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The nearest neighbor contacts between the two halves of an N-site lattice self-avoiding walk offer an
unusual example of scaling random geometry: for N ! ` they are strictly finite in number but their
radius of gyration Rc is power law distributed ~ R2t

c , where t . 1 is a novel exponent characterizing
universal behavior. A continuum of diverging length scales is associated with the Rc distribution. A
possibly superuniversal t � 2 is also expected for the contacts of a self-avoiding or random walk with
a confining wall.

DOI: 10.1103/PhysRevLett.87.070602 PACS numbers: 05.70.Jk, 36.20.Ey, 64.60.Ak, 64.60.Kw
The self-avoiding walk (SAW) is a classical problem
in statistical mechanics, playing a central role in our un-
derstanding of polymer statistics and intimately related to
magnetic critical phenomena and percolation [1]. In its
most simple version the SAW amounts to the statistical
characterization of equally probable single chain confor-
mations, with no overlaps or intersections. These confor-
mations are made by N 2 1 successive nearest neighbor
(nn) steps (N sites) on a lattice in d dimensions. For
N ! `, quantities like the radius of gyration with respect
to the center of mass of SAW configurations, Rg, have an
average �Rg� � NnSAW , where nSAW is the SAW metric ex-
ponent. When d . 1 self-avoidance does not prevent the
conformations from involving close approaches of differ-
ent parts of the chain: here we generally count as contacts
the pairs of nn lattice sites which are visited, not consec-
utively, by the SAW. The totality of such contacts grows
on average proportional to N [2] and possesses the same
fractal dimension �� 1�nSAW� as the whole SAW.

In the present Letter we discuss so far unexplored fea-
tures of a particular subset of SAW contacts. Such features
represent an unusual example of how scale invariance can
manifest itself in a finite, nonextensive portion of an infi-
nite fractal set. The scaling exponent t of the probability
distribution of the gyration radius of such a subset rep-
resents a novel characterization of SAW universal behav-
ior. The fact that t . 1 implies the existence of a whole
continuum of diverging characteristic lengths in the SAW
problem, in addition to the length �Rg�.

The subset on which we focus here is that of the con-
tacts between the two halves of a SAW (Fig. 1). Counting
such contacts alone allows one to get rid of less interesting
effects, which are extensive in N . Being related to prob-
lems like network formation, transport, or intramolecular
reactions, these contacts can be of particular interest for
applications in which the two half chains are made of dif-
ferent monomers, as for diblock copolymers [3]. When
the chain represents a homopolymer, the subset we con-
sider is particularly significant in relation to the effect of
nearest neighbor interactions on the SAW [4]. This is the
case of models of the polymer Q collapse [1,5,6], where
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an attractive nn energy e , 0 is associated to each contact.
In this case a Boltzmann factor e2e�T weighs each contact
occurring in a configuration at temperature T . If for such a
model one counts contacts only between the two halves of
the SAW, the average number of them is of the order N 0 in
the high T regime, increases as Nf, with 0 , f , 1, at
the Q point, and scales as N at low T . f turns out to co-
incide with the crossover exponent fQ at T � TQ , where
�Rg� � NnQ , with nQ fi nSAW [7]. Similar behaviors oc-
cur if the attractive interactions are associated exclusively
with this subset of contacts, and the model describes a di-
block copolymer zipping transition [7,8]. In different T
regimes of the Q and zipping transitions the contacts be-
tween the two halves of the SAW behave in a way anal-
ogous to the monomers adhering to a wall in polymer
adsorption [7]. Most recently it has also been found that in
d � 2 the fractal dimensions of the contacts between the
two half chains are the same at the homopolymer Q point
and at the diblock copolymer zipping transition [8]. Thus,
intriguing universality aspects can be expected to underlie
the geometry of SAW contacts.

