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We exactly analyze the vibrational properties of a chain of harmonic oscillators in contact with
local Langevin heat baths. Nonequilibrium steady-state fluctuations are found to be described by
a set of mode-temperatures, independent of the strengths of both the harmonic interaction and the
viscous damping. Energy is equally distributed between the conjugate variables of a given mode but
differently among different modes, in a manner which depends exclusively on the bath temperatures
and on the boundary conditions. We outline how bath-temperature profiles can be designed to
enhance or reduce fluctuations at specific frequencies in the power spectrum of the chain length.

PACS numbers: 05.70.Ln, 44.05.+e, 63.10.+a

I. INTRODUCTION

The enhancement of nonequilibrium fluctuations at
low wavenumbers is a key feature of systems driven by
thermodynamic gradients (see [1] for a review). For tem-
perature gradients, it has been thoroughly studied both
theoretically [2], and experimentally in systems ranging
from simple fluids [3] to polymer solutions [4] and fluid
layers also under the influence of gravity [5]. More re-
cently, fluctuations in nonisothermal solids have been
the subject of experimental investigation, fostered by
the possibility of technological applications in fields as
diverse as microcantilever-based sensors [6] and gravita-
tional wave detectors [7]. For example, the low frequency
vibrations of a metal bar, whose ends are set at different
temperatures, were found to be larger than those pre-
dicted by the equipartition theorem at the local temper-
ature [8], thus corroborating the generality of the results
obtained for nonequilibrium fluids [10]. (See also experi-
ments with cantilevers [9]).
Theoretical studies of nonequilibrium solids focused

more on thermal conduction in low dimensions, where
crystals are usually modeled as Fermi-Pasta-Ulam oscil-
lator chains coupled at the boundaries with heat baths at
different temperatures [11–13]. Thanks to their simplic-
ity, integrable and quasi-integrable models may be taken
as a paradigm to describe more comprehensively the en-
ergetics of normal solids under nonisothermal conditions.
For instance, anomalous features are known to disappear
when, in place of non-homogeneous boundary conditions
at the borders, a temperature gradient is generated by
stochastic heat baths displaced along the system [13].
Specifically, it has been shown that self-consistent heat
baths – such that no energy flows on average into or out
of the reservoirs – are sufficient to recover the Fourier’s
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law of heat conduction in a harmonic chain [14–16]. Lift-
ing the “self-consistency” condition, one obtains a simple,
yet general, model which describes a solid immersed in
a locally equilibrated medium [17–19]. This can find ap-
plication in all cases where the study of fluctuations is
applied to an extended system with a complex thermal
balance. As an example, we may cite cryogenic gravita-
tional wave detectors, where thermal fluctuations of the
systems composed by the test masses and their multi-
stage suspension chains are of central importance. The
latter are effectively coupled to different heat baths and
flows [20].
Here we analyze the energy repartition among the elas-

tic modes of a harmonic chain held in temperature gradi-
ent, as sketched in Fig. 1(a). In a coarse-grained picture,
the oscillator displacements can be thought of as the lo-
cal strain of a (one-dimensional) elastic dispersive body,
such that the model describes the damped propagation
of thermal phonons (Fig. 1(b)). Our approach is fully
analytic and provides an explicit expression for the en-
ergy repartition among the modes in terms of their effec-
tive temperatures Tkk. Exemplifying our results for tem-
perature profiles with a defined concavity, we show that
Tkk’s depend only on this concavity and on the boundary
conditions of the system. A naive expectation could be
that deviations from energy equipartition are to be antic-

FIG. 1. (a) Sketch of the linear chain of N harmonic oscilla-
tors held in a temperature gradient: Each oscillator is coupled
to an independent heat bath at temperature Tn, n = 0, ..., N
(in the picture N =3). (b) Schematic interpretation in terms
of sound propagation in a medium.
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ipated at long wavelengths only, since local equilibrium
conditions should hold at short scales. On the contrary,
we find that both long and short wavelength modes can
either heat up or cool down well beyond the average tem-
perature. We also study a reverse-engineering approach
in which the heat bath temperatures are inferred starting
from a desired energy repartition.

