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Interstrand distance distribution of DNA near melting
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The distance distribution between complementary base pairs of the two strands of a DNA molecule is
studied near the melting transition. Scaling arguments are presented for a generalized Poland-Scheraga—type
model that includes self-avoiding interactions. At the transition temperature and for a large distémee
distribution decays as 11 with k=14 (c—2)/v. Herev is the self-avoiding walk correlation length exponent
andc is the exponent associated with the entropy of an open loop in the chain. Results for the distribution
function just below the melting point are also presented. Numerical simulations that fully take into account the
self-avoiding interactions are in good agreement with the scaling approach.
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[. INTRODUCTION demonstrated 13—15 that a generalization of this model
which includes the repulsive self-avoiding interactions be-
Melting or denaturation of DNA, whereby the two strands tween the various segments of the DNA chain may be ana-
of the molecule unbind upon heating, has been a subject dyzed. This is done using a scaling approach for general
interest for several decades. In experiments carried out sind@lymer networks introduced by Duplantigi6,17. The re-
the 1960's, calorimetric and optical melting curves havesults for the nature of the transition and for the loop-size
yielded information on the behavior of the order parametefistribution are in very good agreement with recent numeri-
(fraction of bounded complementary base paimear the cal studie§18-20. In the PS-type models, the order param-
transition[1]. This parameter gives a global measure for theeter and the loop-size distribution near the transition are
average degree of opening of the molecule. With the recerfeéadily calculable. However, as defined, these models do not
advent of novel experimental techniques that allow foryield the interstrand distance distribution. It would be inter-

single-molecule manipulations, it has become possible to ok£sting to generalize the scaling picture of the PS-type models
tain more detailed information on the microscopic configu-in order to study the interstrand distance distribution close to
rations of fluctuating DNA. For example, the time scale ofthe melting point.

opening and closing of loops of denaturated segments and N this paper, we study the distance distribution between
some information about their steady-state distribution mayromplementary base pairs of the two strands within the PS
be obtained by fluorescence correlation spectroscopy teciPproach. We derive scaling results valid both at and below
niques[2]. Additional information is also gained by studies the melting temperature, and verify their validity by exten-
of the response of the molecule to Stretching' unzipping’ angive numerical simulations of a model on a lattice that fU”y
torsional forceg3—7). embodies excluded volume interactions.

Theoretically, the melting transition has been studied The paper is organized as follows. In Sec. Il we derive a
within two main classes of models. The first, which we referscaling picture for the interstrand distance probability distri-
to as Poland-Scheraga—tyfeS-type models[8—11], con- bution both at and below the melting point. Scaling relations
siders the molecule as being composed of an alternating sé0king the exponents of the loop size and distance distribu-
quence of double-stranded segments and denaturated loof@ns are provided. The results of numerical studies of the
Within the model, weights are assigned to bound segmengdistribution functions confirming the scaling picture are
and unbound loops from which the nature of the transitiorgiven in Sec. lll. The main results are summarized in Sec. IV.
may be deduced. In a second approach that has been em-
p]oyed to study the melting transitigd 2], the DNA is con- Il. SCALING APPROACH
sidered as a directed polym@P). Here the two strands are
described as directed random walks, and they interact We start by briefly reviewing the main results of the PS
through a short-range attractive potential. Using the transfeapproach. Within the framework of these models, one assigns
matrix method, the melting transition may be studied. length dependent weights to both bound and unbound seg-

