly divide in
two sides the perimeter of the backbone. Even if in this c
it is not possible to give a simple expression for the effect
interactions determining the shape of the two backbo
sides, we expect them to be essentially local, as in the cas
the hull, and to act differently according to whether th
involve close encounters of the same side, or between dif
ent sides. This is consistent with the idea that the two si
of the backbone perimeter could represent the statistics
ring version of the diblock copolymer at the transition, t
two parts corresponding, respectively, to blocksA andB.

To calculate the fractal dimension of the external peri
eter of the backbone one can use Eqs.~14! and ~15!, taking
two continuous paths and a dashed path. This configura
clearly identifies the perimeter of the backbone. Indeed,
two continuous paths guarantee that occupied hexagon
side the interior circle belong to a whole path connecting t
infinitely distant points. At the same time, a dashed p
implies that the vacant hexagons facing the occupied o
belong to the exterior of the cluster, and thus, are also pa
its backbone.

Therefore, we now takel 53 for the exponents defined i
Eq. ~15!. In this case we find that the external perimeter
the backbone scales asLbb;R22x35R4/3, which implies a
fractal dimensionD354/3 @30#. This dimension is consisten
with that found for the diblock copolymer at the zippin
transition. Furthermore, it is natural to associate the swit
ing on of effective attractive interactions between the t
backbone sides to the existence of narrow bottlenecks in
backbone itself~corresponding to only one hexagon!. These
are the so-called cutting or ‘‘red’’ hexagons of the backbo
@17#, which are visited by the two blocks simultaneously.
order to determine their fractal dimension one has to c
sider a percolative configuration with two continuous a
two dashed paths joining the circles, as sketched in F
13~b!. These paths identify a dimensionD4522x453/4.
Thus, for a backbone with external perimeter equal toN and
an average ofNAB contacts we findN;RD3 andNAB;RD4.
Consequently, the average number of contacts between
backbone sides grows likeNAB;ND4 /D35N9/16. By identi-
fying the external perimeter of the backbone with the ri
diblock copolymer at its transition, one eventually findsnc
53/4 andf59/16. The numerical determinations ofnc and
f at the zipping transition are remarkably consistent w
these values, making the conjecture extremely plausible@31#.

VI. CONCLUSIONS

In this paper we studied the phase diagram for the c
lapse transition of a diblock copolymer with attractive inte
actions between monomers of different species and a tr
contact interactiond, which, according to its sign, may eithe
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BAIESI, CARLON, ORLANDINI, AND STELLA PHYSICAL REVIEW E 63 041801
favor, or unfavor, compactification. In the region of negati
d we find a first order transition from a swollen to a compa
spiral phase, while in the positived region there is a se
quence of a continuous zipping transition and a collapse
first order type to compact conformations at a lower tempe
ture.

Our exact enumerations and Monte Carlo simulatio
yield numerical estimates of the critical exponentsnc andf
of the zipping transition, which are consistent with those
could conjecture using recent results for the fractal dim
sions of the percolation cluster backbone, from which
expectnc53/4 andf59/16. The numerically determined ex
ponents, therefore, support the hypothesis that the trans
admits a description in terms of percolative stochastic ge
etry: the two blocks of the copolymer have the same fra
geometry as the two sides of a cluster backbone, and t
contacts correspond to the cutting hexagons, or links of
same backbone. This is, to our knowledge, the second
ample of a percolative representation for a polymer con
mational transition in two dimensions, besides that of theQ
point. The common percolative roots of these transitions s
gests the possibility of a deep link between them, wh
ought to be elucidated by further studies.

The results obtained for the various transitions appea
in the phase diagram help in clarifying the nature of t
adsorptionlike collapse occurring atd50 and first detected in
Ref. @15#. In spite of the fact that most tests are not able
put into clear evidence the existence of two successive t
sitions, the only multicritical behavior which can be chara
terized as coming from the high temperature region se
definitely to belong to the universality class of the contin
ous zipping transition identified for positive values ofd. Be-
sides the compatibility of the exponent estimates, a v
strong support for such conclusion comes from our deter
nation of the universal amplitude ratio between the squa
end-to-end distance and the radius of gyration of the po
mer.

Other interesting aspects of the phase diagram calcul
in this paper are the first order swollen-collapsed and zipp
collapsed transitions found, respectively, for negative a
positive values ofd. In particular the latter resembles th
transition from a swollen to a spiral state found inoriented
polymers@16#, i.e., chains to which an overall orientation
assigned, and where different energies are associated
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contacts between parallel or antiparallel segments of
chain. In fact the analogy between the diblock copolymer
a zipped state and an oriented polymer is very appropriate
the zipped diblock parallel contacts are ofAB type, while
antiparallel ones are contacts between monomers of e
type. Different energies are clearly associated with the t
types of contacts.

It is worthwhile to recall that simple polymer models wit
some sort of zipping transition already have attracted so
attention in recent literature@32,33#, mainly because of the
relevance that such transition can have for biopolymers.
bertet al. @32# considered a diblock formed by two strands
oppositely charged monomers interacting with each ot
through long range Coulomb forces and found evidence
the existence of a zipping transition followed by a collapse
lower temperatures. Causoet al. @33# considered a simple
model for the DNA denaturation transition, in which only th
monomers which are at equal distances along the sequ
from the center of the chain interact. They found evidence
a first order transition, from a swollen phase to a zipp
phase. By its construction their model has no other tran
tions to a compact state. In their case the first order zipp
seems to be due to the selective interactions of monom
along the chain. Also, in our model, if we turn on intera
tions only betweenAB monomers at equal distances fro
the center, we find evidence of a first order zipping tran
tion.

Finally, we point out that there are several possible ext
sions of this work. First of all, it would be interesting t
generalize the model to three dimensions and to investig
the properties of the zipping transition in that case@15#. An-
other open issue is the effect of disorder on the interac
between monomers for the zipping transition, which wou
allow one to understand the behavior of models of polym
more relevant for applications to chemistry or biology than
simple diblock.
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