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Simulations in which a globular ring polymer with delocalized knots is separated in two interacting
loops by a slipping link, or in two noninteracting globuli by a wall with a hole, show how the minimal
crossing number of the knots controls the equilibrium statistics. With slipping link the ring length is
divided between the loops according to a simple law, but with unexpectedly large fluctuations. These are
suppressed only for unknotted loops, whose length distribution always shows a fast power-law decay. We
also discover and explain a topological effect interfering with that of surface tension in the globule

translocation through a membrane nanopore.

DOI: 10.1103/PhysRevLett.106.258301

Most often, ring polymers are experimentally studied in
situations in which their topological entanglement does not
change in time. However, most of our theoretical and
numerical understanding of polymer statistics relies on
ensemble descriptions in which the rings assume all pos-
sible topologies [1]. An open challenge is that of determin-
ing up to what extent specific permanent entanglements in
the form of knots or links [2] can affect thermodynamic
quantities and what is their possible role in determining
peculiar behaviors when the polymer is subject to geomet-
rical constraints interfering with the topology.

Different topologies are expected to determine different
corrections to the free energy of a single ring in the limit of
infinitely long chain. For example, the prime knot compo-
nents of ring polymers in good solvent are weakly local-
ized in this limit [3,4]. As a consequence, if N is the
chain length, each component determines a correction
~kgIn(N)/N to the entropy per monomer [5,6]. Indeed,
each component behaves asymptotically as a pointlike
decoration which can place itself anywhere along the
ring. Radically different conditions are realized below the
theta temperature 7, [7]. Indeed, in the globular phase
knots are expected to delocalize. Numerical simulations
indicate that the topological entanglement spreads on av-
erage on a portion of the ring whose length is proportional
to N [8,9]. Fixed topology determines a finite size correc-
tion to the free energy of a globular ring, which is asymp-
totically negligible in comparison with that due to surface
tension ( ~ N~!/3). Indeed, at a temperature T =~ 2T, the
correction per monomer has been estimated [10] as
~Cn¢N~2, where a =~ 1.45, n, is the minimal number of
crossings of the knot [2], and C is a remarkably large
negative amplitude. Thus, n,. qualifies as a topological
invariant possibly relevant for the thermodynamics of a
globular ring.

In the present Letter we face the challenge of elucidating
the role of this invariant, by establishing some empirical
laws through which it rules the statistics of the globule
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when suitable local geometrical constraints are imposed.
These laws, which generally hold in the presence of large
fluctuations, give a precise meaning to the notion of knot
delocalization. We also discover novel thermodynamic
phenomena which are a peculiar consequence of topology
and quantitatively explain them in terms of an ansatz for
the globule free energy.

Suppose one forces a ring polymer to pass into a slipping
link which divides it into two loops. The link is narrow
enough to prevent the passage of topological entanglement
from one loop to the other. For instance, if the ring has a
composite knot with two prime trefoil (3;) components [2],
things can be arranged so that each fluctuating loop en-
closes one trefoil knot. The loops are kept unlinked. We
model flexible ring configurations as N-step self-avoiding
polygons on cubic lattice [11]. An attractive interaction J
between nearest neighbor visited sites allows us to obtain a
collapsed globular phase for low enough temperature 7' [7]
(Fig. 1). A Monte Carlo simulation method adequate
to preserve the ring topology is the grand-canonical

FIG. 1 (color online). N = 2040 globule with slip link sepa-
rating a 3; knot in loop 1 [light gray (yellow)] from a 4, knot in
loop 2 [dark gray (blue)].
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Berg—Foester—Aragao de Carvalho—Caracciolo—Froehlich
(BFACF) one [11]. However, straightforward application
of BFACEF to the globule meets a difficulty. Indeed, indi-
cating by K the step fugacity and by Zy the canonical
partition function, the grand-canonical average (N) =
SVNKNZy/3NyKNZy does not grow continuously to
+o00 upon approaching from below the critical value K,
of the fugacity. To the contrary, one gets evidence of a
discontinuous infinite jump right at K = K. [8]. We under-
stand here this behavior in light of the expected [10,12]
asymptotic form of Zy:

In(Zy) = —F(N, n,)/kT ~ const + uN + oN?/3

Cn?
+ (o — 2)In(N) + —=5,
(a = 2)In(V) + =

)

where u = —In(K,), o <0 is the interfacial tension, and
« 1s an unknown specific heat exponent that is expected to
be independent of topology. The last term on the right-hand
side of Eq. (2) is the topological correction to the total free
energy F. The presence of the surface term ~oN%? im-
plies that (N) cannot diverge continuously to +oo for K
approaching K. from below. In order to allow a continuous
growth of (N), we choose to multiply the usual grand-
canonical weight of the ring configurations by a factor
exp[(N — Ny)?/v] which forces N itself to fluctuate
around a value close to N, if v is chosen small enough.
The BFACF simulation augmented with the new statistical
weight allows a quasicanonical sampling of configurations
with N close to the value determined also by N, and v. To
improve sampling efficiency, we also implement a multiple
Markov chain scheme [13] over different values of N,
keeping K fixed. Nevertheless, the simulations need a
long CPU time (months) to sample a consistent statistics.
For this reason we choose to sample only at the tempera-
ture T = 2.5J, as in [10].