The contacts between the two halves of a polymer have
already been studied by renormalization group methods
[9] in the high T regime controlled by excluded volume.
The focus there was on the scaling of their average num-
ber, �Nc�, and precisely on the scaling correction exponent
describing its approach to a finite limit for N ! `. This
finite limit shows that only a vanishing fraction of the
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FIG. 1. SAW in two dimensions: the contacts between its
two halves (light and dark, respectively) are indicated by open
circles. c.m. is the center of mass of these contacts and Rc is
their radius of gyration.
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total number of contacts pertains to approaches of remote
portions of the chain. In fact, �Nc� gives only limited
information on the contact statistics. The full probability
distribution function (PDF) for Nc, P�Nc, N�, could in
principle have higher moments diverging with N ! `,
and we devote a first effort to check this possibility, which
is normally not considered in polymer statistics. We
perform several Monte Carlo simulations to investigate
this PDF and its moments in various dimensions and for
80 # N # 2000. Since the configurations with many
contacts are very rare, we employ a pruned-enriched
Rosembluth method [6] tuned to increase the sampling
of configurations with a high number of contacts. This
enables us to obtain good statistics also in the tail of the
PDF, which for all d turns out to be a negative exponential
without substantial dependence on N , as displayed in
Fig. 2 for SAW on a cubic lattice.

These results show that this set of contacts is strictly fi-
nite in the N ! ` limit. In spite of this, one can still ask
whether these contacts have interesting geometrical scal-
ing properties, not just reducing to those of a spatially
bounded random set. If we indicate by Prad�Rc,N� the
cumulative PDF of Rc (Fig. 1) over all SAW configura-
tions, strict boundedness would mean that the moments
�Rq

c � �
R

dRc Rq
cPrad�Rc, N� remain finite, for N ! `,

; q. We extrapolate the moments in the form �Rq
c � � Nsq .

The data are generated by sampling SAW of fixed length
with a Monte Carlo algorithm based on pivot moves [10],
which have been proved to be very efficient for SAW’s
[11]. Since the contacts between the two halves of the
SAW are mainly located close to the junction point, local
moves [12] are also attempted in this region. We consider
hypercubic lattices and the fcc lattice in d � 3. Contrary
to what happens for P�Nc, N�, for all d we find that sq is
positive and grows linearly with q, at sufficiently high q.
The data are consistent with a behavior

sq �

Ω
0 if q # t 2 1 ,
n�q 2 �t 2 1�	 if q . t 2 1 , (1)

where sq � 0 may represent logarithmic divergences for
0 , q # t 2 1. In d � 2, for example (see Fig. 3),
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FIG. 2. Histograms of ln�P�Nc, N�	 for SAW on a cubic lattice,
with N � 200 ���, 400 �3�, 800 ���, and 1600 ���.
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we find t � 1.93�2� and n � 0.76�1�, consistent with
n � nSAW � 3�4 [13]. The form (1) is compatible with a
PDF having a scaling form Prad�Rc, N� 
 R2t

c f�Rc�Nn�.
That n � nSAW is quite plausible since NnSAW is the only
expected characteristic length in the problem. However,
as discussed below, Prad itself introduces a multiplicity of
new length scales for the SAW. The fact that the moments
do not approach zero for q , t 2 1 (i.e., sq does not be-
come negative) should be due to the circumstance that f�x�
is not converging to zero for x ! 0. In other terms, the
scaling function g, if we write Prad 
 N2tng�Rc�Nn�, is
singular for its argument approaching zero, g�x� � x2t .
We verify these assumptions on the structure of Prad by
scaling collapse plots for various d. For example, Fig. 4
shows the data collapse of ln� f�x�	 for d � 3. A similar
collapse plot for ln�g�x�	 is reported in the inset.

It is indeed the singular character of g�x� for x ! 0,
which allows the exponent t to take a nontrivial value .1,
while maintaining the zeroth, normalization moment of the
PDF equal to 1. The lower length cutoff l (lattice spac-
ing in this case) is crucial to obtain a finite integral, in
dx � d�Rc�Nn�, of the PDF in the continuum limit, be-
cause the main contribution comes from small values of x,
close to x2 � l�Nn. This contribution has an N depen-
dence which compensates the diverging factor N2n�t21�

extracted in front of the integral. t . 1 means that we
cannot associate with the Rc PDF a unique characteristic
length. Indeed, putting jq � �Rq

c �1�q we find jq � Nnq

with nq � sq�q, for q [ �t 2 1, 1`�. This means that
the self-similarity of contacts has an intrinsic multiscaling
character.

