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We consider the unwinding of two lattice polymer strands of length N that are initially wound
around each other in a double-helical conformation and evolve through Rouse dynamics. The
problem relates to quickly bringing a double-stranded polymer well above its melting temperature,
i.e., the binding interactions between the strands are neglected, and the strands separate from each
other as it is entropically favorable for them to do so. The strands unwind by rotating around each
other until they separate. We find that the process proceeds from the ends inward; intermediate
conformations can be characterized by a tightly wound inner part, from which loose strands are
sticking out, with length l� t0.39. The total time needed for the two strands to unwind scales as a
power of N as �u�N2.57�0.03. We present a theoretical argument, which suggests that during this
unwinding process, these loose strands are far out of equilibrium. © 2010 American Institute of
Physics. �doi:10.1063/1.3505551�

I. INTRODUCTION

There are several known examples of polymers in nature
that are composed by two or more strands arranged in a
helical conformation. One is the double-helical structure of
DNA, in which two complementary sequences are held to-
gether by hydrogen bonding between A/T or C/G nucle-
otides. Another example is the triple helical structure of col-
lagen. Under the appropriate thermodynamic conditions, the
multistranded structure becomes unstable and the strands dis-
sociate from each other. For a DNA molecule, the dissocia-
tion of the two strands is usually referred to as the melting
transition or denaturation; this happens when the temperature
is increased typically above 80 °C in standard conditions.1

In view of its importance in many biological and biotechno-
logical processes, various models of DNA melting have been
developed to study the thermodynamical behavior as func-
tion of the sequence length and composition. Models origi-
nally proposed by Poland and Scheraga2 and by Peyrard and
Bishop3 take into account the different unbinding energies
required to dissociate complementary G/C or A/T pairs using
various types of approximations, yet they are simple enough
to deal with very long DNA sequences. Using an appropriate
choice of parameters, they both fit reasonably well experi-
mental data for the melting temperature of DNA sequences.4

The melting dynamics has also been studied. In 1986,
Baumgärtner and Muthukumar5 performed Monte Carlo
simulations of the disentangling of two initially intertwined
chains. After an initial softening of the original double helix,
they reported that the time required for the actual unraveling
of the chains scales with polymer length as a power law with
exponent 3.3�0.2. Computer technology at that time al-

lowed for simulations of 2, 4, and 8 turns only, and their
fitted exponent might very well change with increasing chain
length. The dynamics of the opening of bubbles in an en-
tangled chain has also been studied.6–9 In addition, different
extensions of the Poland–Scheraga �PS� and Peyrard–Bishop
�PB� models were considered to include helical degrees of
freedom of DNA molecules.10–13 These extensions allow for
rapid computations of equilibrium and dynamical properties
of the melting transition, at the cost of introducing approxi-
mations that are poorly controlled and sometimes even ques-
tionable. The moves introduced to update PS models usually
neglect the helicity of double-stranded DNA, which is lo-
cally conserved due to impenetrability of the two strands �the
unbinding of the two strands forming the double helix re-
quires a release of the twist through a rotation of these
strands with respect to each other�. With the denaturation
times �d characterized by the scaling law �d�N� for the
DNA strand length N �in base pairs�, the resulting values of
� thus range from �=0 �Ref. 8� to �=4 /3.7 If local moves
preserving the DNA helicity are introduced, a very slow
melting is instead observed, with ��3.9 A second simplifi-
cation intrinsic in PS models is that helical fragments and
loops are described by equilibrium partition functions. This
description can be too simplified in systems where the dy-
namics of the unwinding process is too fast to allow for the
full structural relaxation within these loops. PB models have
as a major simplification the possibility for complementary
bases to orbit around a virtual central axis of the macromol-
ecule. This yields denaturation times scaling linearly with the
chain length.13 Given such spread of results and uncontrolled
simplifications in these models, we must conclude that we
are still missing the understanding of how DNA length af-
fects the time for its strands to disentangle.a�Electronic mail: enrico.carlon@fys.kuleuven.be.
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In order to gain more direct insight into the dynamics of
the melting process of double-stranded molecules, we inves-
tigate the unwinding dynamics of double-stranded three-
dimensional long polymers using Monte Carlo simulations in
the absence of hydrodynamic interactions. No binding ener-
gies between the two strands are taken into account during
the unwinding process, corresponding to the case of a double
helix brought rapidly to a temperature well above its melting
point. For such a setup, the strands unwind from each other
as it is entropically favorable for them to do so. We follow a
procedure very similar to that of Ref. 5, except that our
chains are longer and more tightly wound. Figure 1 shows
three configurations: �a� at the early stages of unwinding, �b�
during the unwinding process, and �c� at the end of the un-
winding, when the two stands are separating from each other.
The main scope of this manuscript is twofold: in Sec. II, we
study the unwinding time �u as a function of N—high preci-
sion simulations for polymers of length up to N=1000 show
that �u scales as a power law �u�N� with �=2.57�0.03. In
Sec. III, we show that the intermediate conformations can be
characterized as a tightly wound inner part, to which un-
wound single strands are connected. The length of the un-
wound strands increases with time in a power law fashion as
l�t�� t0.39. With a theoretical argument, we find an upper
bound for the radius of gyration of the loose ends, which
excludes the equilibrium value. This demonstrates that the
unwinding is a far from equilibrium process.

