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Unbinding of mutually avoiding random walks and two-dimensional quantum gravity
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We analyze the unbinding transition for a two-dimensional lattice polymer in which the constituent strands
are mutually avoiding random walks. At low temperatures the strands are bound and form a single self-
avoiding walk. We show that unbinding in this model is a strong first order transition. The entropic exponents
associated with denaturated loops and end-segment distributions show sharp differences at the transition point
and in the high temperature phase. Their values can be deduced from some exact arguments relying on a
conformal mapping of copolymer networks into a fluctuating geometry, i.e., in the presence of quantum
gravity. An excellent agreement between analytical and numerical estimates is observed for all cases analyzed.
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I. INTRODUCTION As is well known from polymer physics, the partition

The unbinding transition from a low temperature doublefUnction of a closed SAW of total lengthassumes the fol-
stranded polymer to a high temperature single stranded pha&®Ving asymptotic forn{13]:
has been the subject of recent attention in the context of I1~co
studies of DNA denaturatiofil—6]. Two main approaches Z(1) ~ pl™, 1)
have been used to model this unbinding. The first one relies h . tric fact . | i
on directed polymers, where only the transversal coordinaty’ ?rﬁ“ IS T‘ ge~o;n$6r|(; ac ?r: andg_a unlyersalte:po%en
measuring the distance between homologous base pairs ‘1‘%"‘: equalsco~1.76[9] In three dimensions. It has been
considered[1,7]. In a second approach, one considers the® OW”.[Z] that a Iopp attachgd to two_long segments ar loops
polymer as being composed of an alternating sequence %ee Fig. ;Lhas_, still a partition funct|onl of the fo_rm of Eq._
double stranded segments and denaturated I§&gs The (1), bpt with dlfferent exponents. For instance in three di-
statistical weights assigned to loops and segments can ensions one finds for a loop embedded between two long

estimated using concepts of homopolymers and self-avoidin egmentg2] Css=2.1 andc, ~2.2 for a loop empedded be-
walk (SAW) statistics. een two long loopghere we used the subscrig®r | to

Traditionally, in the latter class of models, the statisticalIndlcate neighboring segments or loppsn increase ot for

weight of a loop was approximated as the number of Con_embedded loops is caused by the tendency of the loop to

figurations for a closed SAW, neglecting any excluded vol-Pecome more “localized” due to excluded volume interac-

ume interaction with the rest of the chg®]. More recently, tions W'ft_h ;chedres8t of the chain. Fer>2 the transition be-
statistical mechanical ideas based on the theory of ponme?Omes first or ef8, 9. .
In this paper we calculate analytically the values of the

networks[10] were used to take into account the excluded .
exponents;, andcg, as well as other types of entropic ex-

volume effects in an approximated w§¥]. Although quite L

simple, this analysis, which was carried out analytically, capﬁ’_ﬁnentf’ flort'the mlpdel of mu:cually Iav0|d|n.g ranfdom v;/alks.

tures quantitatively very well the asymptotic form of the loop ENcakcu_ atlon :cle |ets ci_n con orm? rr21app|ng_ othcopo ymer

partition function, as a series of numerical investigations or!€tWOTKS Into a fiuctualing geome 2], .€., In the pres-
nce of quantum gravity. This theory, which was recently

two- and three-dimensional lattice models have show : : . )
[5,11]. Despite the general good agreement between analytﬁpp“ed to the calculation of multifractal spectra of harmonic

cal predictions and simulations, quite small but Systemati(gneasures[M], enables one to obtqm exact entropic expo-
deviations between the two were foufid]. nents of networks composed of arbitrary mixtures of random

