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We analyze the unbinding transition for a two-dimensional lattice polymer in which the constituent strands
are mutually avoiding random walks. At low temperatures the strands are bound and form a single self-
avoiding walk. We show that unbinding in this model is a strong first order transition. The entropic exponents
associated with denaturated loops and end-segment distributions show sharp differences at the transition point
and in the high temperature phase. Their values can be deduced from some exact arguments relying on a
conformal mapping of copolymer networks into a fluctuating geometry, i.e., in the presence of quantum
gravity. An excellent agreement between analytical and numerical estimates is observed for all cases analyzed.
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I. INTRODUCTION

The unbinding transition from a low temperature double
stranded polymer to a high temperature single stranded phase
has been the subject of recent attention in the context of
studies of DNA denaturation[1–6]. Two main approaches
have been used to model this unbinding. The first one relies
on directed polymers, where only the transversal coordinate
measuring the distance between homologous base pairs is
considered[1,7]. In a second approach, one considers the
polymer as being composed of an alternating sequence of
double stranded segments and denaturated loops[2,8]. The
statistical weights assigned to loops and segments can be
estimated using concepts of homopolymers and self-avoiding
walk (SAW) statistics.

Traditionally, in the latter class of models, the statistical
weight of a loop was approximated as the number of con-
figurations for a closed SAW, neglecting any excluded vol-
ume interaction with the rest of the chain[9]. More recently,
statistical mechanical ideas based on the theory of polymer
networks[10] were used to take into account the excluded
volume effects in an approximated way[2]. Although quite
simple, this analysis, which was carried out analytically, cap-
tures quantitatively very well the asymptotic form of the loop
partition function, as a series of numerical investigations on
two- and three-dimensional lattice models have shown
[5,11]. Despite the general good agreement between analyti-
cal predictions and simulations, quite small but systematic
deviations between the two were found[11].

The aim of this paper is to investigate further on these
issues for other types of models of polymer unbinding. We
focus on a two-dimensional lattice model for which we ob-
tain a series of analytical predictions based on exact results
from conformal invariance[12]. In this model, the two con-
stituent strands are two random walks(RWs) with an attrac-
tive interaction. While we relax the excluded volume inter-
actions within each strand, mutual avoidance, i.e., the
nonoverlapping condition between the strands is preserved.
This makes the bound double stranded state behave as a
SAW, assigning to it a quite different physics compared to
that of loops. We show that in this model unbinding is a very
strong first order transition.

As is well known from polymer physics, the partition
function of a closed SAW of total lengthl assumes the fol-
lowing asymptotic form[13]:

Zsld , mll−c0, s1d

wherem is a geometric factor andc0 a universal exponent
which equalsc0<1.76 [9] in three dimensions. It has been
shown[2] that a loop attached to two long segments or loops
(see Fig. 1) has still a partition function of the form of Eq.
(1), but with different exponents. For instance in three di-
mensions one finds for a loop embedded between two long
segments[2] css<2.1 andcll <2.2 for a loop embedded be-
tween two long loops(here we used the subscriptss or l to
indicate neighboring segments or loops). An increase ofc for
embedded loops is caused by the tendency of the loop to
become more “localized” due to excluded volume interac-
tions with the rest of the chain. Forc.2 the transition be-
comes first order[8,9].

In this paper we calculate analytically the values of the
exponentscll and css, as well as other types of entropic ex-
ponents, for the model of mutually avoiding random walks.
The calculation relies on conformal mapping of copolymer
networks into a fluctuating geometry[12], i.e., in the pres-
ence of quantum gravity. This theory, which was recently
applied to the calculation of multifractal spectra of harmonic
measures[14], enables one to obtain exact entropic expo-
nents of networks composed of arbitrary mixtures of random
and self-avoiding walks[12]. We also performed a series of
Monte Carlo simulations in order to determine the numerical

FIG. 1. Hierarchy of exponents describing the loop entropy for
an isolated loopsc0d, a loop embedded between two long segments
scssd, and a loop embedded between two long loopssclld.
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values for the exponents. In all cases analyzed the numerical
and analytical results are in excellent agreement. This is due,
as we will discuss below, to the strong first order nature of
the unbinding transition, which makes the model an ideal
testground where copolymer network theories can be ap-
plied.

