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Abstract. The unique fluctuation-dissipation theorem for equilibrium stands in

contrast with the wide variety of nonequilibrium linear response formulæ. Their most

traditional approach is “analytic”, which, in the absence of detailed balance, introduces

the logarithm of the stationary probability density as observable. The theory of

dynamical systems offers an alternative with a formula that continues to work when the

stationary distribution is not smooth. We show that this method works equally well for

stochastic dynamics, and we illustrate it with a numerical example for the perturbation

of circadian cycles. A second “probabilistic” approach starts from dynamical ensembles

and expands the probability weights on path space. This line suggests new physical

questions, as we meet the frenetic contribution to linear response, and the relevance of

the change in dynamical activity in the relaxation to a (new) nonequilibrium condition.

PACS numbers: 05.70.Ln, 05.40.-a, 05.20.-y
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1. Introduction

An open system in contact with a large environment is in stationary equilibrium for a

given reduced scale of description when at each moment its condition realizes minimal

free energy. The total entropy production is then zero and the evolution is time-reversal

invariant. Small disturbances break the stationary behavior and after some time an

eventually new equilibrium is established mainly via dissipative effects. The comparison

with the original equilibrium is the domain of linear response: since about 60 years

now [1, 2], for classical, quantum, open, and closed systems basically the same formula

relates the response to a small perturbation with an equilibrium correlation function.

This formula (later called Kubo formula) exactly picks up the physical interpretation in

terms of dissipation, hence the name fluctuation-dissipation theorem [3].

Response theory continues making sense for stimuli to nonequilibrium systems,

where entropy is being produced already before the perturbation. Over the years

various types of linear response formulæ have indeed been obtained for nonequilibria,

including rather diverse but specific models such as in climatology and for glassy or

coarsening dynamics. For better orientation the present paper identifies some common

traits between the various approaches to put them in a more unified framework. Suppose

for example that one wants a numerical code for predicting the response of an out-of-

equilibrium systems, i.e., without actually perturbing the system. Without a clear

picture of the available theoretical results, the choice of the method, if any, would be

limited and possibly suboptimal. To answer requests like these, we aim at classifying

the features of several “extended fluctuation-dissipation theorems” for nonequilibrium,

highlight briefly their strengths and weaknesses, and the eventual relations between

them.

Reviews and classifications of nonequilibrium response already exist. The paper

by Marini Bettolo Marconi, Puglisi, Rondoni, and Vulpiani has reviewed response in

statistical physics in the light of recent fluctuation relations [4]. Seifert and Speck

have introduced a classification of some fluctuation-dissipation theorems into three

classes [77]. Chetrite and Gupta present a more mathematical view [6]. The present

work includes the case of deterministic dynamics and attempts a concise classification of

linear response for nonequilibrium. We will conclude that there are three main classes.

The first class of formulæ can be derived from the Kubo-Agarwal formula, which itself

starts from a Dyson-expansion of the perturbed Markov semi-group. A second approach

originates in the theory of dynamical systems and can be applied when the stationary

distribution is not smooth; it gives rise to a numerical algorithm which in fact also

applies for certain stochastic dynamics, as we show. The third class is much more

probabilistic and treats noise as an important observable in the linear response. The

synthesis is there provided by introducing the excess in dynamical activity in a second

“frenetic” contribution to the traditional Kubo fluctuation-dissipation formula. In that

sense, the name fluctuation–dissipation theorem (even “extended”) is not fully suitable

for nonequilibrium systems, as e.g. their return to stationary nonequilibrium is not
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uniquely characterized by dissipation [7]. On the mathematical side, our classification

is to work either with generators (for Markov evolutions) or to work with weights on

path space (mostly still limited to classical dynamical ensembles). Referring to those,

we call it the analytic approach (Section 2) versus the probabilistic approach (Section

3). Remarks complementing those in previous sections, and conclusions, are found in

Section 4.

