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Scale-free networks from a Hamiltonian dynamics
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Contrary to many recent models of growing networks, we present a model with fixed number of nodes and
links, where a dynamics favoring the formation of links between nodes with degree of connectivity as different
as possible is introduced. By applying a local rewiring move, the network reaches equilibrium states assuming
broad degree distributions, which have a power-law form in an intermediate range of the parameters used.
Interestingly, in the same range we find nontrivial hierarchical clustering.
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In their theory of random graphs~RG!, Erdös and Re´nyi
showed that these graphs, composed ofN vertices~or nodes!,
connected probabilistically by a set of edges have sev
interesting properties@1#. Among them the most striking on
is the slow rate of growth (; logN) of the diameter of the
giant component. This ‘‘small world’’ property is very im
portant in connected networks represented by single com
nent graphs, since it reflects the efficiency of the network
transport or communications@2#. Over last few years it is
becoming increasingly evident that most real-world netwo
have indeed small world properties@3,4#, e.g., electronic
communication networks like Internet@5#, World-Wide Web
@6#, social networks of acquaintances@7#, and of collabora-
tions @8#.

On the other hand, some important properties distingu
real-world networks from RG, motivating the rapid grow
of interest in this field. Many real-world networks hav
broad nodal degree distributions,P(k) ~the degree of a node
is the numberk of links meeting at that node! often charac-
terized by a power tailP(k);k2g that indicates a scale-fre
~SF! character of the network@4#. Moreover, in real-world
networks one observes a high degree of clustering, wh
measures the local correlations among the links of the
work and implies that neighbors of a node are more likely
be neighbors@2# ~this feature has also been associated to
term small world@2#!. The clustering often scales with th
degree of the relative node. This is connected to a hierar
cal organization of the network@9#, where clustered blocks
connect to form larger units, etc.

To introduce the correlations between nodes that dis
guish scale-free character of networks~SFN’s! from RG’s, in
the past years SFN’s have been extensively modeled
growing networks in which a preferential attachment~PA!
rule shapes the nodes degree@3,4#, ~i.e., each new node is
linked to an old one with a probability proportional to th
degree of the old node@10#!. However, biological networks
including food webs@11#, metabolic networks@12,13#, and
protein-protein interaction networks@14,15# display the fea-
tures listed above, although both the PA and the grow
process are debatable in these cases. For example
protein-protein networks they have proposed both grow
network models without PA@16# and models with a dominan
stationary, asymmetric PA@17#. In food webs, where links
represent the prey-predator relations, the PA and growth
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particularly unsuitable to describe the situation. Thus, in
der to achieve a better understanding of the principles sh
ing a part of the real networks, it is worth to spend som
effort to discover dynamics leading to nongrowing SFN’s.
has been already shown that models with fixed numbe
nodes do not require linear PA, but SF distributions ar
from an algebraic PA rule including an exponent which c
vary in a wide range@18#.

In this paper, we address the particular problem
whether SFN’s can arise from mechanisms excluding b
PA and growth. Recent works@19–21# proposed theories o
networks at equilibrium. In some of these cases@20,21# a
SFN can be generated simply by choosing the desired de
distribution to be SF. On the other hand, different wor
obtained SFN without plugging in ana priori degree distri-
bution@22–25#. In the spirit of the latter strategy, we propos
an example of equilibrium network with Hamiltonian th
can yield hierarchical SFN’s. The energy function depen
on the degrees of the nodes and of their neighbors@19#.
Since it favors connections between nodes with degree
different as possible, it leads to networks with disassorta
mixing @26#. Furthermore, the simulation is implemented
using a local rewiring rule. Dynamics of this kind appe
natural for biological networks, which indeed are disasso
tive @13,26#. In particular, in food webs we expect each sp
cies to find it inconvenient to interact with similar~and com-
peting! ones. We notice that in food webs both exponen
and SFN’s are found@11#, as we have in our model.

We consider a connected network, represented by a si
component undirected graph, composed ofN nodes con-
nected byL undirected links~edges!. The network topology
is uniquely determined by its adjacency matrixc, such that
ci j 51 if nodes i and j are linked, and 0 otherwise. Th
degree of a nodei is indicated aski5( j Þ ici j . We define an
energy associated with a link between thei th and thej th
nodes having the following form:

e i j 52ci j S 12
min$ki ,kj%

max$ki ,kj%
D . ~1!

