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Abstract. We estimate by Monte Carlo simulations the configurational entropy
of N -step polygons in the cubic lattice with fixed knot type. By collecting rich
statistics of configurations with very large values of N we are able to analyse
the asymptotic behaviour of the partition function of the problem for different
knot types. Our results confirm that, in the large N limit, each prime knot is
localized in a small region of the polygon, regardless of the possible presence of
other knots. Each prime knot component may slide along the unknotted region
contributing to the overall configurational entropy with a term proportional to
ln N . Furthermore, we discover that the mere existence of a knot requires a well
defined entropic cost that scales exponentially with its minimal length. In the
case of polygons with composite knots it turns out that the partition function
can be simply factorized in terms that depend only on prime components, with
an additional combinatorial factor that takes into account the statistical property
that by interchanging two identical prime knot components in the polygon the
corresponding set of overall configurations remains unaltered. Finally, the above
results allow one to conjecture a sequence of inequalities for the connective
constants of polygons whose topology varies within a given family of composite
knot types.
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1. Introduction

A long, flexible polymer chain in good solvent can be highly self-entangled [1, 2] and
if a ring closure reaction occurs, or if its extremities are held tied by some device, the
entanglement can be trapped as a knot [3, 4]. Moreover, because of the excluded volume
interaction, a knotted molecule cannot change its topological status without breaking
and reconnecting chemical bonds. This, for example, is the situation one encounters in
biological systems, where special enzymes, called topoisomerases, can pass one strand of
the double stranded circular DNA through another, and knot or unknot the molecule to
facilitate elementary cellular processes [5, 6]. In general, however, there is no spontaneous
transition between different knot types, and in the most common experimental situations
the topology of the ring does not change in time. Clearly, the presence of topological
constraints limits the configurational space available to the ring, with a consequent
reduction of the entropy of the system compared to the topologically unconstrained
case [7]. It is then interesting to precisely quantify this entropy loss and to determine
how it depends on the particular topology (i.e. knot type) considered.

Unfortunately, most of the theoretical studies performed so far refer to the ensemble
in which the rings may assume all the topologies. The reason is that polymer rings in good
solvent can be modelled as self-avoiding polygons (SAPs or simply polygons), which are
in turn mapped to a magnetic system at its critical point and studied by renormalization
group techniques [1, 8, 9]. This approach has led to the well established result that the
number Z(N) of N -steps SAPs grows for large N as

Z(N) � AμNNα−2 (1)

where the amplitude A and the connective constant μ are non-universal quantities that
depend on the microscopic features of the chain, while α is a universal exponent given
by α = 2 − dν, where d is the dimensionality of the space and ν the metric exponent [9].
In d = 3 dimensions, numerical simulations [10] give for self-avoiding loops the estimate
ν � 0.587 597(7), and consequently α � 0.237 209(21), in agreement with field theoretical
results [8]. Since for the subset of SAPs with a given knot type k the above mentioned
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mapping is no longer valid, there is no field theory argument to establish a scaling similar
to (1) for Zk(N). However, it is reasonable to expect [11, 12, 4] that

Zk(N) � Akμ
N
k Nαk−2 (2)

where μk and αk are, respectively, the connective constant and the entropic exponent of
the subset of SAPs with fixed knot type k. For a generic knot type k there is no rigorous
relation between μk and μ, but in the case of unknotted polygons (i.e. SAPs with trivial
topology, k = ∅) it is possible to prove rigorously that μ∅ < μ [7], whereas numerical
estimates of α∅ suggest the intriguing identity α = α∅ [12, 13], although results presented
so far are not sharp enough to rule out completely a possible, although small, discrepancy
between the two entropic exponents, i.e. α∅ � α. One among the results presented here
concerns the improvement of the estimate α − α∅ and of the ratio A∅/A (see section 2),
this one performed, to our knowledge, for the first time.

