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Abstract We analyze a systematic algorithm for the exact computatiothef
current cumulants in stochastic nonequilibrium systems, thceiiscussed in
the framework of full counting statistics for mesoscopic systefiss method
is based on identifying the current cumulants from a Rayleigh&thger per-
turbation expansion for the generating function. Here it is ddrfvem a simple
path-distribution identity and extended to the joint statssof multiple currents.
For a possible thermodynamical interpretation, we compareaghigoach to a
generalized Onsager-Machlup formalism. We present calcutat@ra boundary
driven Kawasaki dynamics on a one-dimensional chain, both tfoactive and
repulsive particle interactions.
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1 Introduction

We want to present and to illustrate a systematic scheme fontpariciple ex-
act computation of all possible current cumulants in Markovastgits satisfying
local detailed balance. The algorithm is based on an idelnéityween current and
activity fluctuations, connecting the time-antisymmetrithathe time-symmetric
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fluctuation sector as is typical for a dynamical large dewiatheory in nonequi-
librium systems. We concentrate here however on the mechaspalct of the
method, how it can be seen as a modified Rayleigh&thger expansion with
specific computable expressions of the cumulants. Its releviartberefore in re-
liably producing also higher-order cumulants that can then biadu analyzed
for understanding the physics of some particular model. Westalit that for an
interacting particle system with boundary driven Kawasaki dyica.

As here we choose to emphasize the algorithm rather than itéedetameri-
cal implementation, we focus on relatively small systemswéteel excused for
the moment as exactly small open systems and their noneduiiti fluctuations
have been in the middle of attention in the last years. Theyniasically of rel-
evance to nanoscale-engineering and for certain cellular atetoiar biological
processes [1,2]. Charge transport in nano-electromechanicahsy#t often de-
scribed in terms of Markov evolutions, and is a subject of verivacesearch [3—
8]. First experiments were limited to measuring the mean curretd vaiiance at
most, but now also third and higher order cumulants have beesaitable, pro-
viding important information on quantum transitions [9,10]. Fée processes,
for instance in molecular motors or for ion-transport through memdchannels,
one easily reaches energy scales as low as &g&wl11,12]. Besides these cross-
disciplinary aspects, the study of all these commonly catbedoscopic systems
is important to unravel the structure of nonequilibrium stataétmechanics itself.

Fluctuations cannot be ignored for small systems but rather sggnatures
of important physics. The computational challenge in thisecs not so much
to reach large system sizes, but, for a fixed system, to obtaifutlest possible
fluctuation patterns of the quantity of interest for long timalss. Our results
contribute to the larger effort of organizing the computatimside of the recent
advances in nonequilibrium physics, cf. [13,14]. These thexaetesults have
often to do with fluctuation theory, as in the Jarzynski-Crookdireia [15, 16] or
in the fluctuation theorems for the entropy production [17-23],goidg reliably
beyond Gaussian characteristics in the nonequilibrium statis just a necessary
but often nontrivial prerequisite.

One of the traditional approaches to nonequilibrium solidespabblems is
the Keldysh formulation in terms of nonequilibrium Green’s fuans [24,25].
Currents of any type are obviously among the most important calkery and
their fluctuations are written in the cumulants. The basic orbibf the present
paper comes from calculations within full counting statisfimssmall quantum
systems [6,26,7,27—-31]. We propose yet another derivationdssidal stochas-
tic systems based on a single path-distribution identityctvizllows to discuss
also joint current fluctuations. What follows can be seen as aptation to the
framework of Markov dynamics for the computation of joint currennelants in
classical interacting particle systems. In [21,32-38] one feiaslar treatments.
Moreover, our computational scheme aims at the same goal[@9-1], but it
yields exact results for small systems. The core idea of theadétha sufficiently
simple identity, (8) below, that we use in combination witlparsion techniques
for eigenvalues. The novelty in our work is then as follows:

1) We use a nonequilibrium version of the Rayleigh-®dimger (RS) expan-
sion to obtain a systematic cumulant expansion for the curtatistcs, general-
izing the approach of [26] to also include joint fluctuationsddferent currents.



This is particularly useful for the numerical evaluation of higbeder cumulants
(say from third-order on) as finite-difference calculations generate mumeri-
cal errors. One hopes that they are also within reach of experitmaathods on
real nonequilibrium systems [9, 10]. In that case they would balirable tools in
any attempt of reverse engineering. The RS expansion for (in demexarsible)
Markov dynamics is computationally useful as every order in ttpaesion em-
ploys the same basic information about the dynamics. Sincg¢herators of
stochastic dynamics are not symmetric matrices, their setgehgectors might
be incomplete. This is taken into account in the solutionhef problem, which
involves the use of the group pseudo-inverse of stochasticeaatjd?2].

