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Scaling of a Collapsed Polymer Globule in Two Dimensions

Marco Baiesi,1 Enzo Orlandini,2,3 and Attilio L. Stella2,3

1Instituut voor Theoretische Fysica, K.U. Leuven, B-3001, Belgium
2INFM-Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
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Extensive Monte Carlo data analysis gives clear evidence that collapsed linear polymers in two
dimensions fall in the universality class of athermal, dense self-avoiding walks, as conjectured by
Duplantier [Phys. Rev. Lett. 71, 4274 (1993)]. However, the boundary of the globule has self-affine
roughness and does not determine the anticipated nonzero topological boundary contribution to entropic
exponents. Scaling corrections are due to subleading contributions to the partition function corresponding
to polymer configurations with one end located on the globule-solvent interface.
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FIG. 1. Collapsed SAW, with sites on the boundary (empty
circles) distinguished from sites in the interior (dark circles).
Polymers in solution have been the subject of intense
studies for several decades [1]. In the dilute case and in
good solvent (high temperature T), excluded volume ef-
fects favor swollen configurations for a long linear chain.
On the other hand, in poor solvent (low T), effective
attractive interactions between monomers dominate, and
the typical conformations are those of a compact globule.
The transition between swollen and collapsed polymer
regimes is marked by the theta point [1,2]. A main achieve-
ment of the Coulomb gas [3] and conformal invariance
approaches has been the exact characterization of the
scaling properties of polymers in the swollen [4,5] and
theta regimes [6–8] in two dimensions (2D). On the other
hand, the situation is still far from settled as far as the
entropic scaling of the collapsed phase is concerned.

A crucial feature expected for a collapsed globule is the
presence of a rather sharp boundary separating it from the
surrounding solvent. This led Owczarek et al. [9] to con-
jecture the presence of a factor growing like the exponen-
tial of the boundary length in the statistical partition sum
describing the globule. It was then pointed out by
Duplantier [10] that with free boundary conditions such a
type of factor appears naturally for models of dense poly-
mers (DP), in which a self-avoiding walk (SAW) covers an
assigned region of the lattice visiting a fixed fraction of
sites [11,12]. He also argued that a collapsed globule
should have the exactly known scaling exponents of DP
with a smooth free boundary in 2D. Since DP have only
excluded volume effects, this conjecture implies that col-
lapsed configurations should not be sensibly influenced by
the attractive interactions. A further, less obvious assump-
tion is that the globule boundary acts as a simple, smooth
perimeter confining the polymer [13]. So far, the exponents
conjectured in this way have never been confirmed by
numerical investigations [14,15].

In this Letter, we show that the entropic scaling of
collapsed polymers in 2D is consistent with the universal-
ity class of DP. Our analysis elucidates geometrical prop-
erties of the globule-solvent interface and the role they play
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in determining exponents and strong finite size corrections
to the asymptotic behaviors.

Let us consider linear SAW’s w of jwj � N steps on a
square lattice [2] (Fig. 1). If to each pair of nearest neigh-
bor sites visited not consecutively by the SAW (contact) is
associated an attractive potential energy ���� > 0�, the
model undergoes the theta collapse transition upon varying
T. This transition can be monitored from the asymptotic
behavior of the partition function ZN �

P
jwj�N �

exp��T C�w��, where the sum extends to all possible w
with an end at a fixed origin, and C�w� is the number of
nearest neighbor contacts in w. Below the theta tempera-
ture T�, ZN is expected [9] to have the following asymp-
totic behavior:

ZN�T� ’ A��T�
N�1�T�

���
N
p

N��1; (1)

where A is an amplitude,��T� is a bulk free energy per step
depending also on lattice structure, and �1�T�< 1 is a
boundary term, associated with the existence of a sharp
interface separating the typically globular region occupied

by the SAW from the rest of the lattice. The factor �
���
N
p

1
implies a boundary contribution to the dimensionless total
free energy, ln�ZN�. Indeed,

����
N
p

is the average number of
SAW steps on the boundary of the globule, under the
plausible assumption that this boundary has a fractal di-
mension equal to 1. If one restricts the sum in Eq. (1) to
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walks which start and end at the origin (polygons), the
resulting partition (Z0