II. MODEL AND GENERAL RESULTS

Consider a linear chain of N + 1 equal oscillators lo-
cated at positions qn (n = 0, 1, . . . , N). Successive masses
are connected through a harmonic potential of equilib-
rium length l0. Each of them is in contact with a specific
Langevin bath at temperature Tn [21], providing viscous
damping with coefficient γ and thermal noise ξn. Setting
masses to unity, the equations of motion in the displace-
ment coordinate Rn ≡ qn − n l0 read

R̈n = −γṘn − κ

N∑

m=0

AnmRm + ξn, (1)

where Anm is a tridiagonal matrix accounting for first-
neighbors interactions via the potential κ

2 (Rm−Rm−1)
2.

In Eq. (1) the standard Gaussian white noise ξn has an
amplitude given by the fluctuation-dissipation theorem
at the local temperature (in units of kB):

〈ξm(t) ξn(t
′)〉 = 2γ Tn δ(t− t′) δmn. (2)

In the following, we first consider the case of free
boundary conditions (A00 = ANN = 1); fixed (A00 =
ANN = 0) and mixed (A00 = 1, ANN = 0) boundary
conditions are discussed later in Appendix A. With free
boundaries the matrix Anm is diagonalized by the linear
transformation Φ−1AΦ, with

Φ−1
kn =

1

N + 1
cos

(
kπ

N + 1

(
n+

1

2

))
, (3)

mapping the spatial coordinates Rn into the coordinates
of the normal modes Xk ≡ ∑

n Φ
−1
knRn, for which

Ẍk = −γ Ẋk − ω2
k Xk + ηk, (4)

where ω2
k = 4κ sin2

(
kπ

2(N+1)

)
is the (squared) eigenfre-

quency of the k-th mode. In this dynamics, the only
source of correlation between modes is contained in the
transformed Gaussian white noises ηk ≡ ∑

n Φ
−1
kn ξn,

〈ηk(t) ηk′(t′)〉 = 2γ Tkk′ δ(t− t′)/(N + 1), (5)

These correlation include a “temperature” matrix

Tkk′ ≡ (N + 1)

N∑

n=0

Φ−1
kn Φ−1

k′n Tn , (6)

0 20 40 60 80 100n
0

2

4

6

8

10
T

n

α=0.1
α=1
α=10

FIG. 2. Heat-bath profiles utilized for exemplifying our re-
sults.

which is certainly diagonal only in the equilibrium case
Tn = T ∀n, where energy equipartition is recovered. In a
nonequilibrium state, generated by heterogeneous bath-
temperatures, the diagonal Tkk still encodes information
about how energy is distributed among the modes. Non-
zero off-diagonal Tkk′ emerge in connection with energy
fluxes. To show this, we consider the average kinetic
energy (Kk) and potential energy (Vk) of the k-th mode,

Kk ≡ (N + 1) 〈Ẋ2
k〉 (1− δk0/2), Vk ≡ (N + 1)ω2

k 〈X2
k〉,

where expectation values 〈·〉 are taken over different re-
alizations of the thermal noise ξn. We get the variances
〈X2

k〉, 〈Ẋ2
k〉 from the solution of Eq. (4) (Appendix B),

Xk(t) =
∑

α=1,2

∫ t

−∞

dt′
(−1)α

λ1
k − λ2

k

e−λα
k (t−t′)ηk(t

′), (7)

where λ
(α)
k with α = 1, 2 are the roots of the characteris-

tic equation for the unforced harmonic oscillator; namely,

λ
(α)
k = − 1

2 [γ + (−1)α
√
γ2 − 4ω2

k]. For each mode k,
both the average kinetic and potential energy turn out
to coincide with one half of the mode temperature (Ap-
pendix B):

KX
k = V X

k = Tkk/2 (k 6= 0). (8)

This relation establishes a form of energy equipartition
between the conjugate variables of a single mode. In-
terestingly, from (6) and (3) one sees that Tkk does not
depend on the details of both the harmonic interaction
(κ) and the damping (γ). Therefore, the amount of en-
ergy stored in the k-th mode is directly determined by
the choice of the bath temperature profile Tn, for given
boundary conditions. Put in other words, properly de-
signing thermal profiles it is in principle possible to en-
hance or reduce the thermal vibrations of specific modes.
All these findings are confirmed by numerical integration
of (1).
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III. ROLE OF THE BOUNDARY CONDITIONS

In the case of free boundaries, Eq. (6) gives

Tkk = T


1 +

∑N

n=0 Tn cos
(

2n+1
N+1 kπ

)

∑N

m=0 Tm


 (k 6= 0), (9)

where T ≡ ∑N

n=0 Tn/(N + 1) is the average imposed
temperature. The center-of-mass kinetic energy