Note that equations (1) and (2) with k = ∅ have interesting implications for the
probability of realizing an unknot in the ensemble with unrestricted topology, P∅(N) ≡
Z∅(N)/Z(N). Indeed, from (1) and (2) with k = ∅ one gets

P∅ � A∅
A

(
μ∅
μ

)N

Nα∅−α =
A∅
A

e−N/N0Nα∅−α (3)

and since μ∅ < μ we get the well known result that the unknotting probability goes to zero
exponentially fast with N [7]. The parameter N0 = 1/ ln(μ/μ∅) gives a typical number
of steps above which the unknot probability is reasonably low or, in other words, the
occurrence of knots is no longer negligible. Previous numerical estimates for polygons on
the cubic lattice gave N0 ≈ 2 × 105 [14]–[16].

Since for polymer rings with a generic fixed knot type k neither analytical tools
nor rigorous arguments are available, one has to rely entirely on numerical approaches
and scaling arguments in the analysis of the above issues. By using the BFACF
algorithm [17, 18] (the acronym comes from the initials of the authors) coupled to a
multiple Markov chain sampling technique, and assuming for SAPs with fixed knot type
k the scaling (2), evidence is found [11] that

μk = μ∅, αk = α∅ + πk, (4)

where πk is the number of prime components in the knot decomposition of k (see also [13]).
It is interesting to notice that results similar to (4) have been obtained also for off-lattice
models of rings such as the bead–rod models [19], suggesting that the scaling behaviour (2)
with (4) is a universal property of loops in free space with a given knot type k. Relations
in (4) are consistent with recent findings showing that prime knots in swollen rings are
weakly localized, i.e. have an average ‘length’ 〈l〉 ∼ N t with an exponent 0 < t < 1,
which has been estimated in [20]–[22] as t � 0.7. Indeed weak localization of prime
knots implies that, in the limit N → ∞, each prime component behaves essentially as
a decorating vertex fluctuating along an unknotted ring. This additional configurational
degree of freedom brings a factor N in front of Z∅ for each prime component and, in the
general case of a knot k made by πk prime components, one may guess:

Zk(N) � NπkZ∅(N). (5)

Although the above simple argument furnishes a plausible explanation of relations (4),
it is too crude to fully characterize the entropy of a knotted ring in the large N limit.
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For example, the amplitude Ak is still undetermined and there is no trace of the type of
prime knots that contribute to Zk(N). In fact, by regarding prime knots as point-like
objects, we are neglecting the effective entropic cost that the system has to pay in order
to tie them into unknotted loops. This entropic cost would decrease the Zk(N) in (5) by
a factor, say Ck, giving the more precise expression

Zk(N) � A∅
Ck

μN
∅ Nα∅−2+πk . (6)

It is interesting to notice that, if Ck is related to an entropic cost to tie a given knot,
its value should depend on the knot type k and not only on the number of its prime
components. If this is the case, equation (6) would furnish a more fundamental description
of the large N behaviour of the entropy of a knot since it would distinguish the type of
knot of the polygon. This description should depend also on topological invariants of k
other than πk.

It is important to stress that a numerical check of the validity of (6) and, in particular,
a numerical estimate of Ck as a function of k, is a quite hard task to perform because
it requires good statistics of polygon configurations with very large values of N . This is
particularly crucial for SAPs on discrete lattices, for which a reasonable amount of knotted
configurations can be sampled only for N ≥ N0 ∼ 105. This is probably the reason why
no attempts have been made so far to look in more detail at the asymptotic form (6).
In this paper we explore this issue by sampling polygons on the cubic lattice with N up
to 200 000. Unlike previous Monte Carlo simulations, where the sampling was performed
in the fixed knot ensemble using the BFACF [17, 18] algorithm, we decided to sample in
the free topology ensemble by using the very efficient two-point pivot algorithm [23] and
subsequently to partition the sampled configurations according to their topology.