2) In Section 4 we add a thermodynamic interpretation of the nwalgpio-
cedure in terms of the time-symmetric sector of nonequilibriurtdiations. This
lines up with the recent introduction of the novel concept dfitavhich, roughly
speaking, measures the amount of dynamical activity in tetesy. This activity
counts the number of all jumps irrespectively of their directand hence it is
symmetric under time reversal [43—45]. It has also been conside|8d ,i46].

3) We illustrate the procedures for a boundary driven Kawasakirdies for
which an exact or analytic solution is far beyond reach, se#i@e3. It is inter-
esting to discover systematic tendencies in the role of aitteagersus repulsive
potentials for the current statistics away from equilibrium.

The paper is organized as follows: In the next section we axglaine basic
identities that lead to the formulation of the problem as anuatain of a certain
eigenvalue. Section 3 gives an explicit example where théadeis applied to
a boundary driven interacting particle system. Section 4 reffectser on the
method from the point of view of the theory of large deviations: point out the
role of a novel concept, that of traffic, in the interpretationta# various terms.
The paper closes with Appendices giving details on the nueémal its numerical
implementation.

2 Method
2.1 Current fluctuations

We suppose a continuous time Markov jump pro¢egs~o on a finite state space
K with M elements. The dynamics is specified by all transition ratgsé ), from
each state) to each otheg # n, as summarized in the generatgrwhich is a
M x M matrix with elements

Lpe =k(n,¢) ifn#é&
Lon=—) k(n,§) @)
z

Note that the diagonal elements equal minus the respectiapesates. We as-
sume irreducibility in the sense that all states are reachabledrynother state in
some finite time. Hence, there is a unique stationary distobuti We are mostly
interested in breaking the detailed balance condition, dyittre process outside
equilibrium; see Appendix A for some formulation.



The matrixL generates the stochastic evolution in the sense that

d
S{FOR) = (LHOK))

for all vectorsf : K — R. The bracketg-) are averages both for the random (as
yet unspecified) initial conditions as over the stochassjettories. The Markov
procesg X ) is a jump process in the sense that the trajectories are piecewise
stant (in time) with jumps¢ = n — X+ = & from some state) to some staté
at random moments We consider the stationary process starting fppm

We consider each ordered pair of connected stategn, &) and its inverse
is —b = (&,n). For a given trajectorgo = (%,0 <t < T), over some time-span
T we have a microscopic curredd,(t) = +1 when the state jumps at timever
the bondb, while dJ,(t) = —1 when the state jumps over the boad. The time-
integrated current

Biw)= [ ") @

thus counts the number of net jumps over the oriented toimdthe time span
[0, T]. Note that the dependence ®rin the left-hand side of (2) is not explicitly
indicated. If we look at the stationary state, we should takesttpectation of (2)
and divide byT to get the flux (per unit time). In the stationary state, the exquect
current over the bond and per unit time equalg = p(n)k(n,&) — p(&)k(&,n).
The main reason to consider all these currents like in (2) on tlestfstale of
transitions and the complexity of the full joint fluctuatiomsto be able to move
to arbitrary and more coarse-grained scales of description. In afiphs, the
physical currents are all obtained by combinations of these misri@/er bonds.
For example, an interesting current in a lattice system mighmhtthe passage of
particles from one given site to another. In this case the currenather of the

form
B=5 % 3
beB
whereB then includes alb = (n, §) from a state) with a patrticle in the first site
to a statef where the particle has moved to the second site (the ensentble
includes all bonds-b of the opposite transitions). This will in fact be our main
example (section 3).

We can formalize that: To keep the discussion as general abpmdsit with
an eye on the actual application, we consider a partitionlairdered bonds (or
connectionsp’s consisting of set8,B',... for whichB,-B,B',—B',... are mu-
tually non-overlapping. The fully microscopic description isoeered when each
of these sets contains exactly only one bond.

We are interested in understanding and computing the jointgiticins of the
currentslg, properly rescaled 8B T . So for example, we want to determine the
covariances

Chy = 3 [(9e) — (36} ()] @

in the large timeT limit for BandB’, which corresponds to the steady state regime.
From now on, the bracket-expectatigns ) refer to the mathematical expectation
in the assumed unique stationary process. Higher-order cuta@emalso impor-
tant, for example to determine the deviation from Gaussian behav



In general, the computation of these cumulants like in (4) ve®ldetailed
information about the time-autocorrelation functions. This infation is hidden
in the spectrum of the generatbr What we will do amounts to extract that in-
formation from a systematic numerical scheme. As a further resutesgns
are obtained for these cumulants in terms of expectations eff&psingle-time
observables under the invariant distribution, which allovgs &b see relations be-
tween the various cumulants and what governs them.