Within the directed polymer approach, the distance distriiments. A bound segment is energetically favored over an
bution of complementary base pairs is readily calculableunbound segment, while an unbound segmniérdp) is en-
However, realistic geometrical restrictiorisuch as self- tropically favored over a bound one. A bound segment of
avoiding interactionsare not taken into account due to the lengthl is assigned a weight'; wherew=exp(—Ey/T), Eq
oversimplifying directed polymer description. On the otheris the base pair binding enerdy,is the temperature, and the
hand, within the PS-type models, geometrical restrictiondBoltzmann’s constaritg is set to 1. Here it is assumed that
may be accounted for more realistically. It has recently beenly complementary base pairs interact with each other. The
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binding energyE, is taken to be the same for all base pairs. o delie,
An unbound segmeritoop) of lengthl is assigned a weight Pdist(r)NJO dIPIoop(l)f dor® 2IP(r,1). (4)
| N
Q)= S (1) Note that the contribution of each loopli8(r,l), since each
|e’

loop containd matching pairs and thus contributetimes its
average distance to the averagePi(r). Inserting Eqs(2)
wheres is a nonuniversal geometrical constant ants an  and(3) into Eqg. (4), one finds
exponent that is determined by some universal properties of

the loop configurations. The nature of the melting transition = e Va1 [\ [y

depends on the value of the exponefil]. Forc<1, there Paisir)~ 0 dl c v1l» f 10 ®)

is no transition, for Kc<2, the transition is continuous;

while for c=>2, the transition is first order. At the transition, one hag '=0, and the integral scales

Early works[11] have evaluated the exponemby enu-  \ith r as
merating random walks that return to the origin, yielding
=d/2 in d dimensions. The inclusion of excluded volume 1
interactions within a loop gives=dv [10], wherev is the Pdist(r,gfl=0)~ -, (6)
correlation length exponent of a self-avoiding random walk. r
Here the self-avoiding interactions between a loop and the
rest of the chain are neglected. Both these estimates predictW ere
continuous transitionq<2) for anyd<<4. Numerical simu- k=1+(c—2)/v. 7
lations of chains of length of up to 3000 where self-avoiding
interactions have been fully taken into account suggestetthe estimated values for the exponemts:2.11 and v
that, in fact, the transition in the infinitely long chain limit is =0.588 ind=3 yield k=1.19.
of first order[18]. Recently it has been suggeste8—15 Next we consider the distance distribution below the tran-
that excluded volume interactions between a loop and thejtion where¢, *>0. Simple scaling analysis cannot be car-
rest of the chain may be taken approximately into accounied out and one has to take a specific form for the function
using results for polymer networks of arbitrary topology f, A general argument due to Fishigx1] for the end-to-end

[16,17). It has been shown that for loops much smaller tharyistance of a self-avoiding walk yields the following form of
the chain length, the entropy of the loop has the same formy) for x>1:

as in Eq.(1), but withc=dv—203. Hereo; is an exponent

associated with an order three vertex configuration defined f(x)~x*exp — Dx¥1™7), (8)
and evaluated in Ref§16,17. In d= 3, the exponent may

be estimated to be=2.11. Sincec>2, the transition is of Whereu is a known exponent. This argument may be gen-

first order. Within the PS-type models, the weight of a looperalized to consider the average distance between comple-
of sizel, Pioop(1), is given by mentary pairs within a loop, or a loop embedded in a chain,

yielding the same form but with a different exponent(to
e/ be discussed belgwUsing this form, the integrdb) may be
, (2)  evaluated using a saddle-point approximation. This gives

F)Ioop(l )N

|C

where &~|T—Ty| Y€V for 1<c=<2, and &~|T Pdist(r)va, 9)

—Ty| ! for c>2. HereTy, is the melting temperature. In a r

recent numerical studyl9], the loop-size distribution at the

melting transition has been evaluated for chains of length u

to 200 yvhere_ self-gvoidance is fully taken into acco_unt. p=c—1/2—(1—v)(u+d). (10)