(N + 1)〈Ẋ0
2〉/2 is equal to T00 = T . Notice that Eq. (9)

is valid in particular when Tn corresponds to a self-
consistent profile [14–16]. In (9) the energy stored by
the mode k under stationary nonequilibrium conditions
emerges like a correction to the average temperature T ,
which at most amounts to ±T . This correction can
be viewed as a weighted average of a cosine function
over the temperature profile: For parity, it vanishes for
all temperature profiles which are odd with respect to
(N/2, T ). The relevant physical consequence is that
with free boundary conditions energy equipartition is ex-
tended to all nonequilibrium temperature profiles which
are odd-symmetric with respect to (N/2, T ), like linear
profiles. At variance, if the temperature profile has a
definite upwards (downwards) concavity in the interval
[0, N ], low- (high-) k modes heat up and high- (low-) k
modes freeze down. We exemplify these findings assum-
ing heat-bath temperatures Tn = T0 +(n/N)α (TN −T0)
with T0 = 10, TN = 1, and N = 99 (see Fig. 2): α = 1
corresponds to a linear temperature profile, whereas α <
1 (α > 1) corresponds to a profile with upwards (down-
wards) concavity. In Fig. 3(a) one finds the resulting Tkk

for free boundary conditions.
Transport properties might depend crucially on the

boundary conditions [22]. We show that the latter
strongly influences also the repartition of energy among
the normal modes. For fixed boundary conditions, Tkk
becomes (Appendix A)

Tkk =
(N − 1)T

N

[
1−

∑N−1
n=1 Tn cos

(
2nk
N

π
)

∑N−1
m=1 Tm

]
(10)

(0 < k < N), with T ≡ ∑N−1
n=1 Tn/(N − 1). Fig. 3(b)

shows the mode energy repartition for the same profiles
Tn used for open boundary conditions in Fig. 3(a). No-
tably, the low-k behavior is inverted. For instance, while
free boundaries enhance the long-wavelength energy stor-
age for concave-up Tn, fixed boundaries do the opposite.
Hence, if the aim were to store energy at low k’s, a con-
venient strategy would be to heat up the boundaries and
cool down the middle of a free chain, and vice versa with
a fixed chain.
For mixed boundaries in which we leave free the mass

at n = 0 and fix the mass at n = N we have (Appendix A)

Tkk =
2N T

2N + 1


1 +

∑N−1
n=0 Tn cos

(
(2n+1) (2k+1)

2N+1 π
)

∑N−1
m=0 Tm




(11)
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FIG. 3. Modes normalized temperatures Tkk/T calculated
through Eqs. (9), (10), (11) for the heat-bath profiles men-
tioned earlier. The four panels refer to different boundary
conditions: (a) free, (b) fixed, (c) mixed with free end hotter
than the fixed end, and (d) vice versa. Insets enlarge the plots
at low k’s.

(k < N), with T ≡
∑N−1

n=0 Tn/N . Due to the broken sym-
metry upon profile reflection with respect to the vertical
axis passing through N/2, in our exemplification we may
distinguish two cases for each temperature profile: One
in which the hotter temperatures are applied at the side
of the free end in n = 0 (as in Fig. 2) and one in which hot
temperatures are applied at the side of the fixed mass in
n = N (perform the transformation Tn 7→ TN−n to the
profiles in Fig. 2). Results are respectively depicted in
Fig. 3(c) and 3(d). In both cases, even the linear tem-
perature profile does not lead to equipartition. From the
plots one notices that low-k modes store more energy if
the free end is hotter. This alludes to suggestive im-
plications: The mixed boundary is the case considered
in Ref. [8], where an experiment with a solid bar and a
numerical study of an anharmonic chain displayed behav-
iors qualitatively consistent with that of Fig. 3(c). Our
results thus suggest that the noise at lowest k’s would be
lowered by letting the free end to float in a colder envi-
ronment. This also points out a conceivable indication
for reducing the measured thermal noise in experiments
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FIG. 4. Reconstruction of the temperature profile (lower
panel) through Eq. (12), starting from Tkk/T displayed in
the upper panel and T = 5.5.

passible to schematizations analogous to those in Fig. 1.