N) has the same asymptotics as in
Eq. (1), except for a different exponent �0 replacing �.
Both � and �0 could take T-independent universal values
in the collapsed polymer regime, as also implied by the
conjecture in Ref. [10]. On the basis of the analogy with
DP [11,12], Duplantier conjectured �� �0 � 19=16, and
�0 � 5=6, implying � � 97=46 [10]. This value of �0 has
a purely topological interpretation and was argued by
assuming that for N !1 the boundary of the globule
becomes a smooth continuous arc without wedges [10].
An analysis of extensive exact enumerations was per-
formed in Ref. [14], in order to determine �� �0 from
extrapolations of ZN=Z0

N . Considering such a ratio, one
expects the exponential and stretched exponential factors
in Eq. (1) to simplify in numerator and denominator, leav-
ing an N dependence �N���0 . The estimated �� �0 	
0:92 was inconsistent with the conjecture of Ref. [10]. An
effort to determine � was subsequently made on the basis
of extensive grand canonical Monte Carlo sampling [15]:
The estimate � 	 1:09 again appears to rule out that
conjecture.

A correct interpretation of this contradictory scenario
and a solution of the puzzle can be achieved once all
physical consequences of the existence of a well defined
interface between collapsed globule and solvent are eluci-
dated. This interface does not only imply the presence of a
stretched exponential factor in the asymptotic partition
function in Eq. (1). Indeed, unlike in the swollen regime,
the typical configurations of a polymer globule can be
naturally partitioned into distinct groups, depending on
the location of the chain ends with respect to the boundary.
This circumstance provides a natural source of scaling
corrections to the asymptotic power law scaling in
Eq. (1). For example, imagine one manages to restrict the
sum in ZN to compact configurations in which one end of
the chain is located on the globule boundary, while the
other one falls in the interior. We ask how the resulting ‘‘-
interior-boundary’’ partition function ZibN should scale
compared to ZN . The fact that scaling should not be
influenced by attractive interactions and that the interfacial
boundary has fractal dimension equal to 1 suggests that a
simple N-dependent geometrical factor should connect the
two partition functions: ZibN � N

�1=2ZN . This factor N�1=2

represents the probability that one of the ends of a compact
chain of N steps (globule area �N) ends on the globule
boundary (length �N1=2), if one assumes that a chain end
falls with equal probability anywhere within the globule.

Of course, we also take into account that the fraction of
walks with both ends on the boundary is, in turn, negligible
with respect to ZibN . Indeed, we can define also a restricted
partition sum ZbN to which only chain configurations with
both ends on the boundary contribute. In this case, the
factor relating the restricted partition to ZN will be N�1,
since for large N one should regard as independent events
the occurrences of boundary locations for the two ends.
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Summarizing, if we further define ZiN as the partition
restricted to configurations with both chain ends in the
interior of the globule, the following asymptotics should
be expected:

ZiN ’ Ai�
N�

���
N
p

1 N��1; (2a)

ZibN ’ Aib�
N�

���
N
p

1 N�ib�1; (2b)

ZbN ’ Ab�
N�

���
N
p

1 N�b�1; (2c)

where Ai, Aib, and Ab are suitable amplitudes, while �ib �
�� 1=2 and �b � �� 1. Clearly, the sum of the three Z’s
above must yield ZN . So the behaviors of ZibN and ZbN, if
confirmed, would also identify scaling corrections to the
leading behavior in Eq. (1). The relative magnitudes of the
amplitudes will play a key role in determining up to what
extent these corrections are important at finite N.

In order to proceed, we need a meaningful definition of
the boundary and of the interior of a collapsed configura-
tion. First, from now on we denote as neighbors the nearest
and second neighbors of a site. For a SAW w, we define as
boundary the set of visited sites which are neighbors of at
least one nonvisited site in communication with the exte-
rior (Fig. 1). In order to communicate with the exterior,
such a nonvisited site must be connected by at least one
path of empty neighbor sites to the perimeter of a large
lattice box enclosing the globule. The interior is then given
by the sites visited by the walk which do not belong to the
boundary. This boundary definition resembles that of a
percolation cluster hull [2,5,7]. We were able to implement
it by sampling long chain configurations via the new
pruned enriched Rosenbluth method (nPERM) algorithm
with importance sampling [16]. By this algorithm, we
evaluated weights proportional to ZN and to the restricted
partition functions defined above, up to Nmax � 1920. The
nPERM is an extremely efficient tool for sampling long
compact SAW configurations and was even applied with
success to study native structures of lattice proteins [16].
The weight of the subset of configurations in which the
SAW comes back to the origin gave an estimate of Z0

N . We
explored the collapsed regime at �=T � 0:7, 0:77, and
0:85. For the case �=T � 0:85, on which we concentrated
most efforts, we sampled 2� 109 configurations for each
N (2� 106 completely independent). This took more than
1 yr of 2 GHz-CPU time.

