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Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduc-
tion network. It allows the identification of an entropy function associated with the enstrophy dissipation and
that fluctuates around a positive �mean� value. While the corresponding enstrophy network is highly nonlocal,
the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential param-
eter is the ratio Tk��k / ��k2� of the intensity of driving �k�0 as a function of wave number k, to the
dissipation strength �k2, where � is the viscosity. The enstrophy current flows from higher to lower values of
Tk, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy
dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral
arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total
entropy production which relates the probabilities of direct and inverse enstrophy cascades.
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I. INTRODUCTION

Three-dimensional turbulence displays an inertial range,
in which energy is transferred from the spatial scales at
which it is introduced into the system down to small scales,
where it is finally dissipated by viscous forces. The standard
picture of turbulence in two dimensions is qualitatively dif-
ferent. Following the pioneering works of Kraichnan �1,2�,
Leith �3�, and Batchelor �4� �KLB� on the two-dimensional
Navier-Stokes equation for the fluid velocity field, one ex-
pects an inverse energy cascade from the forcing scales to
large scales, and simultaneously a direct enstrophy cascade
from the forcing scales to small scales. The enstrophy is the
variance of the vorticity; namely, the ensemble average of
the squared curl of the velocity.

Two-dimensional turbulence has been a very active area
of theoretical, numerical, and experimental investigation
�5,6�, not only as an easier test case but also relevant to
certain real quasi-two-dimensional situations. Examples in-
clude oceanic currents and atmospheric and geophysical
flows �7�, but two-dimensional flow is also realized in labo-
ratory situations �5,6�. However, the picture of two-
dimensional turbulence remains not fully understood and in
fact, there are some limitations to the above classical KLB
scenario. For example, the standard enstrophy cascade disap-
pears when considering a bounded domain where only a
monoscale forcing is applied �8�. Moreover, the mechanism
of the direct enstrophy cascade and the determining factor
for the direction of the enstrophy current has not been fully
understood as a consequence of a more general principle.
There have been recent clarifications, going into the details
of the physical mechanism �e.g., Refs. �9,10��, but it seems
interesting and natural to connect the situation also with bet-
ter understood scenarios and to be able to see the enstrophy
dissipation as the result of a more generally valid principle.

In the present paper, we address the issue of the enstrophy
current and its direction. A very close analogy with a two-

dimensional heat conduction problem provides ingredients to
understand the enstrophy cascade in its full qualitative be-
havior. It turns out, as will be shown later, that the stochas-
tically driven Navier-Stokes equation for the vorticity can be
mapped to a problem of heat conduction: at each wave num-
ber, k a thermal reservoir is attached with temperature Tk
=�k / ��k2�, where �k is the forcing strength and � is the vis-
cosity. From the Second Law of Thermodynamics, which
will be derived in its detailed version, it follows that enstro-
phy is dissipated as heat flows: from higher to lower tem-
perature, or here, when �k is peaked around some small
mode k, from small to large wave numbers. In other words,
the origin and the direction of the enstrophy flux is simply
and directly a consequence of the Second Law applied to the
enstrophy. We also go beyond the study of the average en-
strophy current and discuss a symmetry in its fluctuations.
That estimates the probability of going backwards; i.e., the
probability of an inverse enstrophy cascade. At the same
time, we obtain a steady state fluctuation theorem in the con-
text of turbulence.

In the next section, we start by reminding the reader of the
standard picture of two-dimensional turbulence. In Sec. III
we present the analogy with heat conduction. From it follows
the final analysis of the enstrophy dissipation in Sec. IV. The
main general consequences and conclusions are discussed in
Sec. V.

The paper will describe the arguments and analog in a
formal way, avoiding, however, a fully rigorous mathemati-
cal analysis. The main goal is indeed to point out a useful
picture and analogy that is sufficiently powerful to specify
the enstrophy cascade. To add the mathematical details and
hypotheses is not believed to be extremely difficult; only a
few remarks are added to guide the mathematically inclined.