These simulations yield~2.10(4) in good agreement with

the theoretical estimate. The characteristic distangg is related to the lengt, by
We now use a scaling approach to study the complemen-

tary base-pair distance distributid?y,(r). The probability &gl for §—oo, (11

that, within a loop of size B two complementary base pairs

are separated bﬁ/ scales as

FBor r>§&,, with

so that &x|T—Ty| YD for 1<c<2, and &x|T
—Tu| ™7 for ¢>2. In our casec=2.11, and therefore we
expecté, toc| T—Ty|".
) , 3 Within the approach introduced in R¢1L3], the exponent
w in the distribution function(8) should be evaluated by
. considering the average interstrand distance in a loop embed-
wherer =|r| andf is a scaling function. To obtaiP i(r), ded in a chain. Here for simplicity we adopt the approach of
we integrate over the contribution of all loops and over theFisher[21] and consider the exponept in the interstrand
angular degrees of freedodw: distance distribution within an isolated loop. Thus the effect

I v

- 1 r
P(r’l):|d_vf(_
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of self-avoiding interactions between the loop and the rest of
the chain on the exponept is not taken into account. The
calculation is rather lengthy and it is outlined in the Appen-
dix. The resulting exponent is found to be

“:%[UH 2d(v—1/2)— v], (12)

wherey is the exponent associated with the number of con-
figurations of a random walk of length as given by
stL”7 1. Thus, for a random, non-self-avoiding loop where I 5
y=1 andv=1/2, one hasu=—1 for anyd. On the other log,, !
hand, for a self-avoiding loop id=3 (wherey~1.18), one
hasu=—0.37. An estimate for; may be obtained by using ~ FIG. 1. Log-log plots ofP(l) at Ty=0.7455 for several
the ¢ value of an isolated loognamely,dv) in Eq. (10) (?haln IengtH\l. | is measured in monomer.unlts..One can identify a
together with the above value of to yield 7~0.18. It linear reglon(whoge range increases witd) with slope —c=
would be of interest to derive an expression foin the case ~~ 2-14(#) (dotted ling.
of a loop embedded in a chain in order to fully take into
account the effect of self-avoiding interactions. same index along the two strandhat are allowed to over-
It is instructive to compare these results with the distanceap, with an energy gaik,= —1. In this way, the total num-
distributions obtained within the DP approach. The exponenber of these contacts gives the energy gaif, and the
¢ characterizes the number of directed walks that return t®oltzmann weight of a DNA configuration is eXp{). In
the origin for the first time. This is known to be given by  order to recover the equilibrium distribution in the simula-
=2-d/2 for d<2 andc=d/2 for d>2 (Ref. [22]). In d  tjon, one has to assign a suitable weight for each growth step
=2, there are logarithmic corrections so that the number opf the chain[24,25. In the present work we have modified
configurations behaves as/(l In?l). Thus, one expects a the growth rules in order to achieve a better performance at
continuous melting transition fod<4 and a first-order |ower T, where ordinary PERM yields slower convergence.
phase transition fod>4. Clearly, the correlation length ex- |n the usual PERM rules, long open segments that have low
ponent satisfieg=1/2. Using these results, one obtains atweights at lowT are generated, and they are thus often
criticality pruned. This makes it difficult to generate sufficiently long
and loop-rich chains by this procedure. In order to avoid this
xpp=d—3 for d>2, (13 problemp, we have introducepd a small bias for the growing
ends to recombine. This bias is compensated by a suitable
reweighting of the generated chain, to yield a correct equi-
librium distribution. The results of this study, which are de-
scribed below, corroborate the scaling picture introduced

KDpzl_d for d<2. (14)

Equations(13) and (14) are in agreement with calculations
using a transfer matrix method for the DP mofzg]. Below

criticality, our results predict that the distance distribution@P0Ve: _ o o
decays exponentially with, with & |T—T,|~¥2-9 for d We start by first considering the loop-size distribution at

_ 12 ; _ the melting temperatur&,,=0.7455. This distribution has
=4 andé; | T=Tu| for d>4. Also, usingu L for been studied in the past for chains of length upNte 320
monomerg19,2Q. In Fig. 1 we present the results for chains
of length up toN=1280. We findc=2.144), which is in
good agreement with the analytical estimete2.11 and the
previous numerical estimates obtained from simulations of