The aim of this paper is to investigate further on theseand self-avoid_ing Wf_ilkﬂ.z]' We also performed a series pf
issues for other types of models of polymer unbinding. WeMonte Carlo simulations in order to determine the numerical
focus on a two-dimensional lattice model for which we ob-
tain a series of analytical predictions based on exact results o D
from conformal invarianc¢l12]. In this model, the two con-
stituent strands are two random wall®WVs) with an attrac- O

tive interaction. While we relax the excluded volume inter-

actions within each strand, mutual avoidance, i.e., the n

nonoverlapping condition between the strands is preserved. QOQ

This makes the bound double stranded state behave as a

SAW, assigning to it a quite different physics compared to  FIG. 1. Hierarchy of exponents describing the loop entropy for
that of loops. We show that in this model unbinding is a veryan isolated loofic,), a loop embedded between two long segments
strong first order transition. (cs9, and a loop embedded between two long lo6ps.
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double stranded

/

FIG. 2. Snapshot of a configuration for the model studied in this
paper generated by the pruned enriched Rosenbluth method. Th
two walks are indicated as solid and dashed lines. When they are
bound only the solid line is visible. Inset: Enlargement of a small
area of double stranded phase with two embedded loops. The loops
are oriented, i.e., following the direction of one of the strands, the FIG. 3. Example of a star copolymer formed by two random
other strand is always found on the same side. walks and a self-avoiding walk, where all three of them are mutu-
ally avoiding and have average size equaRtdrhe exact entropic

i(ponent for any star copolymer with an arbitrary number of ran-
om and self-avoiding walks can be calculated thanks to a mapping
P’nto a fluctuating geometrisee Sec. .

values for the exponents. In all cases analyzed the numeric
and analytical results are in excellent agreement. This is du
as we will discuss below, to the strong first order nature o
the unbinding transition, which makes the model an ideal o
testground where copolymer network theories can be apdingle strands behave as mutually avoiding random walks.
plied. The inset of Fig. 2 shows a blow-up of part of the double
Part of the results presented here, have been discussedSHanded chain with two short loops of a few lattice spacings
concise form in Ref[15]. In this paper we present the results of length. Tpe modeL is constructed _sgch that following the
of large scale numerical calculations, which we extend tdWo strands'y(k) andr(k) from the origink=0 to k=N one
other quantities not considered previously, and present a fufinds one of the two strandsay r;(k)] when unbound al-
account of the analytical results. The present model has alsgays at the left side of the other strand, i.e., the loops are
been in\/es’[igated by means of a continuum appr(@é}:ﬁn oriented. This choice will allow us to restrict the type of
which mutual avoidance between the two strands has bee#iagrams considered in the continuum polymer network de-
approximated by an effective long-range interaction, an apscription of the model.
proach which predicts a first order unbinding transition.

IIl. CONFORMAL MAPPING ONTO TWO-DIMENSIONAL

Il. THE MODEL QUANTUM GRAVITY
We consider two random walks of lengkhon a square A. Star copolymers
lattice described by the vector§(k) and ry(k) with k Duplantier formulated an elegant theofy2] which al-

=0,1... N. The walks have common origij(0)=r,(0) and  lows one to compute exact entropic exponents for star co-
are not allowed to overlap except at homologous sites, i.epolymers, an example of which is shown in Fig. 3. A star
r1(i)=r,(j), is possible only ifi=j. Whenever such a contact copolymer is formed by an arbitrary mixture of random and
is realized the system gains an enekgy—1. At very low  self-avoiding walks joined at a common origin, which can be
temperatures the two walks are fully bound and form a selfall mutually avoiding(as in the example of Fig.)3r par-
avoiding walk, since, as the walks are mutually avoiding, étially transparent to each other.