Part of the results presented here, have been discussed in
concise form in Ref.[15]. In this paper we present the results
of large scale numerical calculations, which we extend to
other quantities not considered previously, and present a full
account of the analytical results. The present model has also
been investigated by means of a continuum approach[4], in
which mutual avoidance between the two strands has been
approximated by an effective long-range interaction, an ap-
proach which predicts a first order unbinding transition.

II. THE MODEL

We consider two random walks of lengthN on a square
lattice described by the vectorsrW1skd and rW2skd with k
=0,1. . . ,N. The walks have common originrW1s0d=rW2s0d and
are not allowed to overlap except at homologous sites, i.e.,
rW1sid=rW2s jd, is possible only ifi = j . Whenever such a contact
is realized the system gains an energy«=−1. At very low
temperatures the two walks are fully bound and form a self-
avoiding walk, since, as the walks are mutually avoiding, a
bound siterW1sid=rW2sid cannot overlap any other sites on both
strands. At higher temperatures unbinding starts from the un-
constrained edgei = j =N and loops proliferate along the
chain. Figure 2 shows a snapshot of a configuration gener-
ated by the pruned enriched Rosenbluth method[16], where
the two strands are represented by solid and dashed lines,
respectively. Notice that the double-stranded part has a char-
acteristic self-avoiding walk behavior and the unbound

single strands behave as mutually avoiding random walks.
The inset of Fig. 2 shows a blow-up of part of the double
stranded chain with two short loops of a few lattice spacings
of length. The model is constructed such that following the
two strandsrW1skd andrW2skd from the origink=0 to k=N one
finds one of the two strands[say rW1skd] when unbound al-
ways at the left side of the other strand, i.e., the loops are
oriented. This choice will allow us to restrict the type of
diagrams considered in the continuum polymer network de-
scription of the model.

III. CONFORMAL MAPPING ONTO TWO-DIMENSIONAL
QUANTUM GRAVITY

A. Star copolymers

Duplantier formulated an elegant theory[12] which al-
lows one to compute exact entropic exponents for star co-
polymers, an example of which is shown in Fig. 3. A star
copolymer is formed by an arbitrary mixture of random and
self-avoiding walks joined at a common origin, which can be
all mutually avoiding(as in the example of Fig. 3) or par-
tially transparent to each other.

One is typically interested in the grand-canonical partition
functionZRsSd, for a starS formed byf1 self-avoiding walks
and f2 random walks, all with average sizeR from the origin
of the star,R denoting the end-to-end distance for each walk.
Having the same size, SAWs and RWs are characterized by
different lengths, scaling as,R1/n, with n=3/4 for a SAW
and n=1/2 for a RW.Fugacities per unit of step length are
associated with each type of walk. By tuning their values

FIG. 2. Snapshot of a configuration for the model studied in this
paper generated by the pruned enriched Rosenbluth method. The
two walks are indicated as solid and dashed lines. When they are
bound only the solid line is visible. Inset: Enlargement of a small
area of double stranded phase with two embedded loops. The loops
are oriented, i.e., following the direction of one of the strands, the
other strand is always found on the same side.

FIG. 3. Example of a star copolymer formed by two random
walks and a self-avoiding walk, where all three of them are mutu-
ally avoiding and have average size equal toR. The exact entropic
exponent for any star copolymer with an arbitrary number of ran-
dom and self-avoiding walks can be calculated thanks to a mapping
onto a fluctuating geometry(see Sec. III).
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appropriately both walks become critical. In this limit the
partition function scales asymptotically for largeR as [12]

ZsSd , RhsSd−f1h2, s2d

wherehsSd is the scaling exponent associated with the sin-
gularity at the center of the star andh2 the entropic exponent
associated with an isolated SAW(h2=−11/24 in two dimen-
sions, while the corresponding exponent for RWs is zero).
We have followed here the notation of Ref.[17], which is
slightly different from that of the original work of Duplantier
[12], but more suitable for a generalization to networks. The
star exponent can be written in the following form:

hsSd = − 2DsSd + f1
hf

2
, s3d

with DsSd the conformal scaling dimension andhf=5/24 the
pair correlation function exponent[17].

Here we review briefly the main formulas leading to the
exact value of the exponentDsSd for an arbitrary star copoly-
mer S. Details of the derivation can be found in Refs.
[12,14]. The main idea is to map the star copolymer from the
planar Euclidean geometry onto a two-dimensional random
lattice, i.e., in the presence ofquantum gravity.