2.2 General identity

The method of computing the cumulants for the currents starts frgenaral
identity (8) that relates the current fluctuations with fluctoiasi of occupation
times.

We fix a set of numbers = (og). The cumulant-generating function for the
joint fluctuations of the selected curredtsis then given by

gr(o) = % log(e>8 %) (5)

By definition, the derivatives ofir (o) at o = 0 give us all possible cumulants.
For example the second (partial) derivatives with respedit@g give (4). We
therefore want to obtain an expressiorgefo) as a Taylor-expansion in thas's,
for T — +oo.

In order to do so and given the original Markov process with refgsé) we
now construct a new Markov process with generaigrwhere the rates relative
to bondsb = (n,&é) e Band—b= (&,n) € —Bare

£(n,&)=k(n,&)e%®
((&,n)=k(&,n)e®
We further define the vector

vV(n)=

(6)

g k(n,&)[e"® —1] )
&:(n,§)e+B

where the sign in the exponent depends on whetheé) = +b for a selected
bondb.
The generating function (5) can be rewritten via the identity

<ezBUBJB> _ <efoTV(X1)dt>U (8)

where the last average is over the Markov process with ¥tes ), hence de-
pending oro.
To prove (8) we note that in going between the two averdgemnd(-), there
is a densityeR(@),
(F(w)) = (F(w)e¥)q ©)

that is given by

g Xe) T _
Q) = F 0875y~ fp & THOE) -~ (0.0



where the first sum is over all jump times w where the state chang&¥s— X+,
see for example Appendix 2 of [47] for mathematical details. As@sequence
and via (6),

]
Qw)=-3 JBJB+/O V(%) t

SubstitutingF = expy g ogJg into (9) gives the result (8).

We remark that Eq. (8) shows that the current fluctuations can hessed
in terms of occupation time fluctuations in a tilted path-spaeasure, see also
Section 4. It is not a new observation, see for instance [21, 36ifor related al-
though less explicitly stated considerations. First we comtiwith its exploitation
for computational purposes.

If one has only one sd8 with gg = A # 0, the current generating function
simplifies to

GB(A) = T log(e®) (10

The identity (8) obviously remains valid, now with

Ve(n)=[' -1 5 kn&)+e*-1 Y kE&n) @1

(n,§)eB (E,m)e-B

2.3 Feynman-Kac formula

The right-hand side of (8) involves the single-time observahle contrast with
a current being a double-time function. TWean therefore be taken as a potential
(diagonal matrix)V in the following sense: given the matri¥ = Ly +V,

i 2 log(e V0%, — a2)

where€’Z?*is the largest eigenvalue (in the sense of its real pactyof

The asymptotic formula (12) is the limit of what is known as thgrifean-Kac
formula. For our context, one finds a proof of it in Appendix 2 of][4%s a result,
the current cumulants can be read from the Taylor-expansion ofigeenalue
e with explicitly known matrix

L=L+%, R=Lo—L+V

with % having non-zero elements only for the pdirg &) in some+B with og #
0. More precisely, fob= (n,&) € B,
Zne =k(n,&) 6% 1]
Ren =k(&,n) e —1]
Since we required that an ensemble of transitiBrdoes not overlap with any

otherB’ or —B', we can decompose the matri® in a convenient sum of ma-
tricesEg(og) andE_g(0g), where each matrifg has non-zero elements equal

(13)



to k(n,&)e% only for (n,&) € B, and similarly each matrif_g has non-zero
elements equal th(¢,n)e % only for (§,n) € —B. Thus,

X = g [Es(0s) —Es(0) +E_g(08) —E_5(0)] (14)

We finally remark here that the maximum eigenvadl2* is simple, which
follows again from a Feynman-Kac formula saying that

T <
(o VOUUS, N oxn = (€7)pe >0

By the irreducibility assumption, the left-hand side is in facicfly positive (for
any T > 0 andV), hence the right-hand side is a matrix with strictly positive
entries. Therefore, the Perron-Frobenius theorem implies_#hdtas a unique
maximum eigenvalue. Moreover, the right and left eigenvectbrthat largest
eigenvalue ofZ have strictly positive coordinates. Exactly all the same ie fou
the generatok.