II. NAVIER-STOKES EQUATION

The Navier-Stokes �NS� equation �11,12� for the velocity
field u��t ,r� is*Electronic address: christian.maes@fys.kuleuven.be
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�u�

�t
+ �u� · �� �u� = ��u� − �� p + f� , �2.1�

where p is the pressure, f� is the external force, and � is the
viscosity. This is supplemented by the incompressibility con-
dition

�� · u� = 0,

and in our case by periodic boundary conditions for a finite
spatial region V. Similar equations arise for the vorticity ��

��� �u� , by taking the curl of �2.1�

���

�t
+ �u� · �� ��� − ��� · �� �u� = ���� + g� �2.2�

with g� =�� � f�. The energy of the system is given by the total
kinetic energy

E = �
V

u2

2
,

while the enstrophy is defined as

� = �
V

�2

2
.

Its role will become clearer later on.
Consider Cartesian coordinates r= �x1 ,x2 ,x3�= �x ,y ,z�;

the two-dimensional case is conveniently represented by set-
ting the third component of the velocity equal to zero: u�
= �u1 ,u2 ,0�. Therefore, �� = �0,0 ,�3� is better represented by
a pseudoscalar �=�3. Equation �2.2� thus acts on a single
component, and since u� and �� are now perpendicular to each
other, it is further simplified by the vanishing of the term

��� ·�� �u� , as

��

�t
+ �u� · �� �� = ��� + g , �2.3�

where g=�f1 /�y−�f2 /�x. The pressure has disappeared but
Eq. �2.3� is still nonlocal because u� =K� for some Biot-
Savart kernel K.

We take our system bounded in a rectangular domain,
where it is useful to consider the Fourier transform

�k =
1

2	
�

V

eik·r��r� .

These modes satisfy �̄k=�−k which will always be under-
stood.

Upon Fourier-transforming �2.3�, we thus get, for k
�Z2 \ �0�,

��k

�t
− Fk��� = − �k2�k + gk, �2.4�

where

Fk��� = 	
j+�=k


 j,�� j�� �2.5a�

with coefficients given by


 j,� �
j2�1 − j1�2

4	

 1

�j�2
−

1

���2� .

These 
 j,�=0 if and only if either j 
� or �j�= ���. Alterna-
tively,

Fk��� = 	
0���k

�k,����k−� �2.5b�

with

�k,� �
k1�2 − �1k2

4	

 1

���2
−

1

�k − ��2� = �−k,−�.

In that notation,

�k,� + �k,k−� = 0

represents the so called triad relation of �13�. Another alter-
native, which will be useful later, is

Fk��� = −
1

2	
	

�

k1�2 − �1k2

�k − ��2
���k−�. �2.5c�

Finally, we must specify the forcing gk. A translationally
invariant and stationary turbulent state can be achieved by
imposing a force that is homogeneous in space and time. A
Gaussian random field with zero mean is the simplest ex-

ample: in that case the force f� in �2.1� is a Gaussian noise
that is white in time and colored in space, completely deter-
mined by its covariance

�f i�s,r�f j�t,r��� = Cij�r − r����t − s� ,

where �iCij =0 �incompressibility�. Equation �2.4� then turns
into the stochastically driven NS

d�k�t� = − �k2�kdt + Fk���dt + �2�kdWk�t� , �2.6�

in which dWk=dW̄−k represents a standard Wiener process
�14�. That driving pumps vorticity into the system at wave
number k with intensity �k
0, while the viscosity ��0 en-
ters in the first term on the right-hand side of �2.6� to dissi-
pate the vorticity. Equation �2.6� is the starting point of our
analysis.