In section 2 we describe the algorithm that we use to sample knotted SAPs and
the procedure designed to detect knots out of configurations that, for large values of N ,
turn out to be highly intricate. As a first outcome of this investigation we will give a
sharper estimate both of the difference α−α∅ and of the ratio A∅/A. This will establish a
more detailed relation between the subclass of unknotted rings and the full class of rings
with unrestricted topology. In section 3 we test the validity of (6) and estimate Ck as
a function of k. This is the main result of the paper: it will be first established for the
simplest case of prime knots and later generalized to composite knots. Section 3.3 also
includes further conjectures on the connective constants of SAP ensembles with restricted
topology. Section 4 is devoted to a discussion and conclusions.

2. Model, Monte Carlo method and knot detection procedure

To model polymer rings with excluded volume interaction we consider N -step SAPs on the
cubic lattice, i.e. self-avoiding walks with the two extremities separated by one lattice unit.
These polygons are sampled in free space by using the two-point pivot moves, a fixed-
N algorithm that has been proved to be ergodic in the class of all polygons and shown
to be very efficient in sampling uncorrelated configurations [23]. With this procedure
we generate configurations with N up to 200 000. As an example, in figure 1 we plot a
configuration with N = 50 000, together with a closer view of part of it.

Since the pivot moves can change the knot type of polygons, the topology of each
configuration must be detected by means of some topological invariant. This is indeed the
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Figure 1. Equilibrium configuration of SAP on the cubic lattice with N = 50000
steps (above) and a detail of its central part (below).

most problematic part of the whole investigation since, even in good solvent conditions,
very long polygons may assume an intricate spatial arrangement. This ‘geometrical’
entanglement gives rise, in general, to knot projections with a very large number of
unessential crossings (from the topological point of view) that severely hinder the knot
detection algorithm based on the calculation of polynomial invariants [4].

To circumvent this difficulty, we simplify each sampled configuration before
performing its planar projection. This is achieved by applying to the polygon a smoothing
algorithm that progressively reduces the length of the chain while keeping its knot type
unaltered (for a similar procedure, see [24]–[26]). This procedure is based on the N -
varying BFACF algorithm [17, 18] and has the nice feature of being ergodic within each
knot type. We set a sufficiently small step fugacity (i.e. the parameter conjugate to N),
such that the algorithm induces a rapid reduction in the number of steps of the polygon.
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Figure 2. By applying the step-reduction algorithm that preserves the topology,
the configuration of figure 1 is simplified to one with N = 82 steps (left). A
further simplification of the Dowker code allows one to identify the knot as the
composite 31#51 knot, whose minimal diagram representation is shown on the
right.

This simplification technique can dramatically reduce the number of crossings encountered
in an arbitrary projection. An example of how efficient this simplification procedure can
be is shown in figure 1, where a configuration of initially N = 50 000 steps is shrunk
down to the N = 82 steps configuration of figure 2. A further reduction is achieved
by performing 500 projections and choosing the projection with the minimal number of
crossings. The resulting knot diagram is encoded in terms of the Dowker code [27]. A
further simplification of the Dowker code based on Reidemeister-like moves is performed.
Finally, a factorization of the Dowker code is attempted. This procedure, whenever
successful, splits composite knots into their prime components. From each component
of the original Dowker code we extract, by using Knotfind [28], the knot type of the
original configuration (see figure 2 for the example given in figure 1). In this way we
have been able to distinguish composite knots with up to 5 prime components, and with
each component having crossing number up to 11 [25, 26]. The unbiased sampling with
unconstrained topology allows us to estimate the probability Pk ≡ Zk/Z of occurrence of
a given knot type k and to estimate its configurational entropy with respect to unknotted
polygons, i.e. the ratio Zk/Z∅. Since the statistics of unknotted polygons will be used
extensively as a reference, it is convenient to start by performing a good estimate of
Z∅(N). This can be achieved by looking at the scaling of the unknotting probability (3)
as N increases.