IV. REVERSE ENGINEERING

The expression Tkk(Tn) may be inverted, thus deter-
mining which heat-bath temperature profiles Tn may cor-
respond to a given mode energy repartition. For definite-
ness, let us focus on the case of free boundaries. Thanks
to simple identities (Appendix C), the inversion of Eq. (9)
gives

Tn + TN−n = 2

N∑

k=1

cos

(
2n+ 1

N + 1
kπ

)
Tkk + 2T . (12)

Notice that, given Tkk, the temperature profile Tn is not
uniquely identified. In fact, the relation Tkk(Tn) is many-
to-one – for instance, already on the basis of symme-
try one can figure out that temperature profiles Tn, T ′

n

related by the transformation T ′
n = TN−n produce the

same energy repartition Tkk. In the lower panel of Fig. 4
we display a profile reconstruction originated from the
specific choice for Tkk reported in the upper one. For
simplicity, we complemented Eq. (12) with the condi-
tion Tn = TN−n; this means, in particular, T0 = TN .
Our example points out that in principle it is possible
to design heat-bath temperature profiles so that the en-
ergy stored in the normal modes of the chain is arbitrar-
ily distributed in the range [0, 2T ], consistently with the

condition
∑N

k=1 Tkk = N T .

V. POWER SPECTRUM

To show that Tkk also encodes the dynamics of fluctua-
tions, we compute the power spectrum S(ω) of the chain
length RN −R0 +N l0 in the frequency domain, a quan-
tity typically monitored in experiments [8]. According
to the Wiener-Khinchin theorem [23], under stationary
conditions S(ω) is given by the Fourier transform of the
chain length’s autocorrelation function. Referring again
to free boundary conditions, in terms of normal modes

we have RN −R0 =
∑N

k=1(ΦNk − Φ0k)Xk. Hence (Ap-
pendix D),

S(ω) =
2γ

N + 1

N∑

k,k′=1

(ΦNk − Φ0k) (ΦNk′ − Φ0k′) Tkk′

(ω2
k − ω2 − iγω) (ω2

k′ − ω2 + iγω)

(13)

≃ 16γ

N + 1

∑

odd k

cos2
(

k
2(N+1) π

)
Tkk

(ω2
k − ω2)2 + γ2 ω2

(14)

(ω 6= 0), where even modes do not contribute owing to
the symmetry of the boundaries. Eq. (14) neglects the
cross-correlations between modes at different k. Such
cross-correlation terms are instead responsible for the
heat flux along the chain, Jn = l0 κ 〈ṘnRn−1〉 [12]. In
terms of normal modes we have (Appendix D) in fact

Jn = − i l0 κ

(2π)2
2γ

N + 1

∑

k 6=k′

ΦnkΦn−1,k′ Tkk′×

×
∫

dω
ω

(ω2
k − ω2 − iγω) (ω2

k′ − ω2 + iγω)
(15)

(0 < n < N). We have checked that the contribution of
terms with k′ 6= k in Eq. (13) can only be appreciated in
proximity of the negative peaks of the power spectrum,
away from the resonances ωk.

VI. CONCLUSIONS

In summary, our analytic study of energy repartition
in a harmonic chain in contact with independent heat
baths shows that both long and short wavelength modes
may have energies which deviate significantly from the
level expected if equipartition were to hold. This en-
hanced or reduced storage of energy depends critically on
the shape of the temperature profile and on the bound-
ary conditions. Other dynamical properties, such as the
damping or the elastic coupling, are instead totally irrel-
evant. Thus, for a generic harmonic chain, information
encoded in the temperature profile is mapped into a se-
quence of vibrational mode temperatures, which in turn
shape the power spectrum of the chain length. Investiga-
tions about the influence on the above picture of nonlin-
earities originating thermo-mechanical couplings, is the
next important step.
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Appendix A: Boundary conditions

1. Free boundary conditions

In the case of free boundary conditions with N + 1
oscillators the Laplacian matrix is

A ≡ (Anm)n,m=0,1,...,N ≡




+1 −1 0 · · · 0

−1 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 −1
0 · · · 0 −1 +1




,

(A1)
which is diagonalized by the linear transformation
Φ−1AΦ, with

Φnk =

{
1 k = 0√
2 cos

(
(2n+1) k

2(N+1) π
)

k 6= 0
, (A2)

Φ−1 =
Φt

N + 1
. (A3)

It is straightforward to see that the definition

Tkk ≡ (N + 1)

N∑

n=0

Φ−1
kn Φ−1

kn Tn (A4)

leads to

Tkk = T


1 +

∑N

n=0 Tn cos
(

2n+1
N+1 kπ

)

∑N

m=0 Tm


 (0 < k ≤ N)

(A5)

and T00 = T ≡ ∑N

n=0 Tn/(N + 1). Notice that
∑N

n=0 cos
(

2n+1
N+1 kπ

)
= 0, so that at equilibrium, Tn =

T ∀n, we recover Tkk = T ∀k.

