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Scale-free networks from a Hamiltonian dynamics
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Contrary to many recent models of growing networks, we present a model with fixed number of nodes and
links, where a dynamics favoring the formation of links between nodes with degree of connectivity as different
as possible is introduced. By applying a local rewiring move, the network reaches equilibrium states assuming
broad degree distributions, which have a power-law form in an intermediate range of the parameters used.
Interestingly, in the same range we find nontrivial hierarchical clustering.
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In their theory of random graph®G), Erdcs and Rayi  particularly unsuitable to describe the situation. Thus, in or-
showed that these graphs, composebl @trtices(or nodes, der to achieve a better understanding of the principles shap-
connected probabilistically by a set of edges have severding a part of the real networks, it is worth to spend some
interesting propertiegl]. Among them the most striking one €effort to discover dynamics leading to nongrowing SFN's. It
is the slow rate of growthlogN) of the diameter of the has been already shown that models with fixed number of
giant Component_ This “small world” property is very im- nodes do not require linear PA, but SF distributions arise
portant in connected networks represented by single compdtom an algebraic PA rule including an exponent which can
nent graphs, since it reflects the efficiency of the network fovary in a wide rang¢18].
transport or communication@]. Over last few years it is In this paper, we address the particular problem of
becoming increasingly evident that most real-world networkgvhether SFN’s can arise from mechanisms excluding both
have indeed small world propertid8,4], e.g., electronic PA and growth. Recent wor49-21] proposed theories of
communication networks like Internfs], World-Wide Web ~ networks at equilibrium. In some of these ca$e,21 a
[6], social networks of acquaintancg®], and of collabora- SFN can be generated simply by choosing the desired degree
tions [8]. distribution to be SF. On the other hand, different works

On the other hand, some important properties distinguisi@btained SFN without plugging in aa priori degree distri-
real-world networks from RG, motivating the rapid growth bution[22-23. In the spirit of the latter strategy, we propose
of interest in this field. Many real-world networks have an example of equilibrium network with Hamiltonian that
broad nodal degree distributior®(k) (the degree of a node can yield hierarchical SFN's. The energy function depends

is the numbeik of links meeting at that nodeoften charac- On the degrees of the nodes and of their neightyaes.
terized by a power taiP(k) ~k~? that indicates a scale-free Since it favors connections between nodes with degrees as

(SP character of the networfd]. Moreover, in real-world different as possible, it leads to networks with disassortative

networks one observes a high degree of clustering, whicRiXing [26]. Furthermore, the simulation is implemented by

measures the local correlations among the links of the netsing a local rewiring rule. Dynamics of this kind appear

work and implies that neighbors of a node are more likely tonatural for biological networks, which indeed are disassorta-

be neighbor$2] (this feature has also been associated to théive [13,28. In particular, in food webs we expect each spe-

term small world[2]). The clustering often scales with the Cies to find it inconvenient to interact with simileand com-

degree of the relative node. This is connected to a hierarchPeting ones. We notice that in food webs both exponential

cal organization of the networfo], where clustered blocks and SFN's are founfil1], as we have in our model.

connect to form larger units, etc. We consider a connected network, represented by a single
To introduce the correlations between nodes that distincomponent undirected graph, composedNofnodes con-

guish scale-free character of netwofBFN's) from RG's, in  nected byL undirected linksledges. The network topology

the past years SFN's have been extensively modeled bl uniquely determined by its adjacency matcixsuch that

growing networks in which a preferential attachméps)  Cij=1 if nodesi andj are linked, and O otherwise. The

rule shapes the nodes degi@4], (i.e., each new node is degree of a nodeis indicated ak;=ZX;.;c;; . We define an

linked to an old one with a probability proportional to the €nergy associated with a link between itie and thejth

degree of the old nodgl0]). However, biological networks, nodes having the following form:

including food webq11], metabolic network$12,13, and

protein-protein interaction network44,15 display the fea- ]

tures listed above, although both the PA and the growing o ( _ mindk; =ki})

process are debatable in these cases. For example, for i i maxki K}/

protein-protein networks they have proposed both growing

network models without PAL6] and models with a dominant

stationary, asymmetric PAL7]. In food webs, where links This equation implies that the energy of a link decreases with

represent the prey-predator relations, the PA and growth arte difference in nodal degrees at the two ends of the link
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FIG. 1. (Color online (a)—(d) Example withN=L=64, k=2 ata=2. Snapshots aftdriterations of the LRM(f), with (a) t=0, (b)
t=4N, (c) t=12N, and(d) t=N?. Blue (darker in gray sca)dinks meet at the node with the highest degi@gDifferent layout of(d). (f)
LRM described in the text.

