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Interstrand distance distribution of DNA near melting
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The distance distribution between complementary base pairs of the two strands of a DNA molecule is
studied near the melting transition. Scaling arguments are presented for a generalized Poland-Scheraga–type
model that includes self-avoiding interactions. At the transition temperature and for a large distancer, the
distribution decays as 1/r k with k511(c22)/n. Heren is the self-avoiding walk correlation length exponent
and c is the exponent associated with the entropy of an open loop in the chain. Results for the distribution
function just below the melting point are also presented. Numerical simulations that fully take into account the
self-avoiding interactions are in good agreement with the scaling approach.
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I. INTRODUCTION

Melting or denaturation of DNA, whereby the two stran
of the molecule unbind upon heating, has been a subjec
interest for several decades. In experiments carried out s
the 1960’s, calorimetric and optical melting curves ha
yielded information on the behavior of the order parame
~fraction of bounded complementary base pairs! near the
transition@1#. This parameter gives a global measure for
average degree of opening of the molecule. With the rec
advent of novel experimental techniques that allow
single-molecule manipulations, it has become possible to
tain more detailed information on the microscopic config
rations of fluctuating DNA. For example, the time scale
opening and closing of loops of denaturated segments
some information about their steady-state distribution m
be obtained by fluorescence correlation spectroscopy t
niques@2#. Additional information is also gained by studie
of the response of the molecule to stretching, unzipping,
torsional forces@3–7#.

Theoretically, the melting transition has been stud
within two main classes of models. The first, which we re
to as Poland-Scheraga–type~PS-type! models@8–11#, con-
siders the molecule as being composed of an alternating
quence of double-stranded segments and denaturated l
Within the model, weights are assigned to bound segm
and unbound loops from which the nature of the transit
may be deduced. In a second approach that has been
ployed to study the melting transition@12#, the DNA is con-
sidered as a directed polymer~DP!. Here the two strands ar
described as directed random walks, and they inte
through a short-range attractive potential. Using the tran
matrix method, the melting transition may be studied.

Within the directed polymer approach, the distance dis
bution of complementary base pairs is readily calculab
However, realistic geometrical restrictions~such as self-
avoiding interactions! are not taken into account due to th
oversimplifying directed polymer description. On the oth
hand, within the PS-type models, geometrical restrictio
may be accounted for more realistically. It has recently b
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demonstrated@13–15# that a generalization of this mode
which includes the repulsive self-avoiding interactions b
tween the various segments of the DNA chain may be a
lyzed. This is done using a scaling approach for gene
polymer networks introduced by Duplantier@16,17#. The re-
sults for the nature of the transition and for the loop-s
distribution are in very good agreement with recent nume
cal studies@18–20#. In the PS-type models, the order param
eter and the loop-size distribution near the transition
readily calculable. However, as defined, these models do
yield the interstrand distance distribution. It would be inte
esting to generalize the scaling picture of the PS-type mo
in order to study the interstrand distance distribution close
the melting point.

In this paper, we study the distance distribution betwe
complementary base pairs of the two strands within the
approach. We derive scaling results valid both at and be
the melting temperature, and verify their validity by exte
sive numerical simulations of a model on a lattice that fu
embodies excluded volume interactions.

The paper is organized as follows. In Sec. II we derive
scaling picture for the interstrand distance probability dis
bution both at and below the melting point. Scaling relatio
linking the exponents of the loop size and distance distri
tions are provided. The results of numerical studies of
distribution functions confirming the scaling picture a
given in Sec. III. The main results are summarized in Sec.

II. SCALING APPROACH

We start by briefly reviewing the main results of the P
approach. Within the framework of these models, one ass
length dependent weights to both bound and unbound
ments. A bound segment is energetically favored over
unbound segment, while an unbound segment~loop! is en-
tropically favored over a bound one. A bound segment
length l is assigned a weightwl ; wherew5exp(2E0 /T), E0
is the base pair binding energy,T is the temperature, and th
Boltzmann’s constantkB is set to 1. Here it is assumed th
only complementary base pairs interact with each other.
©2003 The American Physical Society11-1
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binding energyE0 is taken to be the same for all base pai
An unbound segment~loop! of length l is assigned a weigh

V~ l !5
sl

l c
, ~1!

wheres is a nonuniversal geometrical constant andc is an
exponent that is determined by some universal propertie
the loop configurations. The nature of the melting transit
depends on the value of the exponentc @11#. For c<1, there
is no transition, for 1,c<2, the transition is continuous
while for c.2, the transition is first order.