Extensive simulations of the 3; vs 3; configuration allow
us to sample for various restricted ranges of N the proba-
bility density function (PDF) of [, /N, P(l;/N), where [, is
the fluctuating length of one of the loops [Fig. 2(a)].
Remarkably, even for large N the histogram does not
seem to present the bimodal shape, indicating a dominance
of configurations with large unbalance between /| and [,
that was found in the good solvent case [3,8]. To the
contrary, an asymptotically flat histogram seems compat-
ible with the data. Thus, while the two loops on average
share equally the total ring length [Fig. 2(b)], there are very
broad fluctuations.

To gain further insight, we also simulate the case in
which the loops are both unknotted. In this case strongly
unbalanced situations are clearly favored. The PDF of the
length of the smaller loop, say /;, shows a power-law decay
~I*, with x = 1.55 %= 0.04 (Fig. 3). This suggests that the
metric exponent of this loop is ¥ = x/d = 0.52. A value of
v close to 1/2 is consistent with the expectation of
Gaussianity of a collapsed chain on relatively small length
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FIG. 2 (color online). (a) Histograms of P(l,/N) for 3; vs 3,.
Different curves correspond to different N values (see legend).
(b) (I;)y (circles) and {l,)y (squares) as a function of N.
(c) Histograms of P(l;/N) for 3, vs 4, and (d) corresponding
average loop lengths. (e) Histograms of P(l,/N) for 6, (loop 1)
vs 3,#3; and (f) corresponding average loop lengths.

scales [14]. When, for example, only loop 2 has a 3; knot,
while loop 1 is unknotted (@), /; never grows substantially
compared to N, and the same power-law behavior holds for
the PDF of [, (Fig. 3). This law, implying (I, ~ N®45®,
denotes a weak localization of the unknotted loop.

The above results are fully consistent with delocaliza-
tion of the 3; knot inside the ring, since in no case a loop
containing the knot displays a stable regime in which its
average length is a vanishing fraction of N. Similar results
hold if 3, is replaced by another prime knot. We further
examine a competition 3; vs 4;. The plots reported in
Fig. 2(c) show that also in this case the lengths of the loops
keep fluctuating very broadly for increasing N, while
P(l;/N) is not symmetric with respect to [;/N = 1/2
anymore. Quite remarkably, in this and similar competi-
tions (3; vs 7, 4 vs 6, etc.), a simple law is well obeyed
by the canonical averages (/,)y and {l,)y:

Uy =N—"9 =12 2

ey + neo
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FIG. 3 (color online). Log-log plots of P(l,) for @ vs @ (upper
curves, for three values of N) and @ vs 3; (lower curves, shifted
one decade down). The dashed line represents a power law / 1’1'5.
Each N includes the statistics in the interval [N — 50, N + 50]:
this does not alter the power-law tail and increases the statistics
considerably.

In this case the loop with the 3; knot obtains on average
a fraction of the chain length equal to 3/7 = 0.43, while
4/7 = 0.56 go to the loop with 4, knot. This is evidenced
in Fig. 2(d) by the linear fits of the average loop lengths as a
function of N. The law in Eq. (2), which we can of course
test only for relatively low values of the n.’s, highlights
the key role played by 7, in the delocalized regime. This
role is further emphasized by considering the competition
of two knots that are different but with the same n,.
Figures 2(e) and 2(f) show the results for 3;#3; vs 6;.
We see that, while the fluctuations remain very broad, also
in this case Eq. (2) is still obeyed to a reasonable approxi-
mation. In addition the shape of the histograms is almost as
symmetric as in the 3; vs 3; case. However, the possible
convergence towards a flat histogram is definitely slower
than in that case. These results suggest that the number of
prime components of a knot is not a relevant invariant,
unlike in the swollen regime.