and it contributes no energy when the link connects two In the probability(3), the introduction of the Hamiltonian
nodes of same degrees. The Hamiltonian of a network con2) and the LRM have been chosen for their simplicity and

figurationg is then for their analogy with usual rules of equilibrium statistical
mechanics, but they do not yield an equilibrium distribution

H(G) = € - (20  of Eq.(2) atan inverse temperatute However, one can see
i< that the above implementation gives the canonical distribu-

T te the initial ted network first ad tion of configurations with weight§I,(k;—1)!e”*H(9),
0 generate the initial connected network, we Tirst a dhence allowing a description of the system in terms of en-

Lo=N links to form a graph with the topology of a ririgee S :
: - : ; semble of connected networks at the equilibrium given by
Fig. 1(@]. The remainind_-L, links are added sequentially the Hamiltonian Heq(g)z—a’liiN:lIn(lq—l)!JrH(g), at

and randomly, to connect unlinked nodes. The network i% ¢ “1 Thus.H(G be thoudht int
evolved by using a local rewiring mow&RM), depicted in emperaturar =. 1hus, (9) can be ougnt as an interac-
tion term from which we expect the arising of complex cor-

Fig. 1(f). A set of three nodes is randomly selected. First, a . . ;
nogdei is selected with probability N, seg[ond, the nodp relations in the network. Due td(G), the fraction of second

o . . : o ighbors of the noderepresented by the first neighbors of
which is a neighbor of is selected with probability k{, and neign : .
finally the nodd #i which is a neighbor of is selected with nodej and of nodd [|r_1 th_e LRM, Fig. 1f)] belongs fo the
probability 1/¢—1). If ¢;=0, a LRM attempts to delete subset of nodes contributing to the energy balance in a LRM.
j . =Y,

o ; S . The nontrivial build up of the correlations necessary to ob-
thei -j link of the, grgprg and mt_rpduce theé-| link to obtain tain SFN's should requirg<<3, meaning an average number
the new graphg’ with a probability

of second neighbors-N. On the contrary,y>3 would for-
b= min{1,e~alHG)—H@ 3) bid the LRM to “feel” the global structure of the network,
hardly giving a fine self-tuning of the network correlations.

wherea is a tunable parameter. Far=0 the LRM is always AS Shown below, indeed we find SFN's with<2y<3.
accepted27]. In this case the difference between the typical e apply the described dynamical rules to networks com-
graphs and RG’s is reflected in the degree distribution. Usingposed byN up to 8192 nodes anldd=Nk/2, where the aver-

a master equation approaf?8], one can show that the de- age degred is fixed. Thus, we consider sparse networks in
gree distribution P(k) indeed decays exponentially, as the limit of largeN, where the number of link& is much
shown numerically in Fig. 2. In the opposite limit ef smaller than the maximum numbkf}**=N(N—1)/2 of pos-
—, LRM strongly favors connecting nodes with degrees asible links in aN-clique. This is motivated by the case of
different as possible. As a result, usually graphs have severglost of the real networks, where typically a link between
high degree node@ubg connected to many other monode- two nodes is an expensive or rare object. In our case, we
gree nodegleaves. Notice that the LRM cannot split the have mainly uset=4, such that.=2N.

network in disjoint components. After a large numberr~2N2 of LRM attempts on the

initial configurations withk=4, we observe a significant re-
organization of the entire network structure. Ferr itera-
tions of the LRM, equilibrium is reached, as indicated by the
stable shape of the distributid, \(k) of the degreegsee
Fig. 2). The most interesting region is Gs8v<4.0, where
P.n(k) appear as power laws. By increasiagtheir slopes
decrease and their shape changes at legyavhere a shoul-
der grows, indicating the enhanced tendency in the network
to form hubs, as expected. Fex 4.0 the fraction of hubs is
even more consistent and the shoulder at high degrees in the
3 P . n(K) is substituted by a bum(see, for instance, the curve
T TS T e : 73 for «=8 in Fig. 2. Contrary to other model9], an analy-
log, k sis of the mean degree of the largest hub indicates that here it
does not attract a finite fraction of links, féf—oo.