2.4 Expansion

From the previous discussion it is clear tlvétgoes to zero with theg's. More-
over, there are no cross-terms containing mixed derivative® afith respect
to the gg’s. As we recognize the cumulants of the current distribution froe t
Taylor-coefficients in the eigenval@g?, it is natural to write

#=3 (gt +0BL +..)
over the order in theg's. Then, foreacm=1,2,... andB
1
25" =~ [Ea(0) + (~1)"E_g(0)]

This means that all odd ternmzén) are the same matrikg(0) — E_g(0), and

that all termm!ﬁén) with n even are equal tBg(0) + E_g(0).

From the RS perturbation expansion, see Appendix B, we obtaifottowing
cumulants. It is important to note that the computation proseddays from the
same basic ingredients. The input consists of the stationsiybdition p and the
expression for the pseudo-inversd_osee below. Therll cumulants follow from
an exact numerical calculation. More details on the algoritherimAppendix B.

2.4.1 First order

As needed, the formula for the first order cumulant corresponds &xghextation
of the current,

i lim L3 = (oY
jp=lim = (Js) = (p|-L5" 1) (15)

where we use the Dirac notation for left and right eigenvectgrkis the density
giving the steady state occupation probabilities of theestaind1) is a column
vector of 1's. They are the left and right eigenvector& pfvith maximal (always
in the sense of real part) eigenvake= 0.



2.4.2 Second order

The expression for second order gives the variance

Cos = Jim Cf =2 (p|(%” ~ %57 6.%5")1) (16)
for the currentjg over bonds with fieldg, and the covariance (4)

Ceer = lim Cly =~ (p|(£5” 6.23")|0)
TTte (17)
— (ol 6.4

if B # B'. The matrixG is the pseudo-inverse of the matiixin the sense of
Drazin [42], see Appendix A.
2.4.3 Third and fourth cumulant

For the higher-order cumulants we restrict to the condition déhgle global cur-
rent, as in (10) and (11). In this case, we have a single ensararid the identity

(8) reduces to
(&) = (glo Vel k),

As a result, the analogue of (12) is verified for the mat#tx= L + Z with # =
Eg(A) —Eg(0) + E_g(A) — E_g(0). By expanding the exponential arouhd= 0,

we write
+o00

Z=S AW (18)
2
and the cumulants are obtained from the scheme outlined in therfgix B.
The third cumulant of the curredg over bondd € Bis then

c® =31(p| [ 20 W2y 4 UG rUG W
19
Dey@ _ oy g(l)} 1) (19)

and the fourth cumulant is

c@ =41(p| {3(4) — PQey@ _ Cﬂg G2y _ (jg)22Wa3 20

+ W6y ey _g( 1cxWerVeeW
_ #@cyW _ Uy
1+ 2@cyWcyl L yUgyrhey?
—is (3(2)62.,2”(” +.$<1)G2,,§,”(2)>
+iB (3(1)6.,2”(1)G2$(1) +f(1)(32$(1)(33(1)) } 1)
(20)

Note the symmetry in the terms: when a sequence of matrices jzfintirome,
there is also its reversed one.



3 Example

We consider a generalization of the symmetric exclusion p(&EP), in which,
besides via the exclusion principle, particles are also intigwith their nearest
neighbors at a finite reservoir temperatgret. Let us consider a lattice gas on the
sites{1,...,N}, where a configuration is an array of occupationd, = 0,1 for
1<i < N. The state space is thigs= {0,1}N, with M = 2N different states. One
can think of particles (and holes) hopping in a narrow and smdédgfely ho-
mogeneous) channel. The specific calculation below hasdm@nfor a relatively
small system wherBl = 8. We comment on size-dependence of the algorithm in
Appendix C

For the dynamics there are two modes of updating: In the bulkrt&clgacan
jump to nearest neighbor sites. Then, the occupation oveargesieneighbor pair
of sites is exchanged. For a transitipr— & of this kind we take a rate of the form

(0. €) = exp| -2 (H(E) ~H(m)) 21)
whereH is the energy function
N-1
H(n)=—¢ ; n(in(i+1) (22)

for some parameteg. Thus, only pairs of particles occupying nearest neighbor
sites have an energetic contribution.

At the boundaries one has the second kind of updating. At sité particles
can be exchanged with an external reservoir having chemicahpaka /(3. In
the case of a particle leaving the systemi@) = 1 — £(0) = 0) the rate is given

by

(n, &) = x5~ i) —nny)] 23)
while a particle enters into the system at $ite 1 with rate
n. &) =exp[ 5~ (&) —Hn)] (24)

We focus on the time-integrated currehpassing through the sife= 1, which
increases by 1 every time a particle enters there from the reservoiteamndases
by 1 every time a particle leaves the system from there. As exglamprevious
sections, this is the sum of all microscopic curreltever bonds connecting a
staten with n(1) = 0 to another staté with £ = ) on all sites excepf (1) =1. At
the other boundary site= N a similar structure may be imposed, with chemical
potentiala’/B.