In figure 3 we plot ln P∅ as a function of N . The two lines correspond to two different
fits of the data. To estimate the difference α − α∅ we first perform a nonlinear fitting
(dashed line) of the form a − N/N0 + b ln N . This yields α − α∅ = b = −3 × 10−5 ≈ 0,
supporting the conjecture α = α∅. If we now assume α∅ = α we can perform a linear fit
(solid line) a−N/N0. This gives N0 = 210 400±1300 and a = 0.003(2). The estimate of a
strongly suggests that within error bars A∅ = A. This last result is quite interesting since
it strengthens the relation between the statistics of unknotted SAPs and the one of all
SAPs, not only at the level of the entropic exponents, but also at the level of amplitudes.
Clearly the main difference relies on the entropies per monomer μ and μ∅. However,
the difference μ − μ∅ � μ/N0 is very small: with the most recent and precise estimate
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Figure 3. Decay of the probability of unknotted configurations (log scale) with
the chain length. Fits are also shown.

μ = 4.684 044 ± 0.000 011 by Slade et al [29], we estimate μ − μ∅ = 0.000 022(2) (that is
twice the statistical error for μ) and thus μ∅ = 4.684 022± 0.000 013.

3. The entropic cost of a knot

3.1. Prime knots

To estimate the entropic cost Ck for polygons with fixed knot type k, we compute the
ratios Zk(N)/Z∅(N). Indeed, by assuming the scaling form (6) we expect Zk(N)/Z∅(N) �
Nπk/Ck. Let us consider first knotted SAPs where k is a prime knot. Figure 4 shows
the N -behaviour (in log–log scale) of the ratio Zk(N)/Z∅(N) for prime knots up to 6-
crossings. As expected from (6), no exponential behaviour is observed and the scaling
∼N/Ck is confirmed (note that πk = 1 since we are considering prime knots), with a Ck

whose value increases as the knot complexity increases. The estimates of αk−α∅, reported
in table 1 in the second column, are all consistent with the relation αk − α∅ = 1. The
estimates of Ck are reported in the third column of table 1. The most striking feature to
notice is the simple relation observed between the value of Ck and the knot type k. Indeed,
from column 4, it turns out that, to a good approximation, the entropy cost necessary to
host a prime knot k goes like

Ck � μ
�k/3
∅ (7)

where �k (see last column of table 1) is the minimal length required to tie a knot k on
the cubic lattice [30]. Thus, the entropic cost Ck is intimately related to a ‘microscopic’
property of the knot k, that is, the length of its ‘ideal’ representation [31, 32] on the cubic
lattice [30].

It is tempting to interpret Vk = �k/3 as an equivalent number of monomers ‘lost’ by
the polygon in order to form the knot. For example, the partition function of a trefoil,

Z31 , would be described by the exponential factor μ
N−V31

∅ with V31 = 8. In other words, a
N -step polygon with a 31 knot has the same configurational entropy (in the limit of large
N) as an unknotted polygon with N − 8 steps endowed with a sliding decorating vertex
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Figure 4. Partition function of the simplest prime knots divided by that of the
unknot (log–log scale versus N). Straight lines are a guide to the eye, scaling
∼N .

Table 1. Estimates of the difference αk −α∅ (second column) and of the entropic
cost Ck (third column) for the simplest prime knots. The last two columns suggest
a linear relation between the logarithm of Ck and the minimal length �k of a knot
on the cubic lattice (�k taken from [30]).

Knot αk − α∅ Ck Vk = logµ∅ Ck �k

31 1.002(7) 227 800± 1400 7.989(4) 24
41 0.96(3) 5.04(15)× 106 9.995(20) 30
51 1.13(6) 4.48(35)× 107 11.41(5) 34
52 1.10(8) 3.19(25)× 107 11.19(5) 36
61 1.23(25) 60(24)× 107 13.1(2) 40
62 1.22(13) 38(12)× 107 12.8(2) 40
63 1.08(22) 61(19)× 107 13.1(2) 40

(the knot). These findings suggest that it is sufficient to know the length �k of a given
prime knot in its ideal lattice representation in order to make an accurate prediction of
its frequency along a swollen ring.