bound siter;(i)=r>,(i) cannot overlap any other sites on both  One is typically interested in the grand-canonical partition
strands. At higher temperatures unbinding starts from the urfunction Zx(S), for a starS formed byf; self-avoiding walks
constrained edge=j=N and loops proliferate along the andf, random walks, all with average siRfrom the origin
chain. Figure 2 shows a snapshot of a configuration genepf the starR denoting the end-to-end distance for each walk.
ated by the pruned enriched Rosenbluth metfid, where  Having the same size, SAWs and RWs are characterized by
the two strands are represented by solid and dashed linegifferent lengths, scaling as R, with v=3/4 for a SAW
respectively. Notice that the double-stranded part has a chaand »=1/2 for a RW.Fugacities per unit of step length are
acteristic self-avoiding walk behavior and the unboundassociated with each type of walk. By tuning their values
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appropriately both walks become critical. In this limit the
partition function scales asymptotically for largeas[12]

2(9) ~ R1Sam, @

where 7(9) is the scaling exponent associated with the sin-

gularity at the center of the star angd the entropic exponent FIG. 4. Star copolymers considered in this paper. Thin lines
associated with an isolated SAW,=-11/24 in two dimen-  denote random walks, while thick lines denote self-avoiding walks.
sions, while the corresponding exponent for RWs is gero Solid and dashed thin lines are allowed to overlap with thin lines of
We have followed here the notation of R§L7], which is the same species, but not allowed to overlap thin lines of the other
slightly different from that of the original work of Duplantier Species(i.e., overlap between solid and dashed thin lines is not
[12], but more suitable for a generalization to networks. Thedllowed. The conformal scaling dimensions for the examples in the

star exponent can be written in the following form: figure areA(S,)=5/8, A(S;)=39/32, andA(S;) =35/24(see text
7S =-2A(9 + fllz‘é, (3) established the existence of a relation between the conformal

dimensions of scaling operators in the plane and those in the

with A(S) the conformal scaling dimension amg=5/24 the =~ Présence of gravity. Finally, the relation

pair correlation function exponefpi7]. ~

Here we review briefly the main formulas leading to the A= 2Aqg+§ (8)
exact value of the exponeA{(S) for an arbitrary star copoly-
mer S. Details of the derivation can be found in Refs. connects surface and bulk conformal dimensions in the fluc-
[12,14. The main idea is to map the star copolymer from thetuating geometry and can be derived from some factorization
planar Euclidean geometry onto a two-dimensional randonproperties of star partition functions under quantum gravity

lattice, i.e., in the presence ghiantum gravity [19].

In addition to the bulk scaling dimensiax(S) of a starS For random and self-avoiding walks the conformal di-
we will also consider star copolymers confined in a halfmensions ar¢12]
plane with the origin near the boundary of the plane, which _ _ 1 1
defines the surface scaling dimensia(S). We use the no- Apw=1, ARV=1, Agw= 3’ Ay = 2 9)
tations A9%S) and A%(S) for bulk and surface conformal
dimensions in the random latti¢bere qg stands for quantum ~ 5 ~ 3 5 1
gravity). Given two walksA and B, with a common origin Asaw = g’ Adw= 2 Asaw = 96’ Adw= 8
we indicate(as in Ref.[12]) with the symbolAB a star
configuration where the two walks are allowed to overlap (10
each other and witA(IB a configuration wheré andB are As a practical example of the use of the above formulas
nonoverlapping. we calculate the conformal dimensions of the three star co-

The main result of the theory is that in the fluctuating o1ymers shown in Fig. 4, which are the configurations rel-
geometry the surface conformal dimensions for two mutuallysy,ant for the model discussed in this paper.

avoiding walks are additivgl2], i.e., Let us consider first the star copolymer composed by two
X ag = R9(A) + AIYB). mutually avoiding random walkg.e., S, of Fig. 4). Equation
ATADB)=ATA) +ATB) @) (4) states that the surface conformal dimension in the fluctu-

For transparent walks in the plane, due to the trivial factor-ating geometry for two mutually avoiding walks is additive,

ization of their partition functions one has thus forS, it is twice as large as that of a random walk

AAOB) =A(A) +A(B). (5) AYY(S) =2A% =2. (11)

We point to a sort of duality between Eqd) and(5). Equa-  From Eq.(8) one finds therefore for the bulk dimension in
tion (4) states that nonintersecting walks become transparetthe fluctuating geometry tha9%S,)=3/4. Thefinal step to

to each other when placed in a fluctuating geometry. Equasbtain the bulk dimension in the plane is to use the confor-
tions (4) and (5) can be generalized to any nested star comal mapping[Eq. (6)] which yields
polymer structurésee Ref[12]).