A. Mathematical assumptions

The point of departure �2.6� is a stochastic differential
equation to be understood in the Itô sense �14�. Solutions are
Markov processes but note that they are infinite-dimensional.
In general, the resulting diffusion is not elliptic because some
�k can be made zero. That brings us to the problem of un-
derstanding the assumptions on the strengths �k and on the
viscosity � so that there is a unique invariant probability
measure �. A lot of mathematical work has been devoted to
that problem in recent years. For example �15�, if � is suffi-
ciently large as a function of 	�k

2, then � is unique. In addi-
tion, �16�, � is unique when there is ��0 so that �k��k�−�

for some � and for every �k���. Even �17–19� when �k
�0, for every �k��N where N is some number that depends
on � and on 	�k

2, then � is unique. We refer to Ref. �20� for
even stronger and more recent results.
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In what follows we simply assume, with no further ado,
that � is unique and has smooth local densities. Another
assumption in the technical manipulations is to start from a
finite-dimensional analysis. In other words, we choose a fi-
nite but arbitrary N and consider Eq. �2.6� only for k2�N
with �k�0 there. That cutoff will take care of convergence
problems in what follows and it allows us to speak of ����
as the density of � with respect to the flat measure d�.

B. Euler equation

The vorticity and the corresponding enstrophy play an
important role in two-dimensional turbulence because of the
appearance of an extra conservation law. The Euler equation
corresponding to �2.6� is

d�k�t� = Fk���dt

�cf. �2.5a�, �2.5b�, and �2.5c��. It is easy to see that

	
k

�̄kFk��� = 0, �2.7�

so that enstrophy is conserved:

d�

dt
= 	

k

1

2

d��k�2

dt
= 0.

As a consequence, the enstrophy in �2.6� is changed by the
injection �at rate �k� and the dissipation �with intensity �� but
is transported without dissipation over the various modes via
the nonlinear and highly nonlocal terms in Fk. That invites
the definition of various enstrophy currents.

C. Currents

The net enstrophy current Jk that leaves the system at
wave number k is obtained from investigating the sources
and sinks to the enstrophy. The total enstrophy dissipation
over the time interval �−� ,�� is computed from

��t� =
1

2	
k

��k�2�t�

and

���� − ��− �� = 	
k
�− �k2�

−�

�

��k�2�t�dt

+ �2�k Re �
−�

�

�̄k�t� � dWk�t�� ,

where the last integral is in the Stratonovich sense �14�, and
Re stands for real part. The expression thus evaluates the
change of enstrophy during a time interval �−� ,�� for a his-
tory ��k�t�� and for a realization of the noise �dWk�t��. It is
therefore natural to set

Jk
out = �k2�

−�

�

��k�2dt ,

Jk
in = �2�k Re �

−�

�

�̄k � dWk

as the current going, respectively, “out” and “in” the system
at mode k with respect to the external enstrophy reservoir.
The difference,

Jk � Jk
out − Jk

in,

is the net enstrophy current that leaves the system �enters the
environment� at mode k.

On the other hand, the local conservation law reads

��k�2���
2

−
��k�2�− ��

2

= − �k2�
−�

�

��k�2�t�dt + Re �
−�

�

�̄kFk���dt

+ �2�k Re �
−�

�

�̄k � dWk�t�

= − Jk
out + 	

�
J�k + Jk

in, �2.8�

which defines

J�k �
1

2	
Re �

−�

�

dt
�1k2 − k1�2

�� − k�2
�−k�k−���

the net current from mode � to mode k �here we used �2.5c��.
Note the asymmetry Jk�=−J�k.

As said before, the redistribution of enstrophy due to in-
teractions between different modes globally does not change
the total amount of enstrophy in the system: 	k	�Jk�=0 �see
�2.7��.

One of the main problems for the cascade picture is to
understand the direction of the flow of the Jk�. That is basi-
cally determined by the stationary �Jk�. At the end of the
paper, we also discuss its fluctuations.

