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Abstract. We describe an algorithm computing the exact value of the mean current, its variance,
and higher order cumulants for stochastic driven systems. The method uses a Rayleigh-Schrödinger
perturbation expansion of the generating function of the current, and can be extended to compute
covariances of multiple currents. As an example of application of the method, we give numerical
evidence for a simple relation [Eq. (5)] between the second and the fourth cumulants of the current
in a symmetric exclusion process.
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GOAL

In phenomena like charge transport in nano-electromechanical systems [1, 2, 3, 4, 5, 6]
or in life processes like molecular motors or like ion-transport through a single mem-
brane channel, one easily reaches energy scales as low as a few kBT [7, 8]. Therefore,
the physics and the chemistry of these small systems must talk about fluctuations, not
only because they are very much present but also because someprocesses actually make
use of these fluctuations. Moreover, the experimental output is often in terms of current
cumulants, which should inform us about important featuresof the system dynamics.

A central quantity is the fluctuating currentj, which gives the time-averaged number
of particles or quanta that pass trough a given surface, and its large deviation function
I( j), describing the shape of its probability distributionp( j) ≃ exp(−T I( j)) for very
long time intervalsT. One is interested in its full shape, as its tail can contain signatures
of interesting physics. However, the asymptotic estimate of these tails is problematic
as they involve fluctuations that become rare forT → ∞. We describe a numerical
scheme to compute exactly (up to numerical round-off’s) thecumulants of these current
fluctuations in general small Markovian systems. We emphasize that our algorithm is
exact and can be systematically implemented to produce cumulants of in principle
arbitrary order. Practical limitations such as memory storage make it however most
efficient for the statistical mechanics of systems that are not too large. Finally, our
method is based on general theoretical considerations and its interpretation involves a
relation between current and traffic (dynamical activity) fluctuations.

Mathematically, our approach uses a type of Rayleigh-Schrödinger perturbation ex-
pansion for the largest eigenvalue of a matrix that is obtained as a perturbation of the
original Markov generator; a full account can be found in [9]. It can be seen as a



modification and adaption to classical nonequilibrium models, of a technique devel-
oped within the framework of full counting statistics for quantum transport [10], see
also [4, 5, 11, 12, 13, 14, 15]. Our approach is somewhat complementary to a recent ef-
ficient algorithm for the (approximate) estimate of the large deviation function [16, 17].

EXAMPLE MODEL

To illustrate our focus we consider the well studied one-dimensional boundary driven
simple symmetric exclusion process (SSEP), for which several rigorous results are
available [18, 19]. A state is represented by an array(ηi) of N units, which can either
be empty (ηi = 0) or occupied by one particle (ηi = 1). A transition takes place when
a particle moves to a neighboring empty site (with rate 1 ) or if it enters/exits from one
of the end sites, which are in contact with reservoirs at different chemical potentials (α
at i = 1 andα ′ at i = N). For example, a transition from a stateη to a stateξ due to
the entrance of a particle from the left reservoir (η1 = 0 → η1 = 1 and the rest of the
array is unchanged) takes place with ratek(η ,ξ ) = exp(α/2). Observe that we impose
the physical condition of local detailed balance, meaning that the rates should obey

k(η ,ξ ) = a(η ,ξ ) exp
[entropy flux

2

]

(1)

with some symmetric prefactora(η ,ξ ) = a(ξ ,η). Here, we have takena = 1 and the
irreversible entropy flux from the left particle reservoir is α per entering particle. We
expect that systematically a net particle current flows through the system, from the side
with higher chemical potential. As we follow the path or trajectory η(t) over some
time-interval t ∈ [0,T] we can read the number of particles that enter from the left
(left time-integrated particle current) and the number of particles that exit to the right.
These are of course fluctuating currents, as the path(η(t)) is random with a distribution
obtained from the Markov dynamics. For our purposes, the information on the dynamics
is summarized in the generatorL, anM×M matrix with elementsL(η ,ξ ) = k(η ,ξ ) for
η 6= ξ andL(η ,η) = −∑ξ k(η ,ξ ). Exactly because of the nonequilibrium condition
α 6= α ′, the matrixL need not even be diagonalizable. For the final algorithm, that
involves a departure from the more standard Rayleigh-Schrödinger set-up, as we might
not have an orthogonal basis of eigenvectors.

PATH-SPACE IDENTITY

To understand the theoretical point of departure of the method, it is useful to separate
the time-antisymmetric part from the time-symmetric part in the path-space distribution
of the Markov process. Under the condition of local detailedbalance (1), the time-
antisymmetric part is directly related to the variable entropy flux and the time-symmetric
part measures the dynamical activity, calledtraffic [20, 21] in the system. Because of the
normalization of the path-space distribution these two sectors have related fluctuations,
as we will make explicit below in (4). Specifically, we consider ensembles of bonds
B= {η → ξ} that all equally contribute to the same time-integrated mesoscopic current