In addition to the bulk scaling dimensionDsSd of a starS
we will also consider star copolymers confined in a half
plane with the origin near the boundary of the plane, which

defines the surface scaling dimensionD̃sSd. We use the no-

tations DqgsSd and D̃qgsSd for bulk and surface conformal
dimensions in the random lattice(here qg stands for quantum
gravity). Given two walksA and B, with a common origin
we indicate(as in Ref.[12]) with the symbolA∨B a star
configuration where the two walks are allowed to overlap
each other and withA∧B a configuration whereA andB are
nonoverlapping.

The main result of the theory is that in the fluctuating
geometry the surface conformal dimensions for two mutually
avoiding walks are additive[12], i.e.,

D̃qgsA ∧ Bd = D̃qgsAd + D̃qgsBd. s4d

For transparent walks in the plane, due to the trivial factor-
ization of their partition functions one has

D̃sA ∨ Bd = D̃sAd + D̃sBd. s5d

We point to a sort of duality between Eqs.(4) and(5). Equa-
tion (4) states that nonintersecting walks become transparent
to each other when placed in a fluctuating geometry. Equa-
tions (4) and (5) can be generalized to any nested star co-
polymer structure(see Ref.[12]).

Conformal invariance relates the bulk and surface scaling
dimensions in the two geometries as[12]

D = UsDqgd, s6d

D̃ = UsD̃qgd, s7d

where Usxd=sx/3ds1+2xd and the inverse U−1sxd
= 1

4sÎ24x+1−1d. The previous equations follow from the
work of Knizhnik, Polyakov, and Zamolodchikov[18], who

established the existence of a relation between the conformal
dimensions of scaling operators in the plane and those in the
presence of gravity. Finally, the relation

D̃qg = 2Dqg +
1

2
s8d

connects surface and bulk conformal dimensions in the fluc-
tuating geometry and can be derived from some factorization
properties of star partition functions under quantum gravity
[19].

For random and self-avoiding walks the conformal di-
mensions are[12]

D̃RW = 1, D̃RW
qg = 1, DRW =

1

8
, DRW

qg =
1

4
, s9d

D̃SAW =
5

8
, D̃SAW

qg =
3

4
, DSAW =

5

96
, DSAW

qg =
1

8
.

s10d

As a practical example of the use of the above formulas
we calculate the conformal dimensions of the three star co-
polymers shown in Fig. 4, which are the configurations rel-
evant for the model discussed in this paper.

Let us consider first the star copolymer composed by two
mutually avoiding random walks(i.e.,Sa of Fig. 4). Equation
(4) states that the surface conformal dimension in the fluctu-
ating geometry for two mutually avoiding walks is additive,
thus forSa it is twice as large as that of a random walk

D̃qgsSad = 2D̃RW
qg = 2. s11d

From Eq.(8) one finds therefore for the bulk dimension in
the fluctuating geometry thatDqgsSad=3/4. Thefinal step to
obtain the bulk dimension in the plane is to use the confor-
mal mapping[Eq. (6)] which yields

DsSad = Us3/4d =
5

8
. s12d

The generalization tok mutually avoiding random walks is
given in the Appendix. The above derivation ofDsSad illus-
trates the general strategy of the calculation: the conformal
dimension is first calculated in the fluctuating geometry,
where mutual avoidance is easy to implement[see Eq.(4)],
and then obtained for the planar geometry from Eqs.
(6) and (7).

FIG. 4. Star copolymers considered in this paper. Thin lines
denote random walks, while thick lines denote self-avoiding walks.
Solid and dashed thin lines are allowed to overlap with thin lines of
the same species, but not allowed to overlap thin lines of the other
species(i.e., overlap between solid and dashed thin lines is not
allowed). The conformal scaling dimensions for the examples in the
figure areDsSad=5/8, DsSbd=39/32, andDsScd=35/24(see text).
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For the star formed by two random walks and a self-
avoiding walk all of them avoiding each other(Sb of Fig. 4),
one proceeds along the same lines as done forSa. First, the
additivity of surface scaling dimensions in the fluctuating

geometry [Eq. (4)] implies that D̃qgsSbd=2D̃RW
qg +D̃SAW

qg

=11/4. Therefore, for the bulk dimension one finds[Eq. (8)]:
DqgsSbd=9/8. Finally, the conformal mapping[Eq. (6)]
yields