D. Spectral distribution

Heuristically, the reason the enstrophy flows towards
small scales �large wave number k� is because, at these small
scales, the dissipative term ��� in �2.3� dominates over the

advection term �u� ·�� ��. A more refined argument, started by
Kraichnan �1�, derives the two-dimensional cascade picture
�the so-called direct cascade for the enstrophy and the in-
verse cascade for the energy� by investigating the energy
spectra. The Fourier spectrum of energy embodies the KLB
picture by showing a power-law regime for each of the two
cascades. Since the enstrophy spectrum is simply related to
the energy one, from the inspection of the energy spectrum
one can argue where energy and enstrophy are transferred or
dissipated. In a way the cascade of enstrophy to small scales
is the two-dimensional analog of the energy cascade in three
dimensions. We skip here the details of that Kolmogorov-
Kraichnan theory as they have been excellently reviewed by
many. We refer to Ref. �21,22�.

The purpose of the present paper is to try an alternative to
that analysis by opening an analogy with heat conduction. It
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is interesting that in this way a natural enstrophy dissipation
function appears, the thermodynamic entropy production, as
will be explained in Sec. IV.

III. FORMAL ANALOGY WITH HEAT DISSIPATION

Remember our starting equation �2.6�. Let us first forget
about the coupling between the various modes, so that the
system is reduced to the stochastic dynamics

d�k�t� = − �k2�k�t�dt + �2�kdWk�t� �3.1�

describing an ensemble of uncoupled oscillators labeled by
the wave number k. While in the original NS equation the
viscosity represents an irreversible loss, here it balances re-
versibly with the stochastic forcing. The dynamics �3.1� has
a reversible equilibrium measure

�0�d�� = �
k

e−��k�2/2Tk

Zk
d�kd�̄k �3.2�

that we will use as a reference.
The parameter Tk��k / ��k2� can be viewed as a kind of

“temperature” of the reservoir attached to wave number k; it
is, of course, no physical temperature. Thus, our approach is
different from previous attempts to use a thermodynamical
formalism in turbulence, identifying variables like �k

2 with a
temperature �see Ref. �23� and references therein�.

The reversibility of the dynamics �3.1� is taken with the
usual kinematical time reversal that reverses the sign of the
velocity field: the dynamical time reversal of a history

� = ���t�,t � �− �,��� �3.3�

in a given time interval �−� ,�� is

�� = �− ��− t�,t � �− �,��� . �3.4�

When we add the Fk��� to �3.1� to obtain �2.6� the oscil-
lators become coupled, in fact, in a nonlinear and nonlocal
way. That coupling does, however, preserve the enstrophy
very much like a Hamiltonian coupling that conserves the
energy. The picture that thus emerges is formally equivalent
to a heat conduction network wherein the vertices of the
network are represented by the modes k.

The Euler equation represents the conservative part of the
time evolution. That is changed by the addition of the Lange-
vin forces that represent “thermal” reservoirs at each of the
k; thus obtaining our equation �2.6�. Observe that the “fric-
tion” depends on the “location” k of the oscillator. Standard
thermodynamics then teaches us that there will be a “heat
current” from higher to lower temperature. That “heat cur-
rent” is in our present setup played by the enstrophy current.
Hence, if the driving makes Tk a decreasing function of �k�,
e.g., by having �k�k−� for some ��0, then the enstrophy
should be transported from small �k� towards larger �k�. That
picture will be detailed in the following sections.

The forward generator L+ corresponding to the Markov
diffusion �2.6� can be split into a “conservative” and a “dis-
sipative” part, L+=Lc

++Ld
+, with

Lc
+� = − 	

k

Fk���
��

��k
�3.5a�

and

Ld
+� = �	

k

k2 �

��k
��k�� + 	

k

�k
�2�

��k
2 = 	

k

�k
�Xk

��k
,

�3.5b�

where we made use of the shorthand

Xk � e−�k��k�2/2 �

��k
�e�k��k�2/2��

with �k��k2 /�k.
For the stationary measure �, we have L+�=0, and in

particular,

�Fk����̄k� − �k2���k�2� + �k = 0. �3.6�

From now on we use that notation �·� to denote a stationary
average according to �. Equation �3.6� gives, for every time
interval �−� ,��,

1

2�
�Jk� = �k2����k�2� − Tk� . �3.7�

This equation is the detailed enstrophy balance equation in
stationarity; summing over k gives the somewhat more fa-
miliar

�	
k

k2���k�2� = 	
k

�k,

but at the same time and as a new interpretation of �3.7�, we
recognize how the net current into the enstrophy reservoir at
mode k is like a heat current into a thermal reservoir as
determined by the difference between what now plays the
role of a local kinetic temperature ���k�2� and the reservoir
temperature Tk.