The t found here is a novel exponent for the SAW [14].
It is a measure of the spread of the region within which
one-half of the chain feels the presence of the other one
in the SAW configurations. A higher t (see Table I) in-
dicates more localized contacts. Like the global geome-
try of the SAW, the spread of contacts is determined by
the interplay between entropic and excluded volume ef-
fects. The nonmonotonic behavior of t is remarkable,
which takes minimum values in d � 3 and d � 4, indicat-
ing these dimensionalities as the optimal ones for a broad
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FIG. 3. sq vs q and extrapolation of t 2 1 for d � 2. We
expect sq � 0 for q # t 2 1. Numerically a logarithmic di-
vergence cannot be easily distinguished from a power law one
with sq * 0.
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FIG. 4. Collapses of ln� f�x�	 (see text) and ln�g�x�	 (inset) for
SAW on cubic lattice, with N � 200 ���, 400 �3�, 800 ���,
and 1600 ���.

interpenetration of the two half chains. At high d there
is soon much room for the two branches of the SAW to
develop without giving rise to contacts, and this tends to
localize them more. t is rather high in d � 2: we in-
terpret this as a consequence of the peculiar topology of
the two-dimensional lattice, which makes it more difficult
than, e.g., in d � 3 for the two half chains to approach
each other at large length scales. The dependence of t
on d, also above the upper critical dimension du � 4, is
a further indication of the peculiar novel character of this
exponent.

In d � 2 and d � 3 we also investigate the behavior
of the contacts between the two half chains in the pres-
ence of nn attractive interactions (Q point model). While
for T . TQ the behaviors of their PDF’s appear the same
as at T � `, at the Q point the moments of P diverge as
those of Prad, while t becomes equal to 1 and sq�q � nQ

for the latter PDF. This suggests that the disappearance of
the singular scaling function in Prad could be a good cri-
terion for locating the transition point. This is illustrated
in Fig. 5, referring to the Q point in d � 3, simulated
as in Ref. [6] with chains up to N � 2000. We collect
data from two runs at 2e�T � 0.25, 0.27, and we use
the multiple histogram method [15] to calculate the mo-
ments in the surrounding interval of temperatures. The re-
sult from the values of q examined is 2e�TQ � 0.274�4�,
consistent with accurate estimates by other methods: for
example, 0.275(8) in [5] and 0.2690(3) in [6]. Similar re-
sults are valid for models of the diblock copolymer zipping
transition [16].

TABLE I. Extrapolated values of t and n for various lattices,
using SAW with length from Nmin to Nmax.

Lattice t n nSAW Nmin Nmax

2d 1.93(2) 0.76(1) 3�4 [13] 1000 10 000
3d 1.51(2) 0.595(5) 0.5877(6) [11] 1000 10 000
fcc 1.52(2) 0.594(5) 0.5877(6) 3000 6000
4d 1.51(3) 0.52(2) 1�2 1500 8000
5d 2.0(2) 0.49(2) 1�2 1000 8000
6d 2.9(1) 0.49(1) 1�2 1000 5000
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FIG. 5. Extrapolation of sq�q close to TQ in d � 3, for q �
0.5 ���, q � 1 �3�, q � 2 ���, and q � 4 ���. The crossings
are consistent with the expectation to find t � 1 and sq�q �
nQ � 1�2 right at T � TQ . The curve with the opposite trend
�1� refers to the effective n exponent of the SAW radius of
gyration.