2. Fixed boundary conditions

In the case of fixed boundary we can stick to our nota-
tions by fixing the two masses at the border. The number

of oscillators becomes N − 1, and the Laplacian matrix
reads

A ≡ (Anm)n,m=0,1,...,N ≡




0 0 0 · · · 0

0 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 0
0 · · · 0 0 0




,

(A6)
which now is diagonalized by

Φnk =





√
N (n, k) = (0, 0) or

(n, k) = (N,N)
0 (0 < n ≤ N, k = 0) or

(0 < n ≤ N, k = N)
√
2 sin

(
n k

N
π

)
otherwise

,

(A7)

Φ−1 =
Φt

N
. (A8)

Also in this case it is straightforward to show that

Tkk =
(N − 1)T

N

[
1−

∑N−1
n=1 Tn cos

(
2nk
N

π
)

∑N−1
m=1 Tm

]
(A9)

(0 < k < N),

with T ≡ ∑N−1
n=1 Tn/(N − 1). We have∑N−1

n=1 cos
(
2nk
N

π
)

= −1, so that at equilibrium we

again recover Tkk = T ∀k.

3. Mixed boundary conditions

In the case of mixed boundary we fix only the mass at
n = N . The number of oscillators becomes N and the
Laplacian matrix is

A ≡ (Anm)n,m=0,1,...,N ≡




+1 −1 0 · · · 0

−1 +2 −1
. . .

...

0 −1
. . .

. . .
...

. . .
. . . −1 0

−1 +2 0
0 · · · 0 0 0




,

(A10)
which is diagonalized by the linear transformation
Φ−1AΦ with

Φnk =





√
2N+1

2 (n, k) = (N,N)

0 (n = N, 0 ≤ k < N) or
(0 ≤ n < N, k = N)

√
2 cos

(
(2n+ 1) (2k + 1)

2(2N + 1)
π

)
otherwise

,

(A11)
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Φ−1 =
2Φt

2N + 1
. (A12)

As for the previous cases, it is easy to prove that

Tkk =
2N T

2N + 1


1 +

∑N−1
n=0 Tn cos

(
(2n+1) (2k+1)

2N+1 π
)

∑N−1
m=0 Tm




(A13)

(0 ≤ k < N),

with T ≡ ∑N−1
n=0 Tn/N . In this case

∑N−1
n=0 cos

(
(2n+1) (2k+1)

2N+1 π
)

= 1/2, and again one

recovers Tkk = T ∀k at equilibrium.

Appendix B: Energy repartition among the modes

Equation

Ẍk = −γ Ẋk − ω2
k Xk + Fk (B1)

is a first-order linear differential equation in the vector
Yk ≡ (Xk, Ẋk). Its stationary solution is formally given
by

Yk(t) =

∫ t

−∞

dt′ exp[(t− t′)Λk] · Fk(t
′), (B2)

with the definitions

Λk =

(
0 1

−ω2
k −γ

)
, Fk =

(
0
Fk

)
. (B3)

The matrix exponential in Eq. (B2) is computed by di-
agonalizing Λk. Its eigenvalues λ

1,2

k are the two solutions
of the characteristic equation for the unforced harmonic
oscillator, namely

λα
k =

1

2

(
−γ + (−1)α−1

√
γ2 − 4ω2

k

)
, α = 1, 2 . (B4)

Therefore, from the solutions

Xk(t) =
∑

α=1,2

∫ t

−∞

dt′ Aα
k exp(−λα

k (t− t′))Fk(t
′), (B5)

Ẋk(t) =
∑

α=1,2

∫ t

−∞

dt′ Bα
k exp(−λα

k (t− t′))Fk(t
′), (B6)

with

A1
k =

1

λ2
k − λ1

k

= −A2
k, (B7)

B1
k = −λ1

k

λ2
k

B2
k = λ1

kA
2
k, (B8)

we can evaluate the stationary equal-time correlations

〈XkXk′〉 = 2ζTkk′

∑

α,β=1,2

Aα
kA

β
k′

λα
k + λβ

k′

, (B9)