IV. ENSTROPHY DISSIPATION

Continuing with the analogy above, a quantity is now
brought to the forefront which we call the entropy current S.
Since the net enstrophy current leaving the system at each
mode k is Jk=Jk

out−Jk
in and the corresponding “effective tem-

perature” is Tk, we set

S � 	
k

1

Tk
Jk �4.1�

as the variable entropy current. It is a function of the history
�3.3� over �−� ,��. The entropy current S is the entropy pro-
duction in the environment associated with the enstrophy
dissipation; it is the usual sum over all dissipative currents
divided by the respective temperatures. In the stationary
state, the average �S� is the total change of the entropy in the
universe over the time interval �−� ,��.

We will now show what is suggested thermodynamically
by the previous analogy: S should measure the irreversibility
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and �S�
0 as a consequence of the Second Law of Thermo-
dynamics.

Remember that � is the stationary measure of the NS
dynamics �2.6�; we denote by 	� its time reversal. In a
given time interval �−� ,��, each history �3.3� is realized in
the system with a probability that comes from the path-space
measure P�

� �d��; i.e., the stationary Markov diffusion process
associated with the stationary measure � and the stochastic
dynamics �2.6�.

We compute the logarithmic density �see also �3.3� and
�3.4��

R � ln
P�

�

P	�
� �

�4.2�

as a measure of irreversibility. It gives the ratio between the
probability of a history � and the probability of the time-
reversed history ��. We show that R coincides with S up to
a temporal boundary term. Moreover, taking stationary aver-
ages, �R�= �S�. Since by construction �R�
0, it also follows
that �S�
0.

To compute R, it is useful to compare the path-space mea-
sure with the reference path-space measure of the uncoupled
case �3.1�, denoted by P�0

0,� �this is stationary and reversible�.
Thus, first we compute the action

A� � ln
P�

�

P�0
0,�

and similarly A	� ��, to finally estimate �4.2� as the source
of time-reversal breaking

R = A� − A	� � � . �4.3�

The comparison of the two measures P and P0 is made by
means of the Girsanov formula �14�, obtaining

A� = 	
k

1

2�k
��

−�

� ��k2 Re��kF̄k���� −
1

2
�Fk����2�dt

+ Re��
−�

�

F̄k���d�k�� + ln ����− ��� − ln �0���− ��� .

Substituting �� gives

A	� � � = 	
k

1

2�k
��

−�

� �− �k2 Re��kF̄k���� −
1

2
�Fk����2�dt

+ Re��
−�

�

F̄k���d�k� � �� + ln ������� − ln �0������ .

Here, Itô stochastic integrals are performed and one should
remember that these are themselves not time-reversal sym-
metric �14�. As an example for computing �4.3�, we see that

Re��
−�

�

F̄k���d�k� − Re��
−�

�

F̄k���d�k� � �

= lim
�t→0

Re�	
j

F̄k„��tj−1�…��k�tj� − �k�tj−1���
− lim

�t→0
Re�	

j

F̄k„− ��tj�…�− �k�tj−1� + �k�tj���
= − lim

�t→0
Re�	

j

F̄k„��tj�… − F̄k„��tj−1�…
�̄k�tj� − �̄k�tj−1�

��k�tj�−�k�tj−1��2�
= − Re��

−�

� �F̄k���
��̄k

dt� = 0,

because �F̄k /��̄k=0 �see �2.5b��.
As a consequence, �4.3� becomes

R = S + ln ����− ��� − ln ������� �4.4�

with

S = 	
k

1

Tk
���k

2�− ��
2

−
�k

2���
2

� + �
−�

�

Re��kF̄k����dt� .