In order to test the predictions of this scaling picture, weshorter chains.

carried out extensive numerical simulations of the loop size The complementary-pair distance distribution at the melt-
and interstrand distance distributions of a model of fluctuating point is plotted in Fig. 2 for systems of size up b
ing DNA [18,19. The DNA strands are represented by two =1280. We find that the decay exponent is given by
self-avoiding walks of lengtiN on a cubic lattice. The nu- =1.247), which is the expected value from the scaling re-
merical simulations are carried out by using the pruned enkation (7), given the measured value afA direct estimate of
riched Rosenbluth methotPERM) [24], that has already « from the data is not easy, since the power law behavior has
been employed in recent studies of DNA denaturationa cutoff at values of, which are much smaller than those for
[18,20. This method generates DNA chain configurations bythel distribution. However, the algebraic decayRyis(r) is
a growth algorithm at fixed. Each configuration consists of confirmed by the good collapse plot shown in Fig. 3.
two complementary sequences bf unit steps between We now consider the distribution functions below the
nearest-neighbor sites of the lattice, both starting from anelting temperature and study the behavior of the length
common origin. Self avoidance is achieved by forbiddingscales¢, and &, . Motivated by the asymptotic forrt2) for
overlapping of sites. This constraint is relaxed only to intro-the loop size distribution, we extraét by fitting In Pyge(1)
duce an interaction between complementary Siteith the  to the form

the DP model, one hag=0. These results are again in
agreement with known results for the DP mof23].

Ill. NUMERICAL SIMULATIONS
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FIG. 2. Log-log plots ofP4(r) at T,, for several chain length FIG. 4. The characteristic Iengtfq‘1 (measured in monomer

N. r is measured in lattice units, where the lattice spacing is setnits) as a function of T—Ty,|, for T<Ty,.
equal to 1. The slope k= —1.24, derived from Eq(7) and plotted
as a dotted line in the log-log scale, is consistent with the trendor DNA denaturation where self-avoidance within each

developing in the distributions of longer chains. strand is neglected while mutual avoidance is included. Each
strand is a simple random walk, and thus-1/2 for this
Yo— /& —clnl, (15  model. Numerical results obtained with the PERM method

for this model ind=3 dimensions yieldc=2.55(5) andx
wherey, is a constant. This fit is carried out for several =2 1(1)[27]. It is readily seen that these exponents satisfy
values of the temperature negy, usingc=2.14. For each the scaling relatiori7). In fact, for the GMO model, one can
temperatureT, the values of; is obtained at different chain also develop a PS type of descriptif@¥7] analogous to that
lengthsN and is then extrapolated to the limit—o. The  of Refs.[13-15, but this time based on a block copolymer
resulting temperature dependence of the extrapolgteéd  network picture[20]. This description gives analytical es-
displayed in Fig. 4. Indeed, the expected linear dependenagnates consistent with the numerical results.
of & * on the temperature differend@—Ty| is observed

nearTy . ) . . . IV. SUMMARY
In order to obtainé,, we carried out a similar fit of
In Pgi(r) to the form In this paper we studied the interstrand distance distribu-
tion for DNA at and near the melting point. A scaling analy-
y1—r/&—mnlnr, (16)  sis within PS-type models where self-avoiding interactions

are taken into account is presented. A scaling relation is de-
rived[Eq. (7)] between the exponentsand x, which govern
the decay at the melting of probability distributions of loop
lengths and of interstrand distances, respectively. Results of
plot of & * as a function of¢; *. This graph is consistent extensive numerical simulations are found to be in agree-
with the expected fornf11). ment with the scaling approach.