The model is a boundary driven Kawasaki dynamics, reducing tmdbary
driven SEP for = 0. This infinite temperature case is completely solved con-
cerning current fluctuations in [48,49]. ¢&f = a’, then it is easily checked that
the model satisfies the condition of detailed balance witpaetsto the grand-
canonical distribution for energy (22) and chemical poterdiaB. If however
a # a’ then the system is driven out of equilibrium: the difference iecfve
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Fig. 1 (Color online) First four cumulants of the current disttibn as a function ofx, for 5
values of the interaction “strengtif’ (see the legend). Note that fBr= 0 (SEP) odd cumulants
are antisymmetric functions of the driving, while even clamis are symmetric functions. This
is due to a particle-hole symmetry, which is lost for inteirag particles.

chemical potential between reservoirs generates a particle tthrengh the sys-
tem. It is a fluctuating current and we study here its cumulantsother models,
similar questions have been addressed for example in [50, 2tieSton the den-
sity fluctuations for the boundary driven exclusion process ajfg2rb3].

For simplicity, we setn’ = 0 and drive the system by varying onfyand 3.
The casex > 0 thus corresponds to a reservoir that pushes particles from the left
into the system, forcing a positive stationary currénThe casex < 0 instead
corresponds to a left reservoir that tends to remove particles. Asgillveee, the
two situations are definitely not the mirror image of each othele@sf = 0).

Since the produdie is what matters in the transition rates, we simplyssetl
and we use the possibilif§ < 0 for characterizing repulsive potentials. Particles
instead attract each other ffr> 0. Particle interactions very much complicate
the model which is no longer analytically tractable. We useahove formalism
to evaluate the current cumulants for different parameter valogsestingly, in-
teractions induce qualitatively novel behavior for the cursgatistics.

3.1 Mean current

The mean current as a function oftx and for severafl’s is shown in figure 1(a).
For a givenp, j increases witha, linearly arounda = 0, as expected close to
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Fig. 2 (Color online) First four cumulants of the current disttibn as a function of3, for 5
values of the drivingr (see the legend). Odd cumulants are identically zero whesyktem is
in equilibrium (@ = 0).

equilibrium. For eaclor > 0 the mean current is maximal for a repulsive interac-
tion (8 < 0), see the two examples in figure 2(a). In general, the mean cyrient
not antisymmetric with respect t, and its value ird can be very different from
—jin—a.

For 8 — —oo the problem can be mapped into the dynamics of non-interacting
dimers {0,1)” and of 0's. In this limit the system is somewhat like a SEP with
1's replaced by dimers, and one thus expects a finite mean cuderhe other
hand, for3 — +oo, particles stick together and it becomes more and more difficult
for a hole (vacancy) to get in, to reach the bulk and finally to rethehother
boundary of the channel. The hole essentially performs a randdkwith an
open left boundary before eventually reaching the system at theb@undary.

If more than one hole enters into the system, there is a good chhataoles
stick, further reducing the energy of the system, and their owhility and j as
well. Thus, forB — o we expectj — 0. These scenarios are qualitatively well
confirmed in figure 2(a).

For B = 0 one has the well-studied driven SEP. In this case the current is
antisymmetric witha, like all odd cumulants, because of a corresponding parti-
cle/hole symmetry.
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3.2 Variance

The second cumulant of the current distribution is its variaf@e.3 = O the
variance is symmetric witlr (as every other even cumulant), while for all other
cases it displays a non-trivial dependenceooand 3, see figures 1(b) and 2(b).
Fore? > 1 (seeB = 4 in figure 1(b)) the variance, as the current, can reach very
small values, confirming the scenario proposed above.

3.3 Third and fourth cumulants

As for the current, fo3 = 0 (SEP) the third cumulant of the current is antisym-
metric witha, see figure 1(c). In general, however, it is a complicated function o
a andf3, as evidenced by figure 2(c). For example, in contrast with thenmpea
it can be a non-monotonous functionaf Similar arguments apply to the fourth
cumulant, see figure 1(d) and figure 2(d). The third and the fourth amhalso
appear going to zero fa® > 1.