From �2.8�, this expression coincides exactly with �4.1�, as
promised.

When, instead of the stationary �, we had taken some
initial density evolving as �t , t� �−� ,��, the analysis above
would be essentially unchanged. In that case the source of
irreversibility is

R = 	
k

1

Tk
Jk + ln �−���−�� − ln ������ , �4.5�

where the only difference with �4.4� resides in the last two
terms, the temporal boundary

�− ln ������� − �− ln �−���−��� .

A. Mean entropy production

From the definition �4.2� it directly follows that

�e−R� = 1

�it is essentially the normalization condition of the path-
space measure P	�

� ��. Hence, by a convexity inequality, the
stationary enstrophy dissipation �S�= �R�
0. We can, how-
ever, be more explicit concerning that point by deriving an
expression for �S� that is explicitly non-negative. In fact, we
will show that

�S� = 	
k

�k�
exp�− Vk����
�

��k
exp�Vk�����2� , �4.6�

where

Vk��� � ��k�2/�2Tk� + ln ���� .

From �4.6�, �S��0 strictly, as we can only have
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�

��k
�e�k��k�2/2����� = 0

for all k when �=�0 of �3.2�.
Here comes the proof of �4.6�. Denote by E�−�

the expec-
tation in the process P�−�

� started from �−� . We assume that at
time � the evolved measure is described by a density �� . We
have �4.5�, in expectation,

E�−�
�R� = 	

k

�kE�−�
�Jk� + S���� − S��−�� , �4.7�

where S����−�d� ����ln ���� is the Shannon entropy of
the density �. Another formulation is

E�−�
�R� = �

−�

�

Ṙ�t�dt

with, similar to �3.7�,

Ṙ�t� � �	
k

k2�k�� d���k�2�t��� −
1

�k
� +

d

dt
S��t� .

�4.8�

The previous considerations thus identify the mean dissipa-

tion rate at time t �in the transient regime� with Ṙ�t�.
To see the relation with �4.6�, we start by evaluating the

time-derivative of the Shannon entropy:

dS

dt
��� = −� d�

d�

dt
ln � = −� d��L+��ln � . �4.9�

Using the invariance of the Shannon entropy under the con-
servative �Euler� part of �3.5a�, we get

dS

dt
��� = −� d��Ld

+��ln �

= 	
k

�k� d� Xk
� ln �

��k

= 	
k

�k� d� Xk
Xk

�
− �k�̄k�

= 	
k

�k��Xk

�
�2� − �	

k

k2� d� �̄kXk. �4.10�

Minus the second term, it reads

�	
k

k2� d� �̄kXk = �	
k

k2� d� �̄k
 ��

��k
+ �k�k��

= �	
k

�kk
2� d� �
��k�2 −

1

�k
� .

�4.11�

Substituting �4.11� into �4.10� and then �4.10� into �4.8�, we
immediately obtain the desired identity �4.6�.

B. Enstrophy network

The situation can now be summarized as follows. Locally,
in the stationary measure, we have

	
�

�J�k� = �Jk� = ��̄kFk����

and globally,

	
k

�Jk� = 0. �4.12�

For the enstrophy dissipation,

�S� = 	
k

�k�Jk� � 0. �4.13�

We have here formally the same situation as for a heat con-
duction network, as considered, e.g., in Ref. �24�. The rela-
tions �4.12� and �4.13� do not, of course, uniquely determine
the mean enstrophy currents, but their direction or sign is
thermodynamically determined by analogy with heat con-
duction.