II. UNWINDING TIME

In the simulation, the polymers reside on a face-
centered-cubic lattice with a lattice spacing of �2 and are
initialized in a double-helical state. The polymers evolve in
time through a long sequence of single-monomer moves, un-
der the restriction that at all times, the polymer backbones
are self- and mutually avoiding. Each allowed move occurs
with a statistical rate of unity. To give the polymers some
elasticity, the self-avoidance condition is lifted for monomers
that are direct neighbors along the same chain. A detailed
description of this lattice polymer model, its computationally
efficient implementation, and a study of some of its proper-
ties and applications can be found in Ref. 14. This model
reproduces known features of the Rouse dynamics15 and of

the equilibrium properties16 of single self-avoiding polymers.
As the moves respect the no-crossing condition between
strands, we expect that the long time behavior of unwinding
discussed in this study is of universal nature and is not af-
fected by microscopic details and lattice effects.

Let r�i
�1��t� and r�i

�2��t� be the lattice positions of the ith
monomers on the two strands at time t �0� i�N�. We con-
sider the minimal distance between two strands defined as
dmin�t�=mini,j	r�i

�1��t�−r� j
�2��t�	. The inset in Fig. 2 shows a plot

of dmin
2 �t� as a function of time for a run. The choice of an

initial double-helical conformation implies that dmin=�2 at
t=0. Note that dmin�t� remains constant up to a time t�1.9
�106 in the inset in Fig. 2 and then starts fluctuating and
increasing in time. We define the unwinding time �u as the
time at which dmin�t� exceeds some threshold value for the
first time. For the threshold value d0, we took d0

2=10 and
d0

2=20. The higher threshold value gives a slightly higher
estimate of the unwinding time ��u

�10� and �u
�20� in Fig. 2�.

However, as the polymer length increases, the ratio of
�u

�10� /�u
�20� converges to 1, as shown in Table I; hence, the two

quantities have the same scaling behavior in N.
Figure 2 and Table I show the behavior of �u

�10� and �u
�20�

as a function of polymer length. We note that the scaling of
unwinding times is a power of the strand length: from a
linear regression of the data for N�30, we find the values
�=2.58�0.03 �d0=10� and �=2.56�0.03 �d0=20�,
from which we obtain the result anticipated above,
�=2.57�0.03.