4 Traffic

Systematic perturbation techniques better be accompaniaddrger theoretical
understanding. A major step in the analysis of the problem iad lizat proceeds
the numerical algorithm is contained in the simple path-distidn identity (8).
On the left-hand side, this identity involves an average ovérgza in the origi-
nal process, with probabilities Pr@b). The respective probabilities in the tilted
space (with rates (6)) can be written as Ryab) = e Q(“) Prol{ w), with relative
path-space actio®. Since on the left-hand side of identity (8) we have a current
generating function, a time-antisymmetric quantity is invdlv@n the other hand,
on the right-hand side of (8) only a potentiabppears, i.e., a quantity depending
only on the states and thus insensitive to time-reversal. Heheechoice of the
tited Markov process is exactly such that the change in the-amtisymmetric
part of the path-space action equals the appropriate sum oventurfidhis is
why the exponent in the right-hand side of (8) contains a timersgtric function
only.

Such considerations are typical of the Lagrangian approachnequilibrium
statistical mechanics as pioneered by Onsager and MachHijp HBre however
we are not even close to equilibrium. We thus move on a somevemerglized
formalism that remains quite simple for finite state space Markoegsses. Nev-
ertheless the structure of time-symmetric versus time-antisyriorletctuations
is possibly important for nonequilibrium thermodynamics, ifyoto identify the
relevant thermodynamic potentials, cf. [43—-45]. Such an ideatifin proceeds
via a dynamical fluctuation theory, in which we next situateain identity (8).

In order to rewrite (8) in another convenient form, we define occapaiimes
as

.
(@)= 7 [ dtde
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that the pathw = (X,0 <t < T) spends in statg. Then, the exponent in the
right-hand side of (8) equalfy V(X)) dt =T 5, V(1) iy (w) or,
<eZBUBJB> _ <eTZnV(fI)Nn>G (25)

The current statistics is therefore obtained when one knows the tieviation
rate functionl @ for the occupation times,

Proby [y ~ p(n),¥n] ~e TP T 1 4o

for the modified dynamics (6):
i = log(e%575%) = sup(p-V —1° (1)) (26)
u

We have in mind here the application of the theory of large dna as pioneered
in [55] for Markov processes.

In that last variational expression (26), the potenfialso depends oa. Let
us introduce the antisymmetric fora(n, &) = og for (n,€) =bando(&,n) =
—o(n,&). Then, the change (6) from the original rat€s, &) to the new rates
¢(n, &) adds a further driving (in the spirit of local detailed balance): f(@nthe
term

p-vV =% umvn)
n

— on.g&) _
WUDLUMLERSE @

-3 5 1(0-6) = tusn. )
n,

is an expected excess traffic, defined for r&tas

Tuk(n,&) = u(n)k(n, &) +u(&) k(&)

and similarly for rateg, see [43—45]. The traffic expresses a time-symmetric kind
of dynamical activity over the bonkl= (n,&). In fact, all cumulants of the ex-
pansion in Section 2.4 contain the term

jg fornodd

n(p| gé”) 1= {TB for neven

with expected current over bontss B

js = (pl[Es(0) —E-8(0)]|1)
and with corresponding expected traffic

T8 = (0|[Es(0) +E-8(0)]|1)

For instance, the first term on the right-hand-side of (16) is thgostay traffic
18, While the second term can be interpreted as a zero-frequency aelation
function.
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We stress that the traffing is symmetric under the exchange— &, while
the currentjg is antisymmetric. In other words, the traffic adds a time-symmetric
aspect to the evaluation of the dynamical activity. Finallyte that the following
identity holds,

(p|Z|1) = g [tg (coshog — 1) + jg sinhog|
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A Markov generator and its normality

The operatot that generates the Markov dynamics & M matrix, and its spectral properties
appear in the expansion for the cumulants (see more in theapgendix). It is important to

realize some important changes with respect to equilibricion an equilibrium process with
reversible distributiomp > 0 there is detailed balance,

p(”)'—né = p(f)'—én

Equivalently, the matrix
1

p(&)

is then symmetric and hence diagonalizable with a complat®pnormal set of eigenvectors.
The matrixH is obtained fromL via a similarity transformatiotd = Q~1LQ with here, and
that is essential, a diagonal similarity mat€X In other words, we easily find a scalar product
for which the eigenvectors of a detailed balance generatoor@honormal. All that need not be
possible for nonequilibrium processes.

A central notion here is that of normality: a matrix is nornfahnd only if it commutes
with its adjoint if and only if it has a complete orthonormat sf eigenvectors. Detailed balance
generators are similar with diagor@ito normal matrices while nonequilibrium processes have
generators that need not be similar to normal matrices .at\den such a generator is similar
to a normal matrix, then it is diagonalizable and we can woitk\a bi-orthogonal family of
left/right eigenvectors. The following example illuseatsome of these points.