. Conformgl invariance relates the bulk and surface scaling A(S) =U(3/4) = §_ (12)
dimensions in the two geometries [d] 8
A=U(A%), (6) The generalization t& mutually avoiding random walks is
given in the Appendix. The above derivation &(S,) illus-
A= U(qu), (7) trates the general strategy of the calculation: the conformal

dimension is first calculated in the fluctuating geometry,
where U(X)=(x/3)(1+2x) and the inverse U™%(x)  where mutual avoidance is easy to implemgsge Eq(4)],
:;11(\5'24x+1—1). The previous equations follow from the and then obtained for the planar geometry from Egs.
work of Knizhnik, Polyakov, and Zamolodchikd8], who  (6) and(7).
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Z(G) ~ R7e™fam, (16)

where the universal exponeng depends on the topology of
G as follows[20,21]:

n6=—dL+ X ngn(S), 17
S

whered is the dimensionality of the systead=2 in this
papej, L is the number of independent loops, the sum is
extended to all constituent vertices forming the network,
each contributing a facton(S) [the star exponent defined by
Egs.(3) and(2)], andng is the degeneracy of the vert&x

FIG. 5. Some examples of loo@—c) and end-segmen@)  Ysing the results of the previous section and recalling that
configurations relevant for the model studied in this paper. for a vertex S with f; outgoing SAWs one has)(S)

=-2A(9+f17,4/2 [Eq. (3)] we can now calculate the net-

For the star formed by two random walks and a self-work exponents for_ _the confi_guratio.ns that are relevant for
avoiding walk all of them avoiding each oth¢8, of Fig. 4), the unblnd!ng transition considered in this paper. .
one proceeds along the same lines as don&foFirst, the For an isolated loop formed by two mutually avoiding
additivity of surface scaling dimensions in the fluctuating (rjar;_dog walks one hash=1 and there a\r; two vertice, as
geometry [Eq. (4)] implies that zqg(so):zzg%Zg%W aﬁdlr(lg) IIEnquI(gllglaAn?j(tlg)r?maprli/ '?r?atSA =0 In Egs.(16)
=11/4. Therefore, for the bulk dimension one firiés). (8)]: ' '

A9%(S,)=9/8. Finally, the conformal mappingdEg. (6)] 5
yielolssO ne=-2-2(S)=-2-AE)=-2-5. (19

Usually we are interested in the scaling as a function of the
A(S) =U(9/8) = 3 (13)  |oop length, and not of its radius of gyration; therefore, the
partition function is

For the star copolymes. of Fig. 4 the calculation is slightly
different. Both solid and dashed walks are transparent to
each other; therefore we first need to calculate the scalingith »=1/2 forrandom walks and where we have introduced
dimension for the substar composed either by solid or byhe entropic exponent for an isolated loop, in analogy to what
dashed lines only. Two transparent random w&R8/; and  we discussed in the Introduction. We hawg=2+1/4
RW,) in the planar geometry have additive surface confor=2.25. Differently from the case of self-avoiding loofsee

ZIoop ~ |76 ~ ¢ (19

mal dimensionEq. (5)]; thus, the Introduction in the present model already at the level of
an isolated loog,> 2, implying that the first order character
A(RW; ORW,) = 2Aqy = 2. (14)  of the transition is rather strong, as remarked in Re].