For SAW with attractive interactions the average number
of contacts between the two half chains behaves in the
various temperature ranges as the mean number of SAW-
wall contacts in a polymer adsorption transition. Thus,
it makes sense to check whether also in the adsorption
process the high T ordinary regime is characterized by
peculiar scaling features of the kind described above. To
this purpose we study the PDF’s of the number and the
radius of SAW-wall contacts at T � `, where the wall
exerts only a geometrical confinement effect on the chain.
Here we consider as radius the mean distance R�

c of a
contact from the point where the SAW is grafted to the
wall [17]. Also in this case all the moments of the PDF of
Nc appear to remain finite for N ! `. The PDF’s of Rc

show singular scaling functions with an exponent t 
 2,
in d � 2 and d � 3 (Table II).

We study also the case of a random walk (RW) con-
fined by a wall, for which we are able to compute exactly
t. Consider first a RW on a square lattice tilted at 45± with
respect to the coordinate axes, in such a way that the nn of
a site have coordinates ��1, 1�, �21, 1�, �21, 21�, �1, 21��.
In this way a nn step moves the RW with nonzero and in-
dependent displacements along both coordinate directions.
This simplifies the calculations, but we expect the final
results to be valid for every lattice model, because indepen-
dence is asymptotically recovered for long RW. The gen-
eralization to d dimensions gives 2d nn vectors of the form
�1, 1, . . . , 1�, �21, 1, . . . , 1�, . . . , �21, 21, . . . , 21� and, for
example, in d � 3 one obtains the bcc lattice. Let the walk
start from the origin, near a d 2 1-dimensional hard wall
perpendicular to the x coordinate: the problem in the x di-
rection is equivalent to a one-dimensional RW which steps

TABLE II. As in Table I, but for SAW-wall contacts.

Lattice t n Nmin Nmax

2d 1.99(3) 0.744(5) 1000 6000
3d 1.968(34) 0.58(1) 1000 8000
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to nn sites with equal probability. The probability to be
again at x � 0 after n steps is given by Pn�0� � 22n� n

n�2 �.
The effect of the impenetrable wall is represented by for-
bidden sites located at x � 21. So one has to subtract
the probability to travel through this point. The method of
images [18] in this simple case says that this is equal to
the probability to go from x � 0 to its mirror image with
respect to x, x � 22. So Pn�0� � Pn�0� 2 Pn�22� �
Pn�0�2�n 1 2�21 is the probability to be on the surface.
The qth moment of the average distance of a contact from
the origin is thus

�R�
c �N�q� �

PN
n�2,4,6,... Pn�0� �n1�2�q

PN
n�2,4,6,... Pn�0�

, (2)

where n1�2 is the root mean square displacement after
n steps. Using n! 

p
2p nn11�2e2n for the binomials,

one recovers that the denominator is finite for N ! `,
while the numerator is equivalent to a sum of the typePN

n�2 n�q23��2, diverging as N �q21��2 if q . 1. This means
t � 2 for RW near a wall, in any d. The exact result for
RW suggests that, in any dimension, for SAW confined
by a wall, the scaling of the contacts is the same as for
RW. Thus, excluded volume effects seem to play no role
in determining t for the contacts of the SAW with a con-
fining wall.

In summary, the contacts discussed above represent a
very peculiar example of scaling random set: in fractal
physics we are familiar with sets in which the number of
elements is growing to infinity together with their average
radius of gyration, and criticality implies a nontrivial scal-
ing for the PDF’s of both quantities. A typical example is
percolation clusters [19], whose size PDF has a singular
scaling function with nontrivial t, as we instead find here
for Prad. In the case considered here the scale invariance
of the set is not accompanied by its number of elements
being broadly, power law distributed. The criticality is in
fact triggered by the length of the whole chain, N , becom-
ing infinite, while Nc remains finite. A t exponent, pos-
sibly superuniversal, can also be defined for the contacts
between a SAW and a d 2 1-dimensional confining wall
in the ordinary regime. The case of a RW in the presence
of a wall can also be treated, yielding the exact classical
value t � 2, which could apply also to SAW, independent
070602-4
of d. Exact determinations of these exponents for SAW in
low �d � 2� or high dimensionality and the possible de-
scriptions of the new scalings within the renormalization
group framework remain a challenge for the future.
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