We first checked how the average number BN of sites on
the boundary [Fig. 2(a)] grows with N. In Fig. 2(a), we
show BN vs N in a log-log scale for �=T � 0:85. The data
give clear evidence that asymptotically BN � N1=2. Thus, it
makes sense to check if the scalings in Eqs. (2) are con-
sistent with the data and also provide the leading scaling
correction mechanism to Eq. (1). We considered the ratios
of all partition functions with respect to Z0

N . These ratios
are reported as a function ofN in the log-log plots in Fig. 3,
which give an instructive representation of the role played
by the scaling corrections at various N. The logarithmic
slope of ZN=Z0

N vs N, which should be �� �0, appears to
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FIG. 2. (a) BN vs N for �=T � 0:85: Data approach a scaling
�N1=2 (dashed line) for large N. (b) Effective exponent, i.e., the
slope of the data in (a), as a function of �N�1=2. The line is a linear
fit extrapolating to 	 0:5 for �N ! 1.
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have strong corrections which still sensibly bend the curve
at the highest values ofN. Remarkably, the slope of ZiN=Z

0
N

approaches nearly the same value in this extremal region,
suggesting that indeed the leading source of corrections is
primarily in ZibN , as discussed above. The fact that up to
N 	 1300 the curve for ZiN remains below that for ZibN is
due to a large ratio Aib=Ai. The extrapolated slopes of the
curves are consistent with �� �ib � �ib � �b � 1=2 as
anticipated for Eq. (2) (see Fig. 4).

The above results suggest that the asymptotics of the
collapsed regime should be best determined by isolating
and studying ZiN . To confirm this, we evaluated an effective
entropic exponent �� �0 using a weighted linear least
square fit of log10�ZN=Z

0
N� vs log10N (and similarly for

ZiN). To quantify the approach to the asymptotic scaling,
we consider subsets of four consecutive points
�N1; N2; N3; N4� and fit their slope in Fig. 3. The results
are plotted as a function of 1= �N1=2 in Fig. 4, where �N �
�N1N2N3N4�

1=4. In the case of ZN , there is much curvature
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FIG. 3. Partition function ratios for �=T � 0:85. For N & 100,
the dominant contribution to ZN comes from ZbN ; for 100 & N &

1300, ZibN dominates; while ZiN becomes the leading term only
for N * 1300. Lines emphasize the trends.
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in the plot. Quite remarkably, in the case of ZiN , the plot
appears pretty linear and extrapolates very close to ��
�0 � 19=16 for N ! 1. This linearity clearly indicates
that N�1=2 represents the leading scaling correction. One
can push further the analogy with DP, imagining that the
N0 � N � BN monomers in the interior of the globule are
representative of the DP phase, the remaining BN ones just
forming a kind of box boundary. In other words, the
partition function can also be parametrized by the number
N0 of monomers in the interior, i.e., ZN0 � ZN . Repeating
the same analysis withN0 in place ofN, we obtain effective
exponents for ZiN0=Z

0
N0 that lie on an almost horizontal

straight line (Fig. 4), showing that the scaling correction
amplitude has been drastically reduced. This allows a more
accurate extrapolation of �� �0 � 1:20�3�, very close to
the value 19=16 expected for DP.