Equation(16) can be generalized to the case where the
By inversion of Eq(7), we obtain the corresponding surface nNetwork is formed by walks of different sizes, syndr. In
conformal dimension in the fluctuating geometry: this case the network partition function becomes
A%RW, ORW,)=U"%(2)=3/2. Now, as in thefluctuating r
geometry the two scaling dimensions of the mutually avoid- Z(G) ~ R”G_fl”zf(ﬁ) (20
ing dashed and solid substars are additive one finds from Eq.
(4) that ZCIG(SC):ZZQQ(RWJ_DRWZ):& Equation(8) yields ~ with f a scaling function. In this paper we will consider the
for the bulkA%%(S,)=5/4. Thefinal step is the mapping back limit in which r, the size of the loop or of the end segments,

into the planar geometr§Eq. (6)] which yields is much smaller tharR, the size of the walks or loops at-
tached to it.
3 We consider now the network of Fig(&) which contains
A(S) =U(5/4) = 2 (15  one loop£=1 and two vertices, (as in Fig. 4; therefore,

Y2
770_2772:_2+2<_2A(So)+ 2 _7]2)- (21)
B. Networks with arbitrary topology

We consider now exponents associated with networks ot the limit r <R one should recover the partition function of
arbitrary topology, formed by mixtures of RWs and SAWs & Single SAW(~R™2), which implies that the scaling func-
connected to each other in such a way as to form loops anéPn of Eq.(20) behaves as

dangling endgexamples are shown in Fig).5The partition f(x) ~ x2S 57 for x — 0 (22)
function for a networkG containingf; SAWSs, in the limit '
when all walks are critical, takes the forfh7] In this limit the partition function of the network becomes
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Z(G) ~ R mr 27 A&+ g7 (23) TABLE I. Summary of the exact loop and end segments relevant
for the unbinding transition studied in this paper.

and thus factorizes a&(G) ~ ZsawZioop 1-€., iNto contribu-
tions from a long SAW and from a loop. The latter expressed Loops End segments
in terms of its total length reads

B ~ B o 2+1/4=2.29 Yo 5/8(=0.62

Z|00p~ | 2+4A(S)=ngt 0] | ~Css. (24) Ces 3+5/48~3.10) s 7/6(=1.17)

Using the numerical values of the exponents given in the ¢ 2+11/24~2.46 Y 5/6(=0.83
preceding section we findc=3+5/48[22]. Note that the Cs 2+19/24~2.79
derivation of Eq.(24) is similar to that for the unbinding of ¢ 2+11/24~2.46)

SAWSs reported in Ref2].
The next example is the configuration of Figb}h i.e., a
loop confined between two other long loops. As the calculatess |ocalized than those bound to a SAW< y.).
tion of its partition function follows closely that of a loop  The results obtained in this section are summarized in
confined between two SAWSs, we report here the final resultraple |, to which we have also addeg, the exponent asso-
Zigop ~ 1122 — |1, (25)  ciated with isolated end segments. This exponent is associ-

ated with the configuration of Fig.4a); therefore vy,
and thus from Eq(15 we find ¢;=2+11/24.Notice that =2yA(S,)=5/8.

c) <Css contrary to what happens for self-avoiding walks

[2]. This follows from the random walk character for isolated

strands: As the solid and dashed lines in Figh)5are al- IV. NUMERICAL RESULTS

lowed to overlap themselves a loop bounded by two loops is  polymer configurations in which each strand is of length

‘less localized” (smaller c) than a loop bounded by two N=1280 were generated by the pruned enriched Rosenbluth

SAWSs. ) _ o ) method which is described in R€fL6]. We performed first
We will also be interested in the statistical properties ofthree runs at fixed temperatures around the critical point and

the first loop formed at the common origin of the two walks; ysed the multihistogram meth@@3] to interpolate results to

therefore we consider also the case of a loop bound to thgrpitrary temperatures in the transition region. A precise es-

rest of the polymer only on one edggee Fig. £)]. Also in - timate of the transition point was obtained by the analysis of

this case we report only the final results as the calculatiomhe specific heat maximum per unit of length,.,(N), which

follows the example above. For the partition function of ajs expected to scale as function of the chains ley#s[13]
loop bound to a long segmeffig. 5c)] we find
Cma)&(N) -~ N2¢_1, (30)