III. CHARACTERIZATION OF INTERMEDIATE
CONFORMATIONS

Given the topological constraint, each strand faces while
unwinding, we expect the unwinding dynamics to unroll
from the two ends of the initial double-stranded complex,
progressing inwards with increasing time �Fig. 3�. Note that
because of the elasticity of the model used in the simulations,
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FIG. 2. Double-logarithmic plot of the average unwinding time as a function
of strand length. The circles are obtained with an unwinding threshold of
d0

2=10, while the crosses correspond to a threshold of d0
2=20. The straight

dashed line is a fit to the data corresponding to an unwinding exponent of
�=2.57. Inset: Plot of dmin

2 �t� vs time for a run with strands of length
N=500. The arrows indicate the first time that this distance reaches its
threshold value d0

2=10 or 20.

FIG. 1. Snapshots of the polymer configurations during unwinding for two
strands of length N=100 each. The initial conformation is fully double-
helical all along its length. �a� Snapshot after short time from the beginning
of the simulation; opening begins mainly from the two ends, although small
bubbles within the chain are also visible. �b� Snapshot at later times. �c�
Separation.
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a partial opening up of the inner wound part is not ruled out
by the model: it is the physics of the problem that seems to
suppress this. In order to connect this physical picture with
the observed scaling �u�N2.57�0.03, we considered the quan-
tity dmin�i , t�=minj	r�i

�1��t�−r� j
�2��t�	, which is the minimal dis-

tance from the ith monomer of the first strand to any other
monomer of the second strand. Its average square 
dmin

2 �i , t��
is plotted in Fig. 4 for a strand length equal to N=500. The
different data are for increasing time step snapshots taken at
time intervals equal to t /105=1,2 , . . . ,10 �from bottom to
top�. The quantity 
dmin

2 �i , t�� is minimal in the middle, while
it increases in time from the two edges, in agreement with
the physical picture proposed in Fig. 3. We consider now the
normalized profile 
dmin

2 �i , t�� / 
dmin
2 �0, t��. For this quantity,

we expect the following scaling behavior, as a function of the
distance from the end monomer �i=0�


dmin
2 �i,t��


dmin
2 �0,t��

= f�i/l�t�� , �1�

with f� � being a scaling function and l�t� a characteristic
length depending on time. The inset in Fig. 4 show that the
normalized profiles at different times collapse when a rescal-
ing i / t0.39 is used, which implies that l� t0.39. This is consis-
tent with the exponent determined from the scaling of un-
winding time as l� t1/�= t0.39.

In order to gain insight into the unwinding, we set up a
simple analytical model of the process, assuming that the
unwinding is sufficiently slow so that the conformation of

the loose strands can be approximated by equilibrium ones at
all times. We will show that this approach predicts an un-
winding dynamics which is slower than what is observed in
simulations. We therefore conclude that the unwinding we
observe is a far from equilibrium process.

Consider an intermediate conformation that consists of
two single-stranded coils of N−s�t� attached to a double-
stranded helical part of length s�t�. We estimate the free en-
ergy F as a function of s�t� from the partition function for a
double-helical segment of length s is Zhelix��h

s and that of a
single-stranded coil Zcoil��c

N−s, where � are the connectiv-
ity constants. In other words,

�F = − s log��h� + 2�N − s�log��c� . �2�

As an infinitesimal portion ds of the double helix unwinds,
the change in free energy is thus given by

dF = − �−1 log��c
2/�h�ds � − K1ds . �3�

During this infinitesimal unwinding, the single-stranded coils
are displaced over a distance dr due to the rotational motion
around the axis of the helix: the coils describe a fraction of a
circle of radius Rv perpendicular to the axis of the helix,
where Rv is the distance from the helix axis to the coil’s
center of mass. In equilibrium, we expect Rv��N−s�	, with
	 being the Flory exponent. This implies that

dr 
 Rvds 
 �N − s�	ds . �4�

During this process, the work done against friction equals

dW = �ṙdr = �Rv
2ṡds , �5�

where for Rouse dynamics, the friction on the single-
stranded coils is proportional to their lengths: �
N−s. Since
the work done against friction cannot exceed the available
free energy, we obtain the inequality
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FIG. 4. Average squared minimal distance 
dmin
2 �i , t�� as a function of mono-