〈ẊkẊk′〉 = 2ζTkk′

∑

α,β=1,2

Bα
kB

β
k′

λα
k + λβ

k′

. (B10)

For the average kinetic and potential energy per mode,

Kk ≡ (N + 1) 〈Ẋ2
k〉 (1− δk0/2), (B11)

Vk ≡ (N + 1)ω2
k 〈X2

k〉, (B12)

we thus obtain the basic result

KX
k = V X

k = Tkk/2 (k 6= 0). (B13)

Appendix C: Reconstructing the temperature profile

Expressing the cosine in complex notation it is easy to
prove the following identities:

N∑

k=1

cos

(
(2m+ 1) k

N + 1
π

)
cos

(
(2n+ 1) k

N + 1
π

)
=

=
N + 1

2
(δmn + δmN−m)− 1, (C1)

N∑

k=1

cos

(
(2m+ 1) k

N + 1
π

)
= 0. (C2)

Hence, from Eq. (6) we obtain

N∑

k=1

cos

(
(2m+ 1) k

N + 1
π

)
Tkk = (C3)

=

N∑

k=1

cos

(
(2m+ 1) k

N + 1
π

)
T

×


1 +

∑N

n=0 Tn cos
(

2n+1
N+1 kπ

)

∑N

m=0 Tm


 , (C4)

or

Tn + TN−n = 2

N∑

k=1

cos

(
2n+ 1

N + 1
kπ

)
Tkk + 2T . (C5)

Appendix D: Spectral density

According to the Wiener-Khinchin theorem [23], under
stationary conditions the spectral density S(ω) of the
chain length RN −R0 +N l0 is given by
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S(ω) =

∫
dτ eiωt 〈 [RN (t0)−R0(t0)] [RN (t0 + τ)−R0(t0 + τ)]〉+ 2πN2 l20 δ(ω) (D1)

We have

RN (t)−R0(t) =

N∑

k=1

(ΦNk − Φ0k) Xk(t), (D2)

so that

S(ω) =
N∑

k,k′=1

(ΦNk − Φ0k) (ΦNk′ − Φ0k′)

∫
dτ eiωt 〈 Xk(t0) Xk′(t0 + τ)〉+ 2πN2 l20 δ(ω) (D3)

We indicate the Fourier transform of a generic function

h(t) as ĥ(ω) ≡
∫

dt eiωt h(t), and denote its complex con-

jugate as ĥ∗(ω). The Fourier transform of Eq. (4) gives

−ω2X̂k(ω) = iωγX̂k(ω)− ω2
kX̂k(ω) + η̂k(ω). (D4)

Solving for X̂k(ω) and using

〈ηk(t) ηk′(t′)〉 = 2γ Tkk′ δ(t− t′)/(N + 1) (D5)

we obtain, for ω 6= 0,

S(ω) =
2γ

N + 1

N∑

k,k′=1

(ΦNk − Φ0k) (ΦNk′ − Φ0k′) Tkk′

(ω2
k − ω2 − iγω) (ω2

k′ − ω2 + iγω)
.

(D6)
The local heat flux Jn along the chain [12] is given by

Jn = l0 κ
〈
ṘnRn−1

〉
(0 < n < N). (D7)

In terms of normal modes the local heat flux becomes

Jn = l0 κ
∑

k 6=k′

Φnk Φn−1k′

〈
ẊkXk′

〉
. (D8)

Indeed, stationarity implies
〈
ẊkXk

〉
= 0 for equal-time

averages. We then have

〈
ẊkXk′

〉
=

1

(2π)2

∫
dω

∫
dω′(−iω) e−iωt eiω

′t
〈
X̂k(ω) X̂

∗
k′(ω′)

〉
(D9)

=
1

(2π)2

∫
dω

∫
dω′(−iω) e−iωt eiω

′t 2γ

N + 1

Tkk′

(ω2
k − ω2 − iγω) (ω2

k′ − ω′2 + iγω′)
δ(ω − ω′) (D10)

= − i

(2π)2
2γ Tkk′

N + 1

∫
dω

ω

(ω2
k − ω2 − iγω) (ω2

k′ − ω2 + iγω)
. (D11)

Putting things together we obtain

Jn = − i l0 κ

(2π)2
2γ

N + 1

∑

k 6=k′

ΦnkΦn−1,k′ Tkk′

∫
dω

ω

(ω2
k − ω2 − iγω) (ω2

k′ − ω2 + iγω)
(0 < n < N). (D12)
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