Z|00p~ I—V[2+M(Sa)+2A(Sb)—7]¢/2] — I—Cs (26)

a relation which defines the crossover expongntrigure
6(a) shows a plot of the peak heigh®,,(N) as a function
of the chain lengtiN on a log-log scale. A linear fit of the
Zigop~ |2 ~ @ (27)  data yields¢=1.0002) in excellent agreement with a first

with c,=2+19/24while for a loop attached to a long loop
we find

with ¢,=2+11/24.Notice that, curiouslyc,=c; a relation

which is not valid only for this particular model, but it is 2t @ e o
quite general for all polymer unbinding transitions, whether B R
the constituents strands are SAWs or mutually avoiding UE 18 o o
RWs. S o =
Finally, in addition to loops, it is also interesting to con- & 14¢~ ¢=1.0002)
sider end-segment distributions, i.e., the length of the single 1 . . s s
strands at the free end of the polynisee Fig. &d)], as done 22 24 2~?0 N2-8 3 32
for the SAWSs in Ref[24]. Again, as the calculation is very 77 g‘f’ .
similar to those reported in this section we give only the final
results. For end segments each of lengtibounded to a 176 | B. = 1.7617(1)
SAW of sizeR, in the limit R>r, with r the size of the end § 175 ]
segmentgr ~n*?) we find o
Zong TS 12 e (29 o) .
where we have introduced a new exponggt7/6. L7 0 0.002 010/&4 0.006 0.008
Similarly, for a configuration in which the end segments
are bounded to a loop we find FIG. 6. (a) Plot of the specific heat peak heighB., as a
Zong~ 2 CNEINEN) B (29) function of the chain lengtiN on a log-log scale. From a linear fit

and by Eq.(30) we find as estimate of the crossover expongént
with ,=5/6.Notice that analogously to what we have found =1.00a2). (b) Plot of the inverse temperature position of the peaks
for the loops, the end segments bound to a long loop are alsss function of 1KN.
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0 . 0 - 0 T 0 .
== ¢, =3+5/48 - €, =3+5/48 -= ¢, =2+19/24 - ¢, =2+19/24
oy =2+11/24 N~ GQs=2+l124 7 e c,=2+11/24 —— ¢, =2+11/24
-2 r N 2L _
ey Ay 4 .
g g
-6 | -6 ]
(b) A |
-8 L =8 ' o . _8 )
0.5 1.5 25 05 1.5 2.5 0.5 1.5 25 05 1.5 2.5
log,, 1 log,,1 log,y1 log,,1

FIG. 7. (Color onling Probability distribution of loop lengths at FIG. 8. (Color onling Probability distribution of the first loop as
the estimated transition poim=8.=1.7617 (a) and in the high  a function of its length in a log-log scale at the estimated transition
temperature phas@=1.6 (b). As references we plot the exact ex- point 8=8.=1.7617(a) and in the high temperature phage 1.6
ponents for a loop embedded between two segmegts3+5/48  (b). The slopes corresponding to the analytical estimates for the
and a loop embedded between two long loops2+11/24,calcu-  exponentsg andc; for a loop bounded by a SAW segment and by
lated in the preceding section. another long loop are also shown.

order transition, for which one expecis=1 [13]. The sharp decays rather fast ih (~I™ with c=3.2), rather long runs
determination ofp is a signature of a rather strong first order are needed in order to obtain an accurate statistics.
character of the transition. It is interesting to point out thatin  We have also analyzed the probability distribution of the
the case of unbinding of self-avoiding walks, although thefirst loop Py(l), which is formed at the common origin of the
transition is known to be of first order type, it is difficult to two strands. Here we have considered only loops originated
extrapolate an exponenrb which is consistent with¢=1  at the very edge for which the first monomer is unbound