In experiments the slipping link could be, e.g., a short
(unknotted) ring which is not linked to the knotted one, but
just constrains it to pass through its interior. To discover
further consequences of topology in the globular phase we
replace the slipping link by a sufficiently narrow hole in an
impenetrable wall (Fig. 4). This schematizes the translo-
cation of a ring polymer through a membrane or solid state
nanopore, a phenomenon that, thanks to recent progress
in nanotechnology, can be investigated experimentally
[15,16]. A related biological issue is the effect that knots
may have on the ejection process of packed viral DNA into
the host cell [17,18]. Because of the presence of the wall
the two loops do not interact anymore and can be consid-
ered as two independent, knotted globuli in competition.
As shown in Fig. 5 for a case with two different knots
having however the same n, =n., =6, P(l;/N)
develops two remarkably symmetric peaks for N = 1000,

FIG. 4 (color online). Example of a wall-globule system. The
hole (white) separates the N = 1000 chain into two globuli with
3, knot (colored differently).

which become separated by a very high free energy barrier
already at N = 2300. Similar results are obtained for the
simpler case 3; vs 3;.

The situation turns out to be totally different when n.; #
n.,. In these cases we observe an asymmetry, indicating a

15

()

80 I/N (b
- — 1000
Z 60 — 2000
— — 3000
= 40 — 4000
[=¥

P (R R R |
Lo 0.2 0.4 0.6 0.8

15 it /N @

“2. —— 500, simulation
¥ — — - 500, theory
i - ==~ 1000, simulation

r
Pt
S_E [ U EE R 1000, theory
e /"\
o U AN X ] P

0 0.2 0.4 0.6 0.8 1

P, IN)
S
|

FIG. 5 (color online). (a) Histograms of P(l,/N) for 3,#3;
(loop 1) vs 6, and (b) for 3, (loop 1) vs 4; when the two globular
loops are separated by a wall. (c) Plot of [F(;, n.) + F(N —
l,ng) — F(ly,ngn) — F(N — 1, n,)]/kgT vs 1,/N for the case
in (b). (d) Comparison between the numerical data and the
analytical prediction for the 3, vs 4; case (N = 500 and 1000).
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clear dominance of the globular loop hosting the knot with
higher n.. This dominance becomes more and more pro-
nounced as N increases [see Fig. 5(b) for 3; vs 4].

How topology can produce the asymmetry manifested
by the above results for the wall case can be explained as
follows. The equilibrium share of the ring length between
the two globuli should stably minimize the free energy.
Because of independence, the total free energy is simply
the sum of the free energies of the two globuli. Since each
globule feels the presence of the wall, we can tentatively
assume for the free energy of each globule the same form
in Eq. (1) with possibly modified values of the various
parameters. We should consider F(I;,n.;) + F(N — [, nz).
Since we do not know o, «, and C, we first try to fit
our data for F(l,,n.)+ F(N —1,,n,) —[F(l,n.,) +
F(N — 1}, n.;)], which should depend only on the topo-
logical correction. As shown in Fig. 5(c) for n. =3,
n. = 4, there is a remarkable agreement of our data in
the whole range of N and [/, values explored, if one puts
C =~ 86, while keeping a = 1.45. This large value of C is
about half the estimated one in absence of wall [10]. Thus,
our free energy ansatz could account more completely for
our data. In plotting F(/,, n.) + F(N — [, n,,) we are
helped by the circumstance that the term « logN plays
an almost irrelevant role in comparison with the other
ones (below we use @ = 1/2). Thus, by keeping C = 86,
we can fix o by matching our data for P(l;/N) =
exp{[F(l,,3) + F(N — 1,,4)]/kgT} [Fig. 5(d)]. The agree-
ment is quite satisfactory if one puts o = —0.98. The ratio
between the P computed at the stable maximum and that at
the unstable one is almost independent of N. The same
values of C and o produce satisfactory agreement also for
the plots of P(I;/N) in Fig. 5(a) for the case 3,#3, vs 6,. In
all cases, for N sufficiently large, stable and unstable
minima of the free energy occur when one of the loops
has length close to the minimal one allowed by the given
hosted knot in the cubic lattice [19].

Thus, a topological mechanism explains why the stable
configuration is that in which the globule with smaller n,. is
reduced to a minimal size while the other takes most of the
ring length. This novel phenomenon should be relevant,
e.g., for a slow dynamics of translocation of globular
knotted ring polymers through membrane pores.

Putting things in perspective, although necessarily lim-
ited to the less complex knots, our results are accurate
enough to clearly qualify n, as the invariant controlling
delocalization in the globular phase and determine unex-
pected thermodynamic effects of genuinely topological
nature. The outlined scenario is totally different from that

expected in the swollen polymer regime [3,8,20]. Even if
unusually long rings need to be considered in order to fully
clarify their asymptotics, the discovered phenomena are
most relevant in practice for finite N.
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