The factor of 1/3 is quite intriguing and we have no explanation for that so far.
Clearly it will be important to test further this value by looking at more complicated
knots. This would require a much larger statistics and consequently much larger values
of N . Another interesting issue would be to see if the relation is model dependent, for
example by looking at polygons embedded on different lattices.

3.2. Composite knots

We now extend the analysis of Ck to composite knots, namely knots made by connecting
prime component knots (such as the 31#51 in figure 2). In the most general case we may
assume k to be composed by the prime knots k1, k2, . . . , km, each appearing respectively
π1, π2 and πm times. The number πi represents somehow the degree of degeneracy of the
prime knot ki in the composite knot k. For the composite knot k the entropic cost Ck
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could, in principle, depend on the set {ki} in a quite complicated way. However, if we still
assume that each prime knot localizes along the chain in the large N limit, regardless of
the presence of other knot components, we can make the working hypothesis that the cost
of a composite knot k1#k2 factorizes as Ck1#k2 = Ck1 × Ck2 (for k1 �= k2). This suggests
the conjecture that, in the N → ∞ limit,

Zk(N) � Z∅(N)

[
1

(π1)!

(
N

Ck1

)π1

· · · 1

(πm)!

(
N

Ckm

)πm
]

. (8)

The presence of the factorial terms 1/(πi)! can be explained as follows: first, if two knots
kA and kB are different and ‘positioned’ respectively at nA ∈ [1,≈ N ] and nB ∈ [1,≈ N ],
the counting of all pairs (nA, nB) yields ≈N2 independent configurations. If instead
kA = kB, a given configuration (nA, nB) is indistinguishable from (nB, nA), hence there is
an overcounting, which can be easily removed, in this case by dividing the full counting N2

by two. In general, within each group of πi identical knots, the overcounting is removed
by dividing Nπi by the number of possible permutations of πi objects, i.e. (πi)!.

With these notations, the full cost of a composite knot is then

Ck =
∏

i

πi! C πi
ki

. (9)

Equations (8) and (9) suggests that, if we knew the entropic cost Cki
necessary to tie

each prime component ki, the number of configurations Zk(N) of the composite knot k
could be easily deduced, in the large N limit, by looking at the partition function Z∅(N)
of unknotted polygons of the same length.

We first check equation (8) for composite knots including only copies of the trefoil
knot, for which we have good statistics up to four prime components. From equation (8)
we expect the following relation to hold:

Z31/Z∅ � N/C31

Z31#31/Z∅ × 2 � (N/C31)
2

Z31#31#31/Z∅ × 3! � (N/C31)
3

Z31#31#31#31/Z∅ × 4! � (N/C31)
4.

(10)

In figure 5 we show these ratios times the suitable factorials, in log–log scale as a function of
N . The four straight lines are power-law fits whose exponents agree within error bars with
equations (10). Moreover, as expected, all fits cross each other at a single point (C31 , 1)
with abscissa C31 ≈ 227 000. Hence the starting assumption that the total entropic cost
to tie a composite knot of πi prime knots simply factorizes (see equation (9)) is crisply
verified, at least for trefoil knots. Note that, by extrapolating the data of figure 5 to larger
values of N , for N > C31 it is entropically more convenient to tie composite knots made
by trefoils than forming unknotted polygons.

The statistics collected for multiple copies of the next simplest knots, like the 41, is not
sufficient to repeat the analysis of equation (10). We can however look at equation (8) in
the case in which other prime knots are present, in addition to multiple 31’s. In particular
in figure 6 we plot Z41/Z∅, Z31#41/Z31, and Z31#31#41/Z31#31 . As expected, all ratios are
consistent with the presence of the term N/C41 in the scaling, with C41 � 5 × 106.
This result extends to components of different knot type the hypothesis of entropic
independence between prime components in the statistics of polygons with a composite
knot type k.
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Figure 5. Partition function of knots involving copies of 31 divided by that of the
unknot and multiplied by the factorial of the number of 31 components, in log–log
scale as a function of the chain length. Oblique straight lines are power-law fits
(exponents are shown close to them). The horizontal line crosses the other ones
at (C31 , 1).