JB =
∫ T

0 dJB(t). In our example, we can takeB1 containing all transitions getting one
particle into the system and coming from the left reservoir,and B2 consisting of all
transitions in which a particle leaves the system to the right reservoir. We denote by−B
the ensemble of reversed transitions, giving rise to an instantaneous currentdJ−B = −1.
We are then interested in the various moments and correlations between theJB’s. These
can be obtained from the cumulant-generating function

g(σ) =
1
T

log〈exp∑
B

σBJB〉 (2)

in the steady state of the system. For example the second (partial) derivatives with
respect toσB1,σB2 give a covariance between two currents. The point is now thatthe
exponent in (2) can be read as an excess entropy flux∑BσBJB, whose fluctuations are
the same as that of a dynamical activity in a Markov model withextra driving. To make
that last point, we imagine an extra driving by modifying therates to

Lσ (η ,ξ ) = k(η ,ξ )eσ(η ,ξ )

for some antisymmetric functionσ , which, allowing some abuse of notation, is
σ(η ,ξ ) = ±σB if (η ,ξ ) ∈ ±B. One should check the local detailed balance condition
(1) to see that some extra entropy flux is imposed. Both the original Markov pro-
cess (with generatorL) and the modified one (with generatorLσ ) have a path-space
distribution with action, respectivelyA andAσ , and for which

exp[T g(σ)] = 〈e−A+∑B σBJB〉eq

= 〈e−Aσ e−A+Aσ +∑B σBJB〉eq
(3)

with respect to some fixed equilibrium reference dynamics. If we therefore arrange that
the time-antisymmetric parts ofA andAσ differ exactly by the excess entropy flux, we
keep the excess in dynamical activity (time-symmetric parts):

−A+Aσ +∑
B

σBJB =
∫ T

0
V(η(t),σ)dt

for a particular functionV on the state space, that also depends on theσ . That function
V(η) essentially measures the difference in escape rates fromη for the original process
with respect to the one modified by theσ ’s. The conclusion is a general path-space
identity

g(σ) =
1
T

log〈exp
∫ T

0
V(η(t),σ)dt〉σ (4)

where the last expectation is for the modified steady state. The formula (4) is more ready
for asymptotic evaluation asT ↑ +∞ sinceV is a multiplication operator. The algorithm
must then give a systematic expansion in theσB of the largest eigenvalue (in the sense
of its real part) of the matrixL = Lσ +V(·,σ) = L + R = L + ∑B∑n≥1(σB)nL

(n)
B ,

whereR is the matrix with non-zero elements[e±σB − 1]k(η ,ξ ) only in ensembles
±B’s, where the rates ofLσ are different from the rates ofL. The details of this



expansion are in [9]. We just briefly mention that this expansion does not have the
advantage of dealing with symmetric matrices, as in the original Rayleigh-Schrödinger
method for quantum mechanical operators. The solution of the problem goes via the
use of resolvents. Interestingly, the final results include the group inverseG of the
generatorL as a main actor [22, 23]. This matrix contains all the informations needed to
compute the dynamical quantities of interest, like the stationary distribution〈ρ| and the

cumulants. For example, the variance of a current takes the form CBB = 〈ρ|L (2)
B |1〉−

〈ρ|L (1)
B GL

(1)
B |1〉 (by |1〉 we mean a vector of 1’s).

ILLUSTRATION

We end with a discussion of some results for the open SSEP introduced above. For the
SSEP on a ring, cumulantsQ(n) of the current have been computed theoretically [24].
Formulas for the mean current and its variance are also available for the boundary-driven
SSEP, while formulas for cumulants of ordern≥ 3 are known up to order 1/N [18, 19].
Being one-dimensional and finite, there is only one relevant current in the system, which
we identify with the entrance of a particle from the left reservoir. Our data, for system
sizes up toN = 14, at equilibrium with half-filling (α = α ′ = 0)1 perfectly agree with the
theoretical value:C(2) = Q(2) = (2N)−1. In the same conditions, for the fourth cumulant
we observe

C(4) = (C(2))2 =
1

(2N)2 (5)

for N ≤ 14, while to order 1/N one hasQ(4) = 0 [18, 19]. The relation (5) is slightly
different from the one found for the SSEP at equilibrium on a ring, where the asymp-
totic values of the second and fourth cumulants of the current are related byQ(4) =
1
2(Q(2))2 [24]. It turns out that the addition of a term= (Q(2))2 to Q(4) yields a good
approximation ofC(4) for finite N also out of equilibrium, see the Fig. 1(a). Finally,
we have tested that the relation (5) is not valid forα = α ′ 6= 0 (no half-filling) or for
α = −α ′ 6= 0 (a case of half-filling out of equilibrium), see Fig. 1(b).
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1 The chemical potentialsα and α ′ correspond to reservoirs with particle densityρa =
exp(α/2)/[exp(α/2)+exp(−α/2)) andρb = exp(α ′/2)/[exp(α ′/2)+exp(−α ′/2)) in [18, 19].
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FIGURE 1. (a) Fourth cumulant (C(4)) of the open SSEP as a function ofα, and the theoretical value
(Q(4)) by Derrida and coworkers, forN = 14 andα ′ = 0. The theoreticalQ(4) +(Q(2))2 is also shown.
(b) (C(2))2 andC(4) vs α for N = 14, withα ′ = α andα ′ = −α (see legend).
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