Let us first consider the typical case in which the strengths
�k are nonzero only for a neighborhood of k=0, say �k=1
when �k���, and outside that large wavelength regime:
�k↓0, �k���. In terms of heat conduction, it would mean
that the temperatures Tk=1/ ��k2� are decreasing outward in
the disk for �k��� and fall to Tk=0 outside ��k����. Clearly
then, there will be a heat current toward increasing �k� or,
here, an enstrophy current towards smaller wavelengths. In
other words, the enstrophy current is a kind of nonlocal heat
current the direction of which is determined by the Second
Law. Because of the nonlocality of the term Fk���, the cur-
rent will not stop at the boundary of the disk but will be more
and more suppressed when regarding Jk� for k inside and �
outside the disk. For really large � there is no longer a visible
local heat current. That seems compatible with the observa-
tions �8� that the enstrophy cascade remains pretty localized
around the forcing window.

In general, however, when all �k�0 are active, we have a
“temperature” profile �k / ��k2� that can, of course, be com-
plicated. If the �k depend only on �k�, we have in essence a
one-dimensional heat conduction problem �along the radial
direction�.

C. Fluctuations

Looking back at �4.7� and �4.8�, we found the mean en-
tropy as the change of entropy in the environment S plus the
change of �Shannon� entropy due to the stochastic dynamics
in the system. Its stationary mean ��R��0� is strictly posi-
tive. We will now look at its fluctuations. More precisely, we
consider the R of �4.4� and ask for its probability distribu-
tion. Since by construction �4.2�

P�
� ��� = eR���P	�

� ���� ,

we have that
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� f����dP	�
� =� f���e−R���dP�

� ��� �4.14�

is exactly valid for all observations f and for all times �. The
relation �4.14� is called a fluctuation symmetry, �see, e.g.,
Ref. �25��, because it generates the so-called fluctuation theo-
rem for the entropy production as first formulated in Refs.
�26–28�. Remember that R equals the S up to a temporal
boundary term �see �4.4� and �4.5��.

One of the consequences of the fluctuation symmetry
�4.14� is that

Prob�R � 0�
Prob�R � 0�

= �e−R�R � 0� , �4.15�

which is sometimes easier to check numerically and experi-
mentally. Roughly speaking, this last relation tells us that the
probability of observing the inverse cascade for the enstro-
phy is exponentially smaller than the probability of observ-
ing the direct cascade.

V. CONCLUSIONS

The main conclusion is derived from the analogy with a
heat conduction network. Above and beyond all detailed
physical mechanisms that give rise to the direct enstrophy
cascade in two-dimensional turbulence stands the Second
Law of Thermodynamics for the entropy �4.1�, which gives a
direction to the enstrophy flow. The relevant parameter is the
ratio �k / ��k2�, which plays the role of an effective tempera-

ture of an enstrophy reservoir to which each mode k is
coupled. If the forcing is restricted to a finite window, then
the temperature outside is effectively equal to zero. The con-
servative part in the enstrophy conduction is nonlocal but
does not contribute to the dissipation.

We have identified a general entropy function ��4.1� and
�4.4��, also in the transient regime �see �4.7� and �4.8��. We
have shown that the stationary entropy production is strictly
positive. It provides the general mechanism driving the direct
enstrophy cascade. The fluctuations in the entropy satisfy the
symmetry �4.14�, which gives an estimate �4.15� of the rela-
tive probabilities of direct versus inverse cascades.

An important open question remains however. The above
analogy is silent about the inverse energy cascade. We have
not found a heat conduction analog that would reveal the
inverse cascade for the energy dissipation in two-
dimensional turbulence. Of course, as energy and enstrophy
are entangled and spectrally related, the direct enstrophy cas-
cade has direct consequences in the form of the inverse en-
ergy cascade. That point follows from the standard treat-
ments �see also Sec. II D�, as in Ref. �1�, but has not been
clarified in the present paper. In fact, a naive extension of the
present formalism but for the energy would find the inverse
cascade quite surprising as it seems to reduce entropy. We
have not investigated whether the combination of dissipative
currents, enstrophy, and energy, would still lead to a total
positive entropy production, as expected thermodynamically.
Clarifying that entropy balance remains one of the most in-
triguing problems of two-dimensional turbulence.
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