2. Analytic approach

The framework we consider is that of Markov dynamics (no memory) on regions of

R
d. That includes deterministic dynamical systems, being essentially first order in

time. It also includes jump processes as described with Master equations, but we use

here the language of diffusion because it reduces naturally to that of deterministic

dynamical systems in the limit of zero noise, realized here with a state-independent

diffusion constant D → 0. For even much greater simplicity we choose overdamped

diffusions where the velocity field

ẋt = v(xt) is given by (1)

v(xt) = F (xt) +
√
2D ξt

for standard white noise ξt [8]. In Section 3.2 we also treat (underdamped or inertial)

Langevin processes. In all these cases it makes sense to speak about the so called

backward generator L, working on observables (Heisenberg picture). The expectation

of an observable A at time t ≥ 0 is then given by

〈A(xt)〉 =
∫

ρ(dx)
(

etLA
)

(x) (2)

when at time zero the states are distributed with probability ρ, possibly singular with

respect to the reference volume element dx on state space. We can also abbreviate

that as d〈A(t)〉/dt = 〈LA (t)〉. When no confusion can arise, we continue to write

A(t) = A(xt) for the (most often random) value of the observable at time t ≥ 0, and

〈B(0)A(t)〉 for the time-correlation between observable B at time zero and observable

A at time t.

For the overdamped diffusion (1) the generator is

(LA) (x) = (F · ∇A) (x) +D∆A (x) (3)

A perturbation changes the drift F → F h ≡ F + hF1 where, for simplicity, we avoid

inserting a time-dependence in the small amplitude h, applied at all times t > 0. This

leads to a perturbed backward generator Lh ≡ L+hL1 with L1A = F1 ·∇A. The change

in expectations at times t with respect to what we had for the unperturbed dynamics

follows from (2):

〈A(t)〉h − 〈A(t)〉 =
∫

ρ(dx) (etL
h − etL)A (x) (4)
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To linear order in h,

etL
h − etL =

∫ t

0

esL (Lh − L) e(t−s)Lds+O(h2) (5)

yielding a linear response

d〈A(t)〉h
dh

∣

∣

∣

h=0
≡ lim

h→0

〈A(t)〉h − 〈A(t)〉
h

≡ χ(t) =

∫ t

0

dsR(t, s) (6)

including a susceptibility χ(t) as the integration of a response function of the form

R(t, s) =

∫

ρ(dx) (esL L1 e
(t−s)LA) (x) (7)

More generally, when applying a time-dependent perturbation hs at time s > 0 we also

have

δ〈A(t)〉h
δhs

∣

∣

∣

h=0
= R(t, s), s < t (8)

We mostly restrict ourselves to the case where ρ is stationary: the response depends

only on the time difference τ = t− s and we can write

R(τ) =

∫

ρ(dx)L1e
τLA (x) (9)

as the central object of study for the linear response of stationary Markov evolutions

within an analytic approach‡.
The direct reading of the right-hand side of (9), further discussed under Section

2.2, is that eτLA evolves the observable A for a time τ and then L1 acts on the result

to evaluate it in state x. However, we start in the next section with the more frequent

approach of acting on ρ.

2.1. Acting on probabilities

In this section we focus on manipulations with the stationary probability distribution ρ.

The basic step from (9) is partial integration, which means that it is assumed here that

ρ has a smooth density with respect to the reference volume element, ρ(dx) = ρ(x) dx.

In many cases that appears to be a reasonable physical assumption when the level of

description is mesoscopic to macroscopic, independent of whether the system is driven

or not (see [9]).

‡ We can of course also use (9) for discrete jump processes. For each pair x, y of states, the perturbation

enters as a modification of jump rates w(x, y) → w(x, y) + hw1(x, y). The matrix L1 to be put in (9)

has elements w1(x, y) if x 6= y, and w1(x, x) = −∑y w1(x, y).
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2.1.1. Kubo–Agarwal formula Assuming a smooth density ρ we have that (9) can be

rewritten as

R(τ) =

∫

dx ρ(x)
L1ρ

ρ
(x) eτLA (x) (10)

where the adjoint L1 is defined by
∫

dx(L1ρ)(x)A(x) =
∫

dxρ(x) (L1A)(