Early works@11# have evaluated the exponentc by enu-
merating random walks that return to the origin, yieldingc
5d/2 in d dimensions. The inclusion of excluded volum
interactions within a loop givesc5dn @10#, wheren is the
correlation length exponent of a self-avoiding random wa
Here the self-avoiding interactions between a loop and
rest of the chain are neglected. Both these estimates pred
continuous transition (c,2) for anyd,4. Numerical simu-
lations of chains of length of up to 3000 where self-avoidi
interactions have been fully taken into account sugges
that, in fact, the transition in the infinitely long chain limit
of first order @18#. Recently it has been suggested@13–15#
that excluded volume interactions between a loop and
rest of the chain may be taken approximately into acco
using results for polymer networks of arbitrary topolo
@16,17#. It has been shown that for loops much smaller th
the chain length, the entropy of the loop has the same f
as in Eq.~1!, but with c5dn22s3. Heres3 is an exponent
associated with an order three vertex configuration defi
and evaluated in Refs.@16,17#. In d53, the exponentc may
be estimated to bec.2.11. Sincec.2, the transition is of
first order. Within the PS-type models, the weight of a lo
of size l, Ploop( l ), is given by

Ploop~ l !;
e2 l /j l

l c
, ~2!

where j l;uT2TMu21/(c21) for 1,c<2, and j l;uT
2TMu21 for c.2. HereTM is the melting temperature. In
recent numerical study@19#, the loop-size distribution at the
melting transition has been evaluated for chains of length
to 200 where self-avoidance is fully taken into accou
These simulations yieldc'2.10(4) in good agreement wit
the theoretical estimate.

We now use a scaling approach to study the complem
tary base-pair distance distributionPdist(r ). The probability
that, within a loop of size 2l , two complementary base pair
are separated byrW, scales as

P~rW,l !5
1

l dn
f S r

l nD , ~3!

wherer 5urWu and f is a scaling function. To obtainPdist(r ),
we integrate over the contribution of all loops and over
angular degrees of freedomdv:
02191
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Pdist~r !;E
0

`

dlPloop~ l !E dvr d21lP~rW,l !. ~4!

Note that the contribution of each loop islP(rW,l ), since each
loop containsl matching pairs and thus contributesl times its
average distance to the average ofPdist(r ). Inserting Eqs.~2!
and ~3! into Eq. ~4!, one finds

Pdist~r !;E
0

`

dl
e2 l /j l

l c

1

l n21 S r

l nD d21

f S r

l nD . ~5!

At the transition, one hasj l
2150, and the integral scale

with r as

Pdist~r ,j l
2150!;

1

r k
, ~6!

where

k511~c22!/n. ~7!

The estimated values for the exponentsc.2.11 and n
50.588 ind53 yield k.1.19.

Next we consider the distance distribution below the tra
sition wherej l

21.0. Simple scaling analysis cannot be ca
ried out and one has to take a specific form for the funct
f. A general argument due to Fisher@21# for the end-to-end
distance of a self-avoiding walk yields the following form o
f (x) for x@1:

f ~x!;xmexp~2Dx1/12n!, ~8!

wherem is a known exponent. This argument may be ge
eralized to consider the average distance between com
mentary pairs within a loop, or a loop embedded in a cha
yielding the same form but with a different exponentm ~to
be discussed below!. Using this form, the integral~5! may be
evaluated using a saddle-point approximation. This gives

Pdist~r !;
exp~2r /j r !

r h
, ~9!

for r @j r , with

h5c21/22~12n!~m1d!. ~10!