DsSbd = Us9/8d =
39

32
. s13d

For the star copolymerSc of Fig. 4 the calculation is slightly
different. Both solid and dashed walks are transparent to
each other; therefore we first need to calculate the scaling
dimension for the substar composed either by solid or by
dashed lines only. Two transparent random walks(RW1 and
RW2) in the planar geometry have additive surface confor-
mal dimension[Eq. (5)]; thus,

D̃sRW1 ∨ RW2d = 2D̃RW = 2. s14d

By inversion of Eq.(7), we obtain the corresponding surface
conformal dimension in the fluctuating geometry:

D̃qgsRW1∨RW2d=U−1s2d=3/2. Now, as in thefluctuating
geometry the two scaling dimensions of the mutually avoid-
ing dashed and solid substars are additive one finds from Eq.

(4) that D̃qgsScd=2D̃qgsRW1∨RW2d=3. Equation(8) yields
for the bulkDqgsScd=5/4. Thefinal step is the mapping back
into the planar geometry[Eq. (6)] which yields

DsScd = Us5/4d =
35

24
. s15d

B. Networks with arbitrary topology

We consider now exponents associated with networks of
arbitrary topology, formed by mixtures of RWs and SAWs
connected to each other in such a way as to form loops and
dangling ends(examples are shown in Fig. 5). The partition
function for a networkG containing f1 SAWs, in the limit
when all walks are critical, takes the form[17]

ZsGd , RhG−f1h2, s16d

where the universal exponenthG depends on the topology of
G as follows[20,21]:

hG = − dL + o
S

nShsSd, s17d

where d is the dimensionality of the system(d=2 in this
paper), L is the number of independent loops, the sum is
extended to all constituent vertices forming the network,
each contributing a factorhsSd [the star exponent defined by
Eqs. (3) and (2)], andnS is the degeneracy of the vertexS.
Using the results of the previous section and recalling that
for a vertex S with f1 outgoing SAWs one hashsSd
=−2DsSd+ f1hf /2 [Eq. (3)] we can now calculate the net-
work exponents for the configurations that are relevant for
the unbinding transition considered in this paper.

For an isolated loop formed by two mutually avoiding
random walks one hasL=1 and there are two verticesSa, as
defined in Fig. 4. As there are no SAWsf1=0 in Eqs.(16)
and (3), Eqs.(17) and (12) imply that

hG = − 2 − 2hsSad = − 2 − 4DsSad = − 2 −
5

2
. s18d

Usually we are interested in the scaling as a function of the
loop length, and not of its radius of gyration; therefore, the
partition function is

Zloop , lnhG , l−c0 s19d

with n=1/2 for random walks and where we have introduced
the entropic exponent for an isolated loop, in analogy to what
we discussed in the Introduction. We havec0=2+1/4
=2.25. Differently from the case of self-avoiding loops(see
the Introduction) in the present model already at the level of
an isolated loopc0.2, implying that the first order character
of the transition is rather strong, as remarked in Ref.[11].

Equation(16) can be generalized to the case where the
network is formed by walks of different sizes, sayR andr. In
this case the network partition function becomes

ZsGd , RhG−f1h2fS r

R
D s20d

with f a scaling function. In this paper we will consider the
limit in which r, the size of the loop or of the end segments,
is much smaller thanR, the size of the walks or loops at-
tached to it.

We consider now the network of Fig. 5(a) which contains
one loopL=1 and two verticesSb (as in Fig. 4); therefore,

hG − 2h2 = − 2 + 2S− 2DsSbd +
hf

2
− h2D . s21d

In the limit r !R one should recover the partition function of
a single SAWs,R−h2d, which implies that the scaling func-
tion of Eq. (20) behaves as

fsxd , x−2−4DsSbd+hf−h2 for x → 0. s22d

In this limit the partition function of the network becomes

FIG. 5. Some examples of loop(a)–(c) and end-segment(d)
configurations relevant for the model studied in this paper.
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ZsGd , R−h2r−2−4DsSbd+hf−h2 s23d

and thus factorizes asZsGd,ZSAWZloop, i.e., into contribu-
tions from a long SAW and from a loop. The latter expressed
in terms of its total lengthl reads

Zloop , l−nf2+4DsSbd−hf+h2g , l−css. s24d

Using the numerical values of the exponents given in the
preceding section we findcss=3+5/48 [22]. Note that the
derivation of Eq.(24) is similar to that for the unbinding of
SAWs reported in Ref.[2].