Take the fully symmetric 3-state Markov process, i.e. withaes equal to 1, and perturb
it obtaining the generator

—2—f+g 1+f 1-g
1-f —-24f-h 1+h
1+g 1-h —2—g+h

Hye =vp(n)Lye

in the region f|,|g|, |h| < 1. The condition of detailed balance is satisfied on the serfa- g+
h+ fgh = 0. The nature of the spectrum depends on the sign ef fg+ fh+gh: if D <0,
then the generator is diagonalizable and has real eigewsaflD = 0 and at least one of the
f,g or h is non-zero, then the matrix is not diagonalizableDif> 0 then it is diagonalizable
with complex eigenvalues. In particular, all three casesiparbitrarily close to the reference
equilibriumf =g=h=0.

One consequence of the above facts directly concerns tfamskm and calculation of the
cumulants following the scheme of Appendix B. We cannot $ymgly on making use of some
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of the standard tools of quantum mechanical calculatié®,decomposition in an orthonormal
basis. An important example concerns the calculation ofpgeudo-inverse as in (16)—(17).
When we still have a decomposition of the unity in terms of/tigfht eigenvectors, then the
pseudo-invers& can be obtained from

|_\

1 o
G=(I-P) (I~ P)_z\wv —O )

with (p§0>| and\w\(,o)> left and right eigenvectors df with eigenvalua(,0>

P=[1)(p|

is the projection on the vector space of constant functitreréforel — P is the projection on
the space orthogonal to them). In our general case, we erttpayroup inverse, a special case
of Drazin inverse, see [42]. Its role for the computatiotaldry of Markov processes has been
advocated in [56]. The group inverselofs the unique solutios of the equation

LGL=L, GLG=G, LG=GL

< 0, and where

As will appear in the next section, and as visible alreadyt8)€(17) and (19)—(20), that pseudo-
inverse appears in the cumulant expansion.

A final important difference between symmetric versus ngmysetric matrices (up to a
diagonal similarity transformation) concerns the appiaaof a variational principle to char-
acterize the maximal eigenvalue. For example, in quantuchardcs one usefully employs the
Ritz variational principle for Hamiltonians (Hermitian tiges) and for finding the ground state
energy. We are not aware of an extension of that Ritz variatimethod or of a more general
minimax principle to non-Hermitian matrices. The only aidnal characterization that seems
to remain goes undirectly via the relation of the largesemiglue to a suitable generating func-
tion, like in (12), which itself obtains a variational expséon in terms of a large deviation rate
function, like in formula (26).

B Rayleigh—Schidinger expansion: the algorithm

We give a review of the expansion that is used to compute tdilg orders in the maximal
eigenvalue. We refer to pages 74-81 in the book of Kato [a®]full details and for a rigorous
treatment.

The RS expansion finds its origins in quantum mechanicallpnob of time-independent
perturbation theory [60—62]. In contrast with the situatio quantum mechanics or with the
case of detailed balance, we have in general no scalar grémuehich L has an orthonormal
basis of eigenvectors. In many cases in nonequilibrium, avieave a bi-orthogonal family dfl
eigenvectors (instead of the orthonormal family in quantoethanics) but it also happens that
the generator is not diagonalizable and that we have no ppate basis to express most easily
the expansion. Fortunately, all that is not necessary amatpansion can proceed in a more
general way. One simplifying feature is that the maximakeiglue that we need to compute
is simple, as shown in Section 2.3. For the purpose of theeptédppendix, we also make the
simplification that only on@g = 0 # 0.

The starting point is th& x M matrix L + .2 that we write in expansion

L=L+%= Z}akﬂk% 20 =L (28)

The unperturbed generatohas a resolvent(k) = (L — k) =1 with Laurent series around= 0
given by
1

L—«k

=Pt 3 WGm (29)

for the projectiorP = |1) (p| on the eigenspace of eigenvalue zero, @rttie pseudo-inverse in
the sense of Drazin as we had in the previous section.
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The resolvent forZ is 1

£ —K
defined for allk not equal to any of the eigenvalues.#f. It can be written as a power series in
o around (29):

r(o,K) =

r(o,k) =r(k)+ f a"r™ (k) (30)
n=1
with
k) = 5 (=DPr(k)LMr(k) 2. 2 (k)

Vi+...+Vp=n

where the sum is over all€ p < n,v; > 1. On the other hand, by Cauchy’s residue theorem
e(o) = —iTr?{ Kr(o,k)dk (31)
- 2m r ’

for a circlel” enclosing zero but no other eigenvalued.obJpon substituting (30) into (31) we
obtain

e(a):—%Trja{ Kr(K)Ji0 [~ 2r(k)]Pdk (32)
mJr &
whereZ of course depends an. Since%r(x) =r(k)?, we have
d‘i [21(k)|P =21 (K)... %1 (K) %1 (K)?
+ RV (K)... R (K2R (K)
oA R(K)P . R (K)RT(K)