As a further step, we determined individual �’s by
directly fitting lnZN with a function of the form

N ln�

����
N
p

ln�1 
 ��� 1� lnN 
 lnA
 A1=
����
N
p

(3)

and Z0
N with a similar one [17]. The term A1=

����
N
p

corre-
sponds to the expected scaling correction. With or without
this term, we found that, upon removal of the data at
smaller N’s, the fits are not always stable, again a signal
of the presence of a strong correction to scaling. On the
other hand, with the A1=

����
N
p

term, the best asymptotic
estimate of � is expected when all data are included. On
this basis, we estimated � � 1:18�4� and �0 � 0:02�7�,
again for �=T � 0:85. We also fitted data for �=T �
0:70. At this temperature, one observes theta point values
of � and �0. This means that this temperature is still too
close to the critical value �=T� � 0:665 [18] to observe the
DP scaling in chains with N & 2000. However, for �=T �
0:77, one finds results pretty consistent with those found
for �=T � 0:85, confirming the expectation that the col-
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FIG. 4. Effective �� �0 as a function of �N�1=2 (dotted lines)
or �N0�1=2 (dashed line) for �=T � 0:85. Fits of �ib � �0 and of
�b � �0 are also shown. Arrows mark the DP value �� �0 �
19=16, and �� �0 � 1=2 and �� �0 � 1.
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TABLE I. Estimated and exact exponents.

�=T Walk: � Polygon: �0

Estim. Exact Estim. Exact

0.7 1.11(3) 8=7 ’ 1:14a �0:15�5� �1=7 ’ �0:14a

0.77 1.20(5) 19=16 ’ 1:19b 0.00(5) 0b

0.85 1.18(4) 19=16 ’ 1:19b 0.02(7) 0b

aExact entropic exponents of the theta point in 2D [7].
bExponents of DP in 2D [11].
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lapsed phase is described by T-independent exponents. Our
determinations are reported in Table I. Previous estimates
without scaling corrections [15] included � � 1:09�8� at
�=T ’ 0:765 and � � 1:11�6� at �=T ’ 0:788. While not
testing as deeply the collapsed phase, these less sharp
determinations are still compatible with ours.

While the direct fits fully confirm the difference �� �0

extrapolated above, consistent with the DP value 19=16,
�0 � 5=6, as conjectured in Ref. [10], appears definitely
excluded. The fits indicate a much smaller �0, possibly
�0 � 0. �0 � 5=6 was predicted in Ref. [10] under the
assumption that the globule-solvent interface can be as-
similated to a smooth wall without wedges in the DP
model. However, the circumstance that the boundary has
a fractal dimension ’ 1, as directly verified here, does not
rule out other possibilities. As we argue below, one should
expect a rough, self-affine boundary. The attractive forces
guaranteeing the cohesion of the globule should determine
a line tension (� ln�1) for the boundary, which is probably
the most important factor controlling its length. The fluc-
tuations of the length of the boundary should have a self-
affine geometry, so that its average width grows like B�N �
N�=2, � < 1 being the roughness exponent [19]. In 2D, the
roughness exponent of a line tension controlled boundary
has � � 1=2. One can argue the roughness exponent � of
the globule boundary again on the basis of the leading
scaling correction �N�1=2 identified in the problem. If
the boundary is self-affine, BN should have a subleading
correction �N��1, with positive amplitude, due to the rate
of growth with N of the average width of the boundary
profile. Thus, in our case we should expect � � 1=2. This
correction is clearly shown by our plot in Fig. 2(b), where
the effective exponents of the scaling of BN are plotted as a
function of �N�1=2: They vary linearly as a function of
�N�1=2, with positive slope, and extrapolate to 0:507�3� as
�N ! 1 (dotted-dashed line in the figure). A self-affine

curve is not differentiable, and the globule boundary can-
not be assimilated to a smooth contour for a DP [10]. The
theory of DP [11,12], while still valid for the collapsed
globule, is not applicable in the form appropriate for
polymers within smooth fixed boundaries [20]. Thus, the
topological argument leading to �0 � 5=6 for a collapsed
globule does not hold. One should expect a smaller �0, as
the theory predicts that �0 is maximal for a DP with a
smooth boundary [10]. Indeed, here we find �0 	 0, com-
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patible with the hypothesis that a collapsed polymer is
statistically equivalent to a DP with a self-affine rough
boundary.

In summary, we gave for the first time solid evidence
that the entropic scaling of a collapsed polymer globule in
2D falls in the universality class of athermal DP. The
existence of the solvent-globule interface appears crucial
in several respects. Besides giving rise to the strong scaling
corrections which hindered so far the analysis of the prob-
lem, with its nontrivial, self-affine stochastic geometry, the
interface also determines an unexpected, close to zero
value of the �0 exponent of collapsed rings.
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