The next example is the configuration of Fig. 5(b), i.e., a
loop confined between two other long loops. As the calcula-
tion of its partition function follows closely that of a loop
confined between two SAWs, we report here the final result:

Zloop , l−nf2+2DsScdg , l−cll , s25d

and thus from Eq.(15) we find cll =2+11/24.Notice that
cll ,css, contrary to what happens for self-avoiding walks
[2]. This follows from the random walk character for isolated
strands: As the solid and dashed lines in Fig. 5(b) are al-
lowed to overlap themselves a loop bounded by two loops is
“less localized” (smaller c) than a loop bounded by two
SAWs.

We will also be interested in the statistical properties of
the first loop formed at the common origin of the two walks;
therefore we consider also the case of a loop bound to the
rest of the polymer only on one edge[see Fig. 5(c)]. Also in
this case we report only the final results as the calculation
follows the example above. For the partition function of a
loop bound to a long segment[Fig. 5(c)] we find

Zloop , l−nf2+2DsSad+2DsSbd−hf/2g , l−cs s26d

with cs=2+19/24while for a loop attached to a long loop
we find

Zloop , l−nf2+2DsScdg , l−cl s27d

with cl =2+11/24.Notice that, curiously,cl =cll a relation
which is not valid only for this particular model, but it is
quite general for all polymer unbinding transitions, whether
the constituents strands are SAWs or mutually avoiding
RWs.

Finally, in addition to loops, it is also interesting to con-
sider end-segment distributions, i.e., the length of the single
strands at the free end of the polymer[see Fig. 5(d)], as done
for the SAWs in Ref.[24]. Again, as the calculation is very
similar to those reported in this section we give only the final
results. For end segments each of lengthn bounded to a
SAW of sizeR, in the limit R@ r, with r the size of the end
segmentssr ,n1/2d we find

Zend, n−nf2DsSbd−hf/2g , n−gs, s28d

where we have introduced a new exponentgs=7/6.
Similarly, for a configuration in which the end segments

are bounded to a loop we find

Zend, n−nf2DsScd−2DsSadg , n−gl s29d

with gl =5/6.Notice that analogously to what we have found
for the loops, the end segments bound to a long loop are also

less localized than those bound to a SAWsgl ,gsd.
The results obtained in this section are summarized in

Table I, to which we have also addedg0, the exponent asso-
ciated with isolated end segments. This exponent is associ-
ated with the configuration of Fig.4(a); therefore g0
=2nDsSad=5/8.

IV. NUMERICAL RESULTS

Polymer configurations in which each strand is of length
N=1280 were generated by the pruned enriched Rosenbluth
method which is described in Ref.[16]. We performed first
three runs at fixed temperatures around the critical point and
used the multihistogram method[23] to interpolate results to
arbitrary temperatures in the transition region. A precise es-
timate of the transition point was obtained by the analysis of
the specific heat maximum per unit of lengthCmaxsNd, which
is expected to scale as function of the chains lengthN as[13]

CmaxsNd , N2f−1, s30d

a relation which defines the crossover exponentf. Figure
6(a) shows a plot of the peak heightsCmaxsNd as a function
of the chain lengthN on a log-log scale. A linear fit of the
data yieldsf=1.000s2d in excellent agreement with a first

TABLE I. Summary of the exact loop and end segments relevant
for the unbinding transition studied in this paper.

Loops End segments

c0 2+1/4s=2.25d g0 5/8s<0.62d
css 3+5/48s<3.10d gs 7/6s<1.17d
cll 2+11/24s<2.46d gl 5 /6s<0.83d
cs 2+19/24s<2.79d
cl 2+11/24s<2.46d

FIG. 6. (a) Plot of the specific heat peak heightsCmax as a
function of the chain lengthN on a log-log scale. From a linear fit
and by Eq.(30) we find as estimate of the crossover exponentf
=1.000s2d. (b) Plot of the inverse temperature position of the peaks
as function of 1/N.
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order transition, for which one expectsf=1 [13]. The sharp
determination off is a signature of a rather strong first order
character of the transition. It is interesting to point out that in
the case of unbinding of self-avoiding walks, although the
transition is known to be of first order type, it is difficult to
extrapolate an exponentf which is consistent withf=1
[3,5] (at least in three dimensions).