The characteristic distancej r is related to the lengthj l by

j r}j l
n for j l→`, ~11!

so that j r}uT2TMu2n/(c21) for 1,c<2, and j r}uT
2TMu2n for c.2. In our casec.2.11, and therefore we
expectj r

21}uT2TMun.
Within the approach introduced in Ref.@13#, the exponent

m in the distribution function~8! should be evaluated by
considering the average interstrand distance in a loop em
ded in a chain. Here for simplicity we adopt the approach
Fisher @21# and consider the exponentm in the interstrand
distance distribution within an isolated loop. Thus the effe
1-2
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of self-avoiding interactions between the loop and the res
the chain on the exponentm is not taken into account. Th
calculation is rather lengthy and it is outlined in the Appe
dix. The resulting exponent is found to be

m5
1

12n
@1/212d~n21/2!2g#, ~12!

whereg is the exponent associated with the number of c
figurations of a random walk of lengthL as given by
sLLg21. Thus, for a random, non-self-avoiding loop whe
g51 andn51/2, one hasm521 for any d. On the other
hand, for a self-avoiding loop ind53 ~whereg'1.18), one
hasm520.37. An estimate forh may be obtained by using
the c value of an isolated loop~namely, dn) in Eq. ~10!
together with the above value ofm to yield h'0.18. It
would be of interest to derive an expression form in the case
of a loop embedded in a chain in order to fully take in
account the effect of self-avoiding interactions.

It is instructive to compare these results with the dista
distributions obtained within the DP approach. The expon
c characterizes the number of directed walks that return
the origin for the first time. This is known to be given byc
522d/2 for d,2 and c5d/2 for d.2 ~Ref. @22#!. In d
52, there are logarithmic corrections so that the numbe
configurations behaves assl /( l ln2l). Thus, one expects
continuous melting transition ford,4 and a first-order
phase transition ford.4. Clearly, the correlation length ex
ponent satisfiesn51/2. Using these results, one obtains
criticality

kDP5d23 for d.2, ~13!

kDP512d for d,2. ~14!

Equations~13! and ~14! are in agreement with calculation
using a transfer matrix method for the DP model@23#. Below
criticality, our results predict that the distance distributi
decays exponentially withr, with j r}uT2TMu21/u22du for d
,4 andj r}uT2TMu21/2 for d.4. Also, usingm521 for
the DP model, one hash50. These results are again
agreement with known results for the DP model@23#.

III. NUMERICAL SIMULATIONS

In order to test the predictions of this scaling picture,
carried out extensive numerical simulations of the loop s
and interstrand distance distributions of a model of fluctu
ing DNA @18,19#. The DNA strands are represented by tw
self-avoiding walks of lengthN on a cubic lattice. The nu
merical simulations are carried out by using the pruned
riched Rosenbluth method~PERM! @24#, that has already
been employed in recent studies of DNA denaturat
@18,20#. This method generates DNA chain configurations
a growth algorithm at fixedT. Each configuration consists o
two complementary sequences ofN unit steps between
nearest-neighbor sites of the lattice, both starting from
common origin. Self avoidance is achieved by forbiddi
overlapping of sites. This constraint is relaxed only to int
duce an interaction between complementary sites~with the
02191
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same index along the two strands! that are allowed to over-
lap, with an energy gainE0521. In this way, the total num-
ber of these contacts gives the energy gain2E, and the
Boltzmann weight of a DNA configuration is exp(E/T). In
order to recover the equilibrium distribution in the simul
tion, one has to assign a suitable weight for each growth s
of the chain@24,25#. In the present work we have modifie
the growth rules in order to achieve a better performanc
lower T, where ordinary PERM yields slower convergenc
In the usual PERM rules, long open segments that have
weights at lowT are generated, and they are thus oft
pruned. This makes it difficult to generate sufficiently lon
and loop-rich chains by this procedure. In order to avoid t
problem, we have introduced a small bias for the grow
ends to recombine. This bias is compensated by a suit
reweighting of the generated chain, to yield a correct eq
librium distribution. The results of this study, which are d
scribed below, corroborate the scaling picture introduc
above.