This equation implies that the energy of a link decreases w
the difference in nodal degrees at the two ends of the
©2003 The American Physical Society03-1
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FIG. 1. ~Color online! ~a!–~d! Example withN5L564, k̄52 at a52. Snapshots aftert iterations of the LRM~f!, with ~a! t50, ~b!
t54N, ~c! t512N, and~d! t5N2. Blue ~darker in gray scale! links meet at the node with the highest degree.~e! Different layout of~d!. ~f!
LRM described in the text.
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and it contributes no energy when the link connects t
nodes of same degrees. The Hamiltonian of a network c
figurationG is then

H~G!5(
i , j

e i j . ~2!

To generate the initial connected network, we first a
L05N links to form a graph with the topology of a ring@see
Fig. 1~a!#. The remainingL-L0 links are added sequentiall
and randomly, to connect unlinked nodes. The network
evolved by using a local rewiring move~LRM!, depicted in
Fig. 1~f!. A set of three nodes is randomly selected. Firs
node i is selected with probability 1/N, second, the nodej
which is a neighbor ofi is selected with probability 1/ki , and
finally the nodelÞ i which is a neighbor ofj is selected with
probability 1/(kj21). If cil 50, a LRM attempts to delete
the i -j link of the graphG and introduce thei -l link to obtain
the new graphG8 with a probability

p5min$1,e2a[H(G8)2H(G)]%, ~3!

wherea is a tunable parameter. Fora50 the LRM is always
accepted@27#. In this case the difference between the typic
graphs and RG’s is reflected in the degree distribution. Us
a master equation approach@28#, one can show that the de
gree distribution P(k) indeed decays exponentially, a
shown numerically in Fig. 2. In the opposite limit ofa
→`, LRM strongly favors connecting nodes with degrees
different as possible. As a result, usually graphs have sev
high degree nodes~hubs! connected to many other monod
gree nodes~leaves!. Notice that the LRM cannot split the
network in disjoint components.

FIG. 2. ~Color online! Log-log plot of the degree distribution

for N54096, k̄54, and at variousa ’s.
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In the probability~3!, the introduction of the Hamiltonian
~2! and the LRM have been chosen for their simplicity a
for their analogy with usual rules of equilibrium statistic
mechanics, but they do not yield an equilibrium distributi
of Eq. ~2! at an inverse temperaturea. However, one can se
that the above implementation gives the canonical distri
tion of configurations with weights) i 51

N (ki21)!e2aH(G),
hence allowing a description of the system in terms of
semble of connected networks at the equilibrium given
the Hamiltonian Heq(G)[2a21( i 51

N ln(ki21)!1H(G), at
temperaturea21. Thus,H(G) can be thought as an interac
tion term from which we expect the arising of complex co
relations in the network. Due toH(G), the fraction of second
neighbors of the nodei represented by the first neighbors
node j and of nodel @in the LRM, Fig. 1~f!# belongs to the
subset of nodes contributing to the energy balance in a LR
The nontrivial build up of the correlations necessary to o
tain SFN’s should requireg,3, meaning an average numb
of second neighbors;N. On the contrary,g.3 would for-
bid the LRM to ‘‘feel’’ the global structure of the network
hardly giving a fine self-tuning of the network correlation
As shown below, indeed we find SFN’s with 2,g,3.

We apply the described dynamical rules to networks co
posed byN up to 8192 nodes andL5Nk̄/2, where the aver-
age degreek̄ is fixed. Thus, we consider sparse networks
the limit of largeN, where the number of linksL is much
smaller than the maximum numberLN

max5N(N21)/2 of pos-
sible links in aN-clique. This is motivated by the case o
most of the real networks, where typically a link betwe
two nodes is an expensive or rare object. In our case,
have mainly usedk̄54, such thatL52N.

After a large numbert'2N2 of LRM attempts on the
initial configurations withk̄54, we observe a significant re
organization of the entire network structure. Fort*t itera-
tions of the LRM, equilibrium is reached, as indicated by t
stable shape of the distributionPa,N(k) of the degrees~see
Fig. 2!. The most interesting region is 0.8&a&4.0, where
Pa,N(k) appear as power laws. By increasinga, their slopes
decrease and their shape changes at largek’s, where a shoul-
der grows, indicating the enhanced tendency in the netw
to form hubs, as expected. Fora*4.0 the fraction of hubs is
even more consistent and the shoulder at high degrees in
Pa,N(k) is substituted by a bump~see, for instance, the curv
for a58 in Fig. 2!. Contrary to other models@29#, an analy-
sis of the mean degree of the largest hub indicates that he
does not attract a finite fraction of links, forN→`.