The peak position is expected to scale as

bmaxsNd , bc +
A

Nf s31d

with A a constant. The first order charactersf=1d is con-
firmed by the scaling of the peak positions, as illustrated in
Fig. 6(b), which shows a plot ofbmaxsNd vs 1/N (b is the
inverse temperature). We performed a series of iterated linear
fits of bmaxsNd vs 1/N and obtained the following estimate of
the transition pointbc=1.7617s1d.

A. Behavior at the transition point b=bc

We focus first on the behavior at the transition pointb
=bc=1.7617. The probability distribution of finding a loop
of length l is expected to decay as a function ofl as [5]

Psld , l−c, s32d

from which the exponentc can be calculated. Figure 7(a)
shows a log-log plot ofPsld versusl for N=1280 atbc. As a
comparison we plot, as straight lines, the slopes correspond-
ing to the analytical estimates of the exponentscssandcll , for
a loop embedded between two segments and two loops, re-
spectively, calculated in the preceding section. Notice the
excellent agreement of the numerical results with the decay
exponentcss, which indicates that considering each loop as
simply bounded by pure SAWs approximates extremely well
the polymer configuration at the transition point. AsPsld

decays rather fast inl (,l−c with c<3.2), rather long runs
are needed in order to obtain an accurate statistics.

We have also analyzed the probability distribution of the
first loop P0sld, which is formed at the common origin of the
two strands. Here we have considered only loops originated
at the very edge for which the first monomer is unbound
frW1s1dÞ rW2s1dg. A plot of log P0sld as a function of logl at bc

is shown in Fig. 8(a). The statistics is poorer compared to the
total loop distribution in Fig. 7(a), as in most of the configu-
rations the first monomer is bound, therefore loops at the
common edge of the two strands are quite rare. Despite that,
the agreement with the expected exponentcs=2+19/24 is
very good.

Finally, we considered the end-segment distribution which
is shown in Fig. 9(a). HerePesnd is the probability of having
a configuration in which the lastn−1 monomers are un-
bound whilerW1snd=rW2snd. Once again atbc we note a good
agreement with a decayPesnd,n−gs with an exponentgs

=7/6.

B. Behavior in the high temperature phaseb,bc

We have repeated the same type of calculation of loop and
end-segment statistics also in the high temperature region
b,bc. We expect a power-law distribution of loop lengths
also at high temperatures[5].

Figure 7(b) shows a plot of the loop probability distribu-
tion atb=1.6 forN=1280. Indeed there is a clear power-law
decay governed by an exponent which is in excellent agree-
ment with cll =2.46 as calculated in the preceding section.
Typically at high temperatures a loop is more likely to be
bound by neighboring loops, rather than double stranded seg-
ments, as contacts between the two strands are rare, which
explains the observed exponent.

Analogously, also for the first loop length distribution
P0sld, we find a decay exponent in very good agreement with

FIG. 7. (Color online) Probability distribution of loop lengths at
the estimated transition pointb=bc=1.7617 (a) and in the high
temperature phaseb=1.6 (b). As references we plot the exact ex-
ponents for a loop embedded between two segmentscss=3+5/48
and a loop embedded between two long loopscll =2+11/24,calcu-
lated in the preceding section.

FIG. 8. (Color online) Probability distribution of the first loop as
a function of its length in a log-log scale at the estimated transition
point b=bc=1.7617(a) and in the high temperature phaseb=1.6
(b). The slopes corresponding to the analytical estimates for the
exponentscs andcl for a loop bounded by a SAW segment and by
another long loop are also shown.
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cl [see Fig. 8(b)]. Notice that, differently from theb=bc
case, here the distribution is rather smooth, as, in the high
temperature region, it is more likely to find configuration
where a loop forms at the origin.

An analogous very good agreement with the exponentgl
has also been found for the decay of the end-segment distri-
bution Pesnd, as illustrated in Fig. 9(b).