[3,5] (at least in three dimensions [r1(1) #ry(1)]. A plot of log Py(l) as a function of lod at 3,
The peak position is expected to scale as is shown in Fig. 8a). The statistics is poorer compared to the
A total loop distribution in Fig. (@), as in most of the configu-
BradN) ~ B+ N (31) rations the first monomer is bound, therefore loops at the

common edge of the two strands are quite rare. Despite that,
with A a constant. The first order charactef=1) is con- e agreement with the expected exponey®2+19/24 is
firmed by the scaling of the peak positions, as illustrated in/€"Y 900d. . o .
Fig. &b), which shows a plot of3,,(N) vs 1/N (8 is the Flnally,'we_con5|dered the er)d—segment dl|§tr|but|on_wh|ch
inverse temperatuyeWe performed a series of iterated linear IS ShOV_V” n '.:'g' Qa). ngePe(n) s the probability of having
fits of BnadN) Vs 1/N and obtained the following estimate of & configuration in which the last-1 monomers are un-

L e bound whiler;(n)=r,(n). Once again aB, we note a good
the transition poiniB,=1.76171). 1 2 c
poini ) agreement with a decal.(n)~n~" with an exponenty;
=71/6.

A. Behavior at the transition point g=p.

We focus first on the behavior at the transition poht B. Behavior in the high temperature phasef< B
=B.=1.7617. The probability distribution of finding a loop

. . We have repeated the same type of calculation of loop and
of lengthl is expected to decay as a functionlas[5]

end-segment statistics also in the high temperature region

_1-¢c B<pB.. We expect a power-law distribution of loop lengths
P() ~ 17, (32 ;

also at high temperaturgs].
from which the exponent can be calculated. Figure(dj Figure 1b) shows a plot of the loop probability distribu-

shows a log-log plot oP(l) versusl for N=1280 atB.. Asa  tion at8=1.6 forN=1280. Indeed there is a clear power-law
comparison we plot, as straight lines, the slopes correspondlecay governed by an exponent which is in excellent agree-
ing to the analytical estimates of the exponent@andc,, for  ment with ¢;=2.46 as calculated in the preceding section.
a loop embedded between two segments and two loops, r@ypically at high temperatures a loop is more likely to be
spectively, calculated in the preceding section. Notice thdound by neighboring loops, rather than double stranded seg-
excellent agreement of the numerical results with the decaynents, as contacts between the two strands are rare, which
exponentc,, Which indicates that considering each loop asexplains the observed exponent.

simply bounded by pure SAWs approximates extremely well Analogously, also for the first loop length distribution
the polymer configuration at the transition point. &R$l) Po(l), we find a decay exponent in very good agreement with
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Y, =76
-— %=5/6

FIG. 10. Zipping transition for a two-dimensional diblock co-
polymer. Both strandsA and B are mutually and self-avoiding.
Loops in the zipped phase may have different lengths in the two
strands.

log,,P.(n)

suppressed. In particular> 3 implies that the two first mo-
ments(l) and (1) are finite. In this case, as loops are typi-
cally very small(see also Fig. 2 neglecting their effect to-
. ‘ g . . tally is still a very good approximation. Thus the strong first
1 15 2 2505 1 15 2 25 order unbinding represents an ideal case where polymer net-
log,,n log,,n works calculations work extremely well.
As a counterexample we mention the case of a two-
! > ! ! dimensional unbinding transition studied recently in diblock
ments at the estimated transition poBw 3.=1.7617(a) and in the copolymers[25]. A diblock copolymer is composed of two
high temperature regiof=1.6 (b). The analytical estimateg and homogeneous branches Afand B monomers joined at a
v for thg slopes for end segments attached to a SAW and to a loo%ommon origin. In the model of Ref25] A andB are both
respectively, are also shown. self- and mutually avoiding. An attractive interaction be-
tweenA andB induces a “zipping” transition by lowering the
¢ [see Fig. 8)]. Notice that, differently from the8=8;  temperature where the two strands are bo(set Fig. 10
temperature region, it is more likely to find configuration pnA denaturatior{2,3,5,9 any “monomer” inA can bind to
where a loop forms at the origin. _ any “monomer” inB; therefore loops of total lengthmay
An analogous very good agreement with the exponent have different lengths along the two strands, ilel,+g
has also been found for the decay of the end-segment distfigith | , |, Due to this freedom the loop entropic exponents
bution Pe(n), as illustrated in Fig. @). for the diblock copolymer are given by