Figure 6. Partition function of knots including a prime component 41 divided by
that of the same knots without the 41, in log–log scale versus N . The straight
line is a guide to the eye, scaling ∼N .

3.3. On the connective constant of a class of composite knots

So far the only results available on the limiting entropy of knotted polygons are the
rigorous inequality μ∅ < μ and the conjectured identity μ∅ = μk, where μk refers to the
connective constant of the subset of polygons having a given knot type k. The essential
difference between μ and μ∅ or μk is that in the first case the sum over all topologies is
taken into account while for μ∅ and μk the topology is kept fixed.

By exploiting equation (8) it is tempting to interpolate between the extreme cases μ
and μk by looking at the statistics of particular subsets of polygons in which an infinite
(although partial) sum over topologies is considered.
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Suppose for example we consider the set of all polygons that can have an arbitrary
number of trefoil components tight in:

Z(31#)∞(N) = Z31(N) + Z31#31(N) + Z31#31#31(N) + · · · . (11)

In the limit of large N , using equation (8), we get

Z(31#)∞(N) �
∞∑

n=0

Z∅(N)
1

nk!

(
N

C31

)n

� Z∅(N)eN/C31 .

By rewriting the exponential factor as (μ∅e1/C31 )N = (μe−1/N0+1/C31 )N = (μ(31#)∞)N ,
since C31 > N0, we get μ > μ(31#)∞ > μ∅. It is interesting to notice that, if we apply the
same argument to the set of composite knots made only by 41 knots, since C41 > C31 > N0,
we will get μ(31#)∞ > μ(41#)∞ > μ∅. In general we would expect that given two prime
knots k′ and k′′ with Ck′′ > Ck′

μ(k′#)∞ > μ(k′′#)∞ > μ∅. (12)

This can be explained by arguing that each prime knot, being localized, brings the same
entropic gain ∼N to the partition function, but the simplest ones require less entropic cost
to be formed. On the other hand the statistics of topologically unconstrained polygons
are, in the large N limit, dominated by extremely complex composite knots made by an
arbitrary number of different prime components. It is then interesting to look at more
complex subsets of polygons whose topology is characterized by an arbitrary number of
31’s and 41’s. Clearly Z(31#)∞,(41#)∞(N) > Z(31#)∞(N) + Z(41#)∞(N) and by applying the

same argument we obtain μ(31#)∞,(41#)∞ = μ∅e1/C31+1/C41 . Hence, in general, we should
expect a sequence of the kind

μ∅ = μ31 = μ41 = · · · < · · · < μ(51#)∞ < μ(41#)∞ < μ(31#)∞ <

< μ(31#)∞,(41#)∞ < μ(31#)∞,(41#)∞,(51#)∞ < · · · <

< μ. (13)

4. Conclusions

By sampling polygons with N up to 200 000 we have been able to get accurate estimates
of the large N behaviour of the configurational entropy of SAPs with a fixed knot type
k. We have corroborated the belief that in good solvent conditions, and in the large N
limit, prime knots are localized within small regions that slide independently along the
unknotted part of the polygon. The existence of each prime component k requires an
entropic cost Ck whose dependence on k turns out to be relatively simple and intriguingly
related to the minimal knot length �k, i.e. the minimal number of steps necessary to build
a knot of type k on the cubic lattice. The above findings allow one to write down a general
formula for the partition function of arbitrary complex composite knots and to conjecture
a sequence of inequalities relating the connective constants of polygons with different
topologies, including families of composite knots. In the future it would be nice to explore
more broadly the asymptotic relation (8), and in particular to test the robustness of the
relation log Ck ∝ �k with respect to different polymer models. In particular, it would be
interesting to test it in the case of off-lattice polymers, where �k should be replaced by
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the length of the knot in its ideal representation [31, 32]. Finally we hope that, inspired
by the results presented above, the set of conjectured inequalities in (13) could be put on
a rigorous basis by following new approaches to the problem.
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