V. DISCUSSION

In this paper we have studied the unbinding transition for
a two-dimensional lattice polymer composed of two strands
which are random walks mutually avoiding each other. Con-
sidering all the polymer unbinding models studied so far in
the literature in two and three dimensions, the present model
is that with the strongest first order transition(higher loop
exponentc<3.2). The sharp first order behavior can be in-
ferred from the determination of the crossover exponentf,
which is in excellent agreement with the first order valuef
=1, already clearly observed for rather short chainssN
<100d. This can be compared with, for instance, the unbind-
ing for SAWs in three dimensions for whichc<2.1 (weak
first order, just above the thresholdc=2) and numericalf
,0.9, in itself not fully consistent with a first order transition
[3].

We showed that numerical estimates of entropic expo-
nents for loops and end segments are in excellent agreement
with analytical results, obtained from a recent theory based
on mapping of star copolymers into a fluctuating geometry
[12]. Such good agreement is not surprising in the high tem-
perature phase where the loops are most likely bound by
other loops as contacts between the strands are very rare. At
the transition point one expects that typical configurations
are composed by a double stranded polymer “dressed” with
loops of all sizes. Notice, however, that as the loop exponent
is rather largesc<3.2d, the statistical weight of long loops is

suppressed. In particularc.3 implies that the two first mo-
mentskll and kl2l are finite. In this case, as loops are typi-
cally very small(see also Fig. 2), neglecting their effect to-
tally is still a very good approximation. Thus the strong first
order unbinding represents an ideal case where polymer net-
works calculations work extremely well.

As a counterexample we mention the case of a two-
dimensional unbinding transition studied recently in diblock
copolymers[25]. A diblock copolymer is composed of two
homogeneous branches ofA and B monomers joined at a
common origin. In the model of Ref.[25] A andB are both
self- and mutually avoiding. An attractive interaction be-
tweenA andB induces a “zipping” transition by lowering the
temperature where the two strands are bound(see Fig. 10).
Differently from the model studied here and in models of
DNA denaturation[2,3,5,8] any “monomer” inA can bind to
any “monomer” inB; therefore loops of total lengthl may
have different lengths along the two strands, i.e.,l = lA+ lB
with lAÞ lB. Due to this freedom the loop entropic exponents
for the diblock copolymer are given by

css= css
sSAWd − 1 < 1.42, s33d

cll = cll
sSAWd − 1 < 1.64, s34d

where we have used the two-dimensional SAW exponents
[2]: css

sSAWd=2.42 andcll
sSAWd=2.64. Numerical results[25]

shows that the zipping transition is continuous and the spe-
cific heat exponent is in excellent agreement withf=9/16,
conjectured to be an exact value. From scaling arguments for
a continuous transition[5] one hasc=1+f=25/16<1.56,
which is in between the values of Eqs.(33) and(34), clearly
distinct from both. At the zipping transition therefore the
polymer network theory does not reproduce the numerical
value for the loops entropic exponent as accurately as for the
model studied here. Notice that, however, in this case also
the numerically determinedc satisfies the relationcss,c
,cll , as expected.
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APPENDIX: STAR COPOLYMER MADE OF k MUTUALLY
AVOIDING RANDOM WALKS

We generalize here the calculation leading to Eq.(12) to
the case of a star copolymerSk made ofk mutually avoiding

FIG. 9. (Color online) Probability distribution for the end seg-
ments at the estimated transition pointb=bc=1.7617(a) and in the
high temperature regionb=1.6 (b). The analytical estimatesgs and
gl for the slopes for end segments attached to a SAW and to a loop,
respectively, are also shown.

FIG. 10. Zipping transition for a two-dimensional diblock co-
polymer. Both strandsA and B are mutually and self-avoiding.
Loops in the zipped phase may have different lengths in the two
strands.
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random walks. In this case the surface conformal dimension
in the fluctuating geometry isk times that of a single random

walk [Eq. (4)]: D̃qgsSkd=k. Using Eqs.(8) and (6) we find

DsSkd =
4k2 − 1

24
sA1d

which correctly reproducesDsSad of Eq. (12) for k=2. In the
case of four mutually avoiding walks

DsS4d =
21

8
. sA2d

Notice that the vertexSc of Fig. 4 is also formed by four
random walks; however, not all mutually avoiding and its
bulk conformal dimension isDsScd=35/24,DsS4d. DsScd is
smaller as more configurations are available for the star co-
polymer when partial overlapping between walks is allowed,
as inSc. Had we put no restrictions on the order of the loops
in the construction of the model both verticesSc and S4
would have been generated. It should be emphasized that for
two-dimensional star copolymers the order of the constituent
walks does matter.
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