Cos=CoMW - 1~1.42, (33)

-4
0.5

FIG. 9. (Color onling Probability distribution for the end seg-

V. DISCUSSION

— (SAW) _ 1
In this paper we have studied the unbinding transition for =G 1=164, (34)

a two-dimensional lattice polymer composed of two strandahere we have used the two-dimensional SAW exponents
which are random walks mutually avoiding each other. Con{2]: C(SiAW):z_42 andcl(|SAW)=2.64. Numerical result§25]
sidering all the polymer unbinding models studied so far inshows that the zipping transition is continuous and the spe-
the literature in two and three dimensions, the present modejific heat exponent is in excellent agreement with9/16,

is that with the strongest first order transitigmgher loop  conjectured to be an exact value. From scaling arguments for
exponentc~3.2). The sharp first order behavior can be in- a continuous transitiofi5] one hasc=1+¢$=25/16~1.56,
ferred from the determination of the crossover expongnt which is in between the values of Eq83) and(34), clearly
which is in excellent agreement with the first order valbie distinct from both. At the zipping transition therefore the
=1, already clearly observed for rather short chaihs  polymer network theory does not reproduce the numerical
~100). This can be compared with, for instance, the unbind-alue for the loops entropic exponent as accurately as for the
ing for SAWSs in three dimensions for whiatr=2.1 (weak  model studied here. Notice that, however, in this case also
first order, just above the threshotd=2) and numericalp ~ the numerically determined satisfies the relatiort,<c
~0.9, in itself not fully consistent with a first order transition <c;, as expected.

[3].
We showed that numerical estimates of entropic expo-
nents for loops and end segments are in excellent agreement
with analytical results, obtained from a recent theory based We are grateful to C. von Ferber, Yu. Holovatch, E.
on mapping of star copolymers into a fluctuating geometryOrlandini, and A. Stella for fruitful discussions. M. B. ac-
[12]. Such good agreement is not surprising in the high temknowledges support from INFM-PAIS02.

perature phase where the loops are most likely bound by

other loops as contacts between the strands are very rare. Abpenpix: STAR COPOLYMER MADE OF k MUTUALLY

the transition point one expects that typical conflguratlons AVOIDING RANDOM WALKS

are composed by a double stranded polymer “dressed” with

loops of all sizes. Notice, however, that as the loop exponent We generalize here the calculation leading to 8@) to

is rather larggc~ 3.2), the statistical weight of long loops is the case of a star copolym& made ofk mutually avoiding
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random walks. In this case the surface conformal dimension
in the fluctuating geometry istimes that of a single random

walk [Eq. (4)]: qu(a):k. Using Eqs.(8) and(6) we find

4 -1
24

A(S) = (A1)

which correctly reproduceA(S,) of Eq.(12) for k=2. In the
case of four mutually avoiding walks

PHYSICAL REVIEW E70, 066118(2004)

21
A(Sy) g
Notice that the verteXs. of Fig. 4 is also formed by four
random walks; however, not all mutually avoiding and its
bulk conformal dimension iA(S.)=35/24<A(Sy). A(S) is
smaller as more configurations are available for the star co-
polymer when partial overlapping between walks is allowed,
as inS.. Had we put no restrictions on the order of the loops
in the construction of the model both vertic& and S,
would have been generated. It should be emphasized that for
two-dimensional star copolymers the order of the constituent
walks does matter.
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