Finally, we note that scaling relationd) and (10) are The DNA melting transition has been studied so far either

rather general, and are not restricted to models where selfyith PS-type models or with the directed polymer approach.
avoiding interactions are taken into account. Recently, Garel,

Monthus, and OrlandGMO) [26] have introduced a model

where the constant; and the parameten are left as free
parameters. Unfortunately, the numerical estimaterois
rather crude, yielding 057=<1.2. In Fig. 5, we present a

1 T T T
O T ¥ T T T ¥ T
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e, 4F .
= — N=80
& 160
-6F 320 .
fffffff 640
o 1280
L Il i L i " 1
=33 ) 05 0 B . 3 .
log,(7IN" ) FIG. 5. Parameteg, * as a function of¢, *, for T<Ty,. & is

measured in monomer units whifg is measured in lattice units,
FIG. 3. Collapse plot ofPy(r) according to a scaling form where the lattice spacing is set equal to 1. Errors are indicated. For
Pgisdr,N)=r""*g(r/N"), wherev=0.59. r is measured in lattice eachT, we evaluatef, by a nonlinear fit of IPy(r) of the form
units, where the lattice spacing is set equal to 1. (16). The solid line is a fit using the forr(l1).
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While in the latter case andc are easily computable, inthe ~ The Fourier transform of the Green’s functiohl) of the
PS models the interstrand distance distribution, and thus th@/0 chains can be assumed to have the Ornstein and Zernike
associated exponert has not yet been discussed. Our anaform at small momenta; andqy,

lytical and numerical results fok thus provide a valuable

insight into the geometry of DNA at melting, enabling one to ~ . o"r

make more quantitative comparisons between the two types I'(d1,92,6)~ NN
of approach. With the advent of new physical, single mol- (67 +a1) (67 +q3)
ecule techniques, such quantities may be measurable in t
near future, yielding direct information on the fluctuations
taking place in DNA.

(A2)

r?\ﬁoreover, since the two chains are bound together at one

end, their total number of configurations is just that of one

chain of lengthl,+15. Namely,C,1,|2=s'I7‘1 wherel =1,
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['(0,00)= E Cll’lzsf(llﬂz)e*0(|1+|z)~9*7*1'

APPENDIX: THE EXPONENT p FOR A ==t (A3)

SELF-AVOIDING LOOP

The exponeni may be evaluated for a self-avoiding loop Which after comparison with EqA2), implies thatp=4
by generalizing the approach of McKenzie and Mo[26] —(y+1Dlv. , ] , -
who calculated this exponent for a self-avoiding walk. This  The quantity of interest is the probability
generalization closely follows the derivation in R§28],
_and thus_ we will onIy_t_)riefI_y o_utlir_1e it here. The quantity of P(F,0)= > LR, (A4)
interest is the probability distribution for two complementary I +T=1 172
bases within a ring of length Equivalently, this may be
viewed as the probability of two chains that are bound at on@his can be calculated by first inverting E@2) to obtain
end, to reach the same point In this probability, all pos- T'(ry,r»,6). Settingr,=r,=r yields
sible lengthd ; andl, (with |, +1,=1) are considered.

To this end, we first consider the generating function of [(r,r,0)~ gp+d=3)r1-dg20"r (A5)
two chains held together at one end and which are not re-
stricted to return to the same point One then has to carry out an inverse Laplace transform of

Eq. (A5) in order to extracP(r,6). One obtains

T(r,rp,0)= X Cp Py (F1,rp)s (1712e 0t
L= 112 1102

CP(F 0)3"=ifx+iwd6e"’F(FF¢9) (A6)
(A1) P, : r.0),

2 ) x—in
HereC |, is the number of configurations of two chains

whereC,=C, , with|=I;+1,, andXis larger than the real

held together at one end, afYl, ;,(1,r2) is the probability part of any singularity ol (r,r,6). The result of this calcu-

that the free end of one chain isr&tand the free end of the |ation has the expected for(8) with
other chain is af,. The distribution function is given by

['(r,r,6), whereg is a chemical potential that controls the _ 1 N o
chain lengthl; +1, in the sum(Al). - V[1/2 2d(v=1/2) =] (A7)
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