FIG. 2. (Color onling Log-log plot of the degree distributions We now focus on the range Gs8v<4.0, where the de-

for N=4096, k=4, and at variousr’s. gree distributions are broad and power-law like. To support

log, , P(k)
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\ FIG. 4. (Color online Mean diameterD and mean clustering
0 05 1 15 2 = 55 3 coefficientC as a function oN (linear-log and log-log plot, respec-
log, & tively) for the same set o& values.

FIG. 3. Degree distributions fow=1. Inset: distributions

: _ Ci=m;/Ly®. The mean clustering coefficieftis then the
rescaled4) with the y and v values quoted in Table I. '

average of the&; over all the nodes of all graph realizations

this SF picture we plot Fig. 3, in which a remarkable feature?t @ givena. In Fig. 4 we also ploC as a functiog (()f;l in
log-log scale. The plots are compatible w@th- N~ 7t for

of this model is evident, namely, the self-similar shape of theé?

P, \(K) for fixed a. This is consistent with a finite size form N> With o ranging from~1 t0 ~0.25 for 0<a<6. For
' the studiedN’s, we notice that the highest clustering is found

(4)  close toa=4.0, while it is smaller for high and low.

Pan(k) =k "@f(k/N"(),
' Our model also shows the power-law dependence

where f(x) is a scaling function giving a cutoff for suffi- Ck) ~ kB 5
ciently large values o, andf(x)~const forx—0. In order (k) ' ®)

to quantify the SF nature of the networks and to support the, jicating that nodes with few links are typically well clus-
proposed scaling4), we perform a finite size analysis, first yora while hubs hardly are related to high clustering. The
extrapolating the value of the sIope_ distributions at fixed concept of modularity was introduced to account for the hi-
and forN—vce. We show the results in Table |. For eaeh g 5rchical clustering found in many networigs31]. In these
the value ofy so obtained is the starting point for attempting contexts, networks are built of rather well identifiable clus-
a data collapse, by using a rescaling of the f8MfP(k) vS (a1 which are themselves composed by clustered subunits,
k/IN”. The values ofy that give better collapsésee Table)l  5nd so on. While in Fig. 5 we see that0 for =0, as for
turn out to be close to the extrapolated values, such that t G, for increasingr a scaling(5) takes place in a nonneg-
whole picture is consistent. In addition, we note that the datfﬁgible interval of k, with a 8 raising with & up to values
collapses get worse close to the boundaries of the SF regiqjyqe tof=1. Hence, in a present issue on whetfier1 is
0.8< @=4.0, while outside this range we cannot make good niyersal[9], our result is in favor of the nonuniversal char-
rescalings. This supports our first, s_ubjecnve delimitation of,ter of this exponent.
the SF region(we stress that the cage=4 is treatedl In summary, we have described a static network model
It is interesting to examine the other stylized features ofwith a dynamics favoring networks with disassortative mix-
networks. In Fig. 4 we plot the mean diame®(N) (the ing and high clustering, where at least three phases can be
maximum of the shortest paths between any nodes of a nejdentified by increasing the parameter respectively: expo-
work) as a function of loggN for the some representative  nential, scale-free, and hub-leaves regimes. The scale-free
values. The curves are consistent with a scallid)~A  regime has a signature of modularitre clustering coeffi-
+Blog;oN (it seems to be sublogarithmi80] for high «).
Thus, not surprisingly the small world picture is recovered
also in our model.
Given a nodda connected withk; neighbors, ifm; is the
number of links between these neighbors, one can quantify
the (local) degree of clustering by the clustering coefficient

TABLE |. Numerical evaluation of the exponents of Hd).

P 0.8 1 2 3 4
y?2 2.92) 2.82) 2.4(1) 2.32) 2.1(3)
yP 3.0 2.8 2.3 2.2 2.2
»P 0.4 0.45 0.55 0.58 0.58

3/alues extrapolated foX— oo,
bvalues that give the best data collapse.

FIG. 5. (Color online Clustering coefficient as a function of the
degree, for four values af andN=28192.
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cient scales as a power law of the degree with a nontrivialvorks with a fixed number of nodes by using a random re-
exponent, and the exponeng is comprised in the interesting wiring that does not require preferential attachment.
range 2<y<<3. Thus, many of the characteristics displayed \ve gratefully acknowledge useful discussions with A.L.

by real networks, usually associated with growing networksstella. M.B. acknowledges the support of MIUR-COFINO1
with preferential attachment, can be obtained as well in netand INFM-PAIS02.
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