mer number i, for polymers with length N=500. From bottom to top, the
curves are obtained at times t /105=1,2 , . . . ,10. Inset: collapse of

dmin

2 �i , t�� / 
dmin
2 �0, t�� for polymers of length N=1000 again at times t /105

=1,2 , . . . ,10. The vertical scale is normalized so that all curves start from a
common value at i=0. The horizontal scale is divided by t0.39. This exponent
is consistent with that obtained from the scaling of the unwinding time.

TABLE I. Average unwinding times �u
�10� and �u

�20� as a function of polymer
length N for threshold values d0

2=10 and d0
2=20, and the ratio of these two

times. Times are obtained by averaging over 120 simulations.

N �u
�10� �u

�20� �u
�20� /�u

�10�

60 1.23�104 1.12�104 1.093
80 1.80�104 1.97�104 1.096
100 3.04�104 3.29�104 1.082
120 4.73�104 5.06�104 1.070
150 8.27�104 8.75�104 1.055
200 1.81�105 1.90�105 1.048
300 4.97�105 5.16�105 1.038
400 1.03�106 1.06�106 1.032
500 1.82�106 1.88�106 1.036
600 3.00�106 3.10�106 1.032
800 6.22�106 6.35�106 1.021
1000 1.11�107 1.13�107 1.017

( )s t

FIG. 3. Sketch of a double-stranded polymer during the unwinding dynam-
ics. At time t, we expect to find a double-stranded region of curvilinear
length s�t� terminates with two single strands of lengths �N−s�t�� /2 at both
edges, s�t� being a decreasing function of t.
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K2�N − s�1+2	ṡds � K1ds . �6�

If this inequality were saturated, the unwinding process
would be described by

K1/K2 = − �N − s�t��2	+1ds

dt
. �7�

The integration of Eq. �7� yields a scaling of the unwinding
time as �u�N2	+2=N3.18 �since 	=0.59�, which is obtained
from Eq. �7� by setting s��u�=N. Indeed, a visual investiga-
tion of the unwound parts during simulations reveals that
these show a tendency to be spiral-like and contain a signifi-
cant amount of coiling. A precise quantification of the
amount of spiraling is very difficult due to the lack of a clean
definition of the central axis of the spiral. This argument
predicts a very slow unwinding compared to that which is
actually observed in simulations, suggesting that unwinding
proceeds through nonequilibrium states. In an early study of
unwinding,5 the scaling ��N3.3�2� was computed for shorter
polymers �up to N=65; with 2, 4, or 8 turns in the double
helix� and for helices less tightly bound than considered
here. The exponent of Ref. 5 most likely describes a preas-
ymptotic scaling regime. The exponent reported in Ref. 5 is
however compatible with that predicted from Eq. �7�. This
suggests that the early stages of unwinding are probably well
captured by the mechanisms underlying the derivation of Eq.
�7�, but that the asymptotic scaling regime is dominated by a
mechanism that is faster for longer chains.

IV. SUMMARY AND CONCLUSIONS

Summarizing, we introduced a lattice model for studying
the unwinding dynamics of a long three-dimensional double-
stranded polymer, with excluded volume effects taken into
account. The lattice nature of the model, combined with an

efficient encoding of the dynamics, allows one to simulate
long polymers �up to N=103� for very long time �t=107

Monte Carlo steps�. Our numerical results show that the un-
winding time scales with the polymer length as a power law
with exponent �=2.57�3� with Rouse dynamics. An analysis
of a simple analytical model of the process suggests that the
unwinding we observe is a far from equilibrium process;
therefore, it cannot be understood in terms of a slow dynam-
ics evolving through quasiequilibrium states, e.g., using free
energy arguments.
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