We now focus on the range 0.8&a&4.0, where the de-
gree distributions are broad and power-law like. To supp
3-2
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this SF picture we plot Fig. 3, in which a remarkable featu
of this model is evident, namely, the self-similar shape of
Pa,N(k) for fixed a. This is consistent with a finite size form

Pa,N~k!.k2g(a) f ~k/Nn(a)!, ~4!

where f (x) is a scaling function giving a cutoff for suffi
ciently large values ofx, and f (x);const forx→0. In order
to quantify the SF nature of the networks and to support
proposed scaling~4!, we perform a finite size analysis, firs
extrapolating the value of the slope distributions at fixeda
and forN→`. We show the results in Table I. For eacha,
the value ofg so obtained is the starting point for attemptin
a data collapse, by using a rescaling of the formNgnP(k) vs
k/Nn. The values ofg that give better collapses~see Table I!
turn out to be close to the extrapolated values, such that
whole picture is consistent. In addition, we note that the d
collapses get worse close to the boundaries of the SF re
0.8&a&4.0, while outside this range we cannot make go
rescalings. This supports our first, subjective delimitation
the SF region~we stress that the casek̄54 is treated!.

It is interesting to examine the other stylized features
networks. In Fig. 4 we plot the mean diameterD(N) ~the
maximum of the shortest paths between any nodes of a
work! as a function of log10N for the some representativea
values. The curves are consistent with a scalingD(N);A
1B log10N ~it seems to be sublogarithmic@30# for high a).
Thus, not surprisingly the small world picture is recover
also in our model.

Given a nodei connected withki neighbors, ifmi is the
number of links between these neighbors, one can quan
the ~local! degree of clustering by the clustering coefficie

FIG. 3. Degree distributions fora51. Inset: distributions
rescaled~4! with the g andn values quoted in Table I.

TABLE I. Numerical evaluation of the exponents of Eq.~4!.

a 0.8 1 2 3 4

g a 2.9~2! 2.8~2! 2.4~1! 2.3~2! 2.1~3!

g b 3.0 2.8 2.3 2.2 2.2
n b 0.4 0.45 0.55 0.58 0.58

aValues extrapolated forN→`.
bValues that give the best data collapse.
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max. The mean clustering coefficientC is then the

average of theCi over all the nodes of all graph realization
at a givena. In Fig. 4 we also plotC as a function ofN, in
a log-log scale. The plots are compatible withC;N2s(a) for
N→`, with s ranging from'1 to '0.25 for 0<a<6. For
the studiedN’s, we notice that the highest clustering is foun
close toa54.0, while it is smaller for high and lowa.

Our model also shows the power-law dependence

C~k!;k2b, ~5!

indicating that nodes with few links are typically well clus
tered while hubs hardly are related to high clustering. T
concept of modularity was introduced to account for the
erarchical clustering found in many networks@9,31#. In these
contexts, networks are built of rather well identifiable clu
ters, which are themselves composed by clustered subu
and so on. While in Fig. 5 we see thatb50 for a50, as for
RG, for increasinga a scaling~5! takes place in a nonneg
ligible interval of k, with a b raising with a up to values
close tob51. Hence, in a present issue on whetherb51 is
universal@9#, our result is in favor of the nonuniversal cha
acter of this exponent.

In summary, we have described a static network mo
with a dynamics favoring networks with disassortative m
ing and high clustering, where at least three phases ca
identified by increasing the parametera, respectively: expo-
nential, scale-free, and hub-leaves regimes. The scale
regime has a signature of modularity~the clustering coeffi-

FIG. 4. ~Color online! Mean diameterD and mean clustering
coefficientC as a function ofN ~linear-log and log-log plot, respec
tively! for the same set ofa values.

FIG. 5. ~Color online! Clustering coefficient as a function of th
degree, for four values ofa andN58192.
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cient scales as a power law of the degree with a nontri
exponent!, and the exponentg is comprised in the interestin
range 2,g,3. Thus, many of the characteristics display
by real networks, usually associated with growing netwo
with preferential attachment, can be obtained as well in n
s

s,
et

om

tl.
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works with a fixed number of nodes by using a random
wiring that does not require preferential attachment.
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