We start by first considering the loop-size distribution
the melting temperatureTM50.7455. This distribution has
been studied in the past for chains of length up toN5320
monomers@19,20#. In Fig. 1 we present the results for chain
of length up toN51280. We findc52.14(4), which is in
good agreement with the analytical estimatec.2.11 and the
previous numerical estimates obtained from simulations
shorter chains.

The complementary-pair distance distribution at the m
ing point is plotted in Fig. 2 for systems of size up toN
51280. We find that the decay exponent is given byk
51.24(7), which is the expected value from the scaling r
lation ~7!, given the measured value ofc. A direct estimate of
k from the data is not easy, since the power law behavior
a cutoff at values ofr, which are much smaller than those fo
the l distribution. However, the algebraic decay ofPdist(r ) is
confirmed by the good collapse plot shown in Fig. 3.

We now consider the distribution functions below th
melting temperature and study the behavior of the len
scalesj l and j r . Motivated by the asymptotic form~2! for
the loop size distribution, we extractj l by fitting ln Ploop( l )
to the form

FIG. 1. Log-log plots ofPloop( l ) at TM50.7455 for several
chain lengthN. l is measured in monomer units. One can identify
linear region ~whose range increases withN) with slope 2c5
22.14(4) ~dotted line!.
1-3
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y02 l /j l2c ln l , ~15!

where y0 is a constant. This fit is carried out for sever
values of the temperature nearTM using c52.14. For each
temperatureT, the values ofj l is obtained at different chain
lengthsN and is then extrapolated to the limitN→`. The
resulting temperature dependence of the extrapolatedj l is
displayed in Fig. 4. Indeed, the expected linear depende
of j l

21 on the temperature differenceuT2TMu is observed
nearTM .

In order to obtainj r , we carried out a similar fit of
ln Pdist(r ) to the form

y12r /j r2h ln r , ~16!

where the constanty1 and the parameterh are left as free
parameters. Unfortunately, the numerical estimate ofh is
rather crude, yielding 0.5&h&1.2. In Fig. 5, we present a
plot of j r

21 as a function ofj l
21 . This graph is consisten

with the expected form~11!.
Finally, we note that scaling relations~7! and ~10! are

rather general, and are not restricted to models where
avoiding interactions are taken into account. Recently, Ga
Monthus, and Orland~GMO! @26# have introduced a mode

FIG. 2. Log-log plots ofPdist(r ) at TM for several chain length
N. r is measured in lattice units, where the lattice spacing is
equal to 1. The slope2k521.24, derived from Eq.~7! and plotted
as a dotted line in the log-log scale, is consistent with the tr
developing in the distributions of longer chains.

FIG. 3. Collapse plot ofPdist(r ) according to a scaling form
Pdist(r ,N).r 2kg(r /Nn), wheren.0.59. r is measured in lattice
units, where the lattice spacing is set equal to 1.
02191
l

ce
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for DNA denaturation where self-avoidance within ea
strand is neglected while mutual avoidance is included. E
strand is a simple random walk, and thusn51/2 for this
model. Numerical results obtained with the PERM meth
for this model ind53 dimensions yieldc52.55(5) andk
52.1(1) @27#. It is readily seen that these exponents sati
the scaling relation~7!. In fact, for the GMO model, one can
also develop a PS type of description@27# analogous to that
of Refs.@13–15#, but this time based on a block copolym
network picture@20#. This description gives analyticalc es-
timates consistent with the numerical results.

IV. SUMMARY

In this paper we studied the interstrand distance distri
tion for DNA at and near the melting point. A scaling anal
sis within PS-type models where self-avoiding interactio
are taken into account is presented. A scaling relation is
rived @Eq. ~7!# between the exponentsc andk, which govern
the decay at the melting of probability distributions of loo
lengths and of interstrand distances, respectively. Result
extensive numerical simulations are found to be in agr
ment with the scaling approach.

The DNA melting transition has been studied so far eith
with PS-type models or with the directed polymer approa

et

d

FIG. 4. The characteristic lengthj l
21 ~measured in monome

units! as a function ofuT2TMu, for T,TM .