Observe now that the trace and the integration commute $¢32pbecomes
w 1 d
- r;z{ —~2r(k)]"dk

and after integration by parts

e(o) = —Tr]{ +zm —Zr( K)

or

1
e(0) = fz—mTr'}[r log [1+ 2 (k)] dk 33)
Expanding the logarithm with (28) makes the expansion ofitagimal eigenvalue
+o0 +o0 (n)
=3 e = ) G“C—I (34)
n=1 n=1 n
for N
(n> —_— V1 vp
e o Tr ?{ Z! . r(k)dx (35)

Vi+.. +Vp =n

We finally substitute the series (29) and perform the integgain with the residue theorem to
get the result

o _ g P T Treuga gngh) (36)
=t P v Fup=n
Ky +...4+kp=p—1
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whereS® = —p andS¥ = G¥. The last formula can be written more explicitly obtainig t
different order<(™ = nle™ as in Section 2.4. As an example, let us show how to compute the
cumulant of orden = 2. The possible cases in the first sum of (36) are {henl andp = 2.

For p = 1 the second sum can only have = 2 andk; = 0, hence the contribution is
—Trz@459 It is convenient to use the cyclic property of the trace aper TrAB = TrBA,
and the definitiorS°® = —P to rewrite the term as RZ@. In general, given a set of left
eigenvectorgp,| and right eigenvectorsv,), for the trace one has &= 3, (po¢|Alw;). Here,

the projectiorP on the 0-th eigenvectorggd| and|1)) simplifies this term tqp|.2(?|1).

The only combinations of two numbers summing upte 2 is (v = 1, v, = 1), while there
are two choicegk; = 1,k; = 0) and(k; = 0,k = 1) summing up tqo— 1= 1. The former case
corresponds td Tr.zVsY. W89 = ITr.2WG2M(-P) = Tr-P2MG.2W, which
is equal, according to previous argumentst§(p|.2VG.ZD|1). The same is true for the

second tern} Tr.#(MS0 (WS and their sum cancels the factg2l Hence, overall one has
the second cumulant given in Eq. (16).

C Numerical scheme

We have shown that all that is required for the computatioousfiulants, regardless of their
order, is the information on the stationary distributigri and on the group inverse of the gen-
erator, i.e. the matrixs. An efficient computation o6 thus enables really making use of our
formulas for the cumulants, like in EQ’s.(15)-(17), (19)d20). GiverG andp, each cumulant
is computed just by some matrix multiplications. The estevaf the group inverse of a genera-
tor L is discussed in section 5 of [56] and in [57]. In the compotaicarried out in this work,
it turned out that
G=P+(L-P)!

was the most stable way of computi@for all parameter values. This formula derives most
conveniently by using the properties of the so called furetaad matrix, see [58].

However, for systems with a large number of degrees of freedbis rarely a good idea
to directly invert matrices. Fortunately, it is also not essary here. Note that any vecigr=
Gly) coincides with the (unique) solution of the equatida) = (I — P)|y) constrained by the
condition(p|z) = 0, as immediately follows from observing thab = GL =1— P and(p|G=0.

Hence, objects lik&LVGLM|1) or GAL(A)|1) can most conveniently be determined by solving
a linear system oM equations with subsequently updated right-hand side. Tihaer of such
linear problems is fixed by the order of cumulants to be coembuthis formulation also invites
an application of fast iterative methods and various sclsetnestore sparse matrices in the
memory, which enable to remarkably increase the system size

The second basic ingredient of the proposed algorithm isdhgputation of the stationary
distribution (p|, for which one can choose among the available algorithmshemarket. A
possibility is to implement an Arnoldi scheme, or to simpbtaithat the iteration ofpi1| —
{(pi|(L+cI) converges to the eigenvector(@f+ cl) with largest modulus, which coincides with
(p| if the real constant > 0 is larger than the modulus of all eigenvalue4 of

Let us finally stress that the estimates of cumulants obdaiméhis paper, besides having
their own theoretical interest, have the advantage of awithe use of finite differences, in this
case of eigenvalues &f; obtained at different values of the parameters.ike it is convenient
to estimate the specific heat of a system from the variancéenhergy distribution rather
than from finite differences of the energy at different terapgres, we avoid the calculation of
derivatives from finite differences, also because they lishae dangerous dependencies on
parameter step-sizes and the numerical instability cdedegith this. The latter is expected to
be particularly problematic for cumulants of higher order.
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