FIG. 5. Parameterj r
21 as a function ofj l

21 , for T,TM . j l is
measured in monomer units whilej r is measured in lattice units
where the lattice spacing is set equal to 1. Errors are indicated.
eachT, we evaluatej r by a nonlinear fit of lnPdist(r ) of the form
~16!. The solid line is a fit using the form~11!.
1-4
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While in the latter casek andc are easily computable, in th
PS models the interstrand distance distribution, and thus
associated exponentk, has not yet been discussed. Our an
lytical and numerical results fork thus provide a valuable
insight into the geometry of DNA at melting, enabling one
make more quantitative comparisons between the two ty
of approach. With the advent of new physical, single m
ecule techniques, such quantities may be measurable in
near future, yielding direct information on the fluctuatio
taking place in DNA.
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APPENDIX: THE EXPONENT µ FOR A
SELF-AVOIDING LOOP

The exponentm may be evaluated for a self-avoiding loo
by generalizing the approach of McKenzie and Moore@28#
who calculated this exponent for a self-avoiding walk. Th
generalization closely follows the derivation in Ref.@28#,
and thus we will only briefly outline it here. The quantity o
interest is the probability distribution for two complementa
bases within a ring of lengthl. Equivalently, this may be
viewed as the probability of two chains that are bound at
end, to reach the same pointrW. In this probability, all pos-
sible lengthsl 1 and l 2 ~with l 11 l 25 l ) are considered.

To this end, we first consider the generating function
two chains held together at one end and which are not
stricted to return to the same pointrW,

G~rW1 ,rW2 ,u!5 (
l 1 ,l 251

`

Cl 1 ,l 2
Pl 1 ,l 2

~rW1 ,rW2!s2( l 11 l 2)e2u( l 11 l 2).

~A1!

Here Cl 1 ,l 2
is the number of configurations of two chain

held together at one end, andPl 1 ,l 2
(rW1 ,rW2) is the probability

that the free end of one chain is atrW1 and the free end of the
other chain is atrW2. The distribution function is given by
G(rW,rW,u), whereu is a chemical potential that controls th
chain lengthl 11 l 2 in the sum~A1!.
d

V

D

.
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The Fourier transform of the Green’s function~A1! of the
two chains can be assumed to have the Ornstein and Zer
form at small momentaqW 1 andqW 1,

Ĝ~qW 1 ,qW 2 ,u!;
unr

~u2n1q1
2!~u2n1q2

2!
. ~A2!

Moreover, since the two chains are bound together at
end, their total number of configurations is just that of o
chain of lengthl 11 l 2. Namely,Cl 1 ,l 2

5sl l g21 where l 5 l 1

1 l 2 and l g21 is the usual enhancement factor for a se
avoiding random walk. Using this in Eq.~A1!, one can easily
show that for smallu,

Ĝ~0,0,u!5 (
l 151,l 251

`

Cl 1 ,l 2
s2( l 11 l 2)e2u( l 11 l 2);u2g21,

~A3!

which after comparison with Eq.~A2!, implies thatr54
2(g11)/n.

The quantity of interest is the probability

Pl~rW,u!5 (
l 11 l 25 l

Pl 1 ,l 2
~rW,rW !. ~A4!

This can be calculated by first inverting Eq.~A2! to obtain
G(rW1 ,rW2 ,u). SettingrW15rW25rW yields

G~rW,rW,u!;un(r1d23)r 12de2unr . ~A5!

One then has to carry out an inverse Laplace transform
Eq. ~A5! in order to extractPl(rW,u). One obtains

Cl Pl~rW,u!s2 l5
1

2p i EX2 ip

X1 ip

dueluG~rW,rW,u!, ~A6!

whereCl5Cl 1 ,l 2
with l 5 l 11 l 2, andX is larger than the rea

part of any singularity ofG(rW,rW,u). The result of this calcu-
lation has the expected form~8! with

m5
1

12n
@1/212d~n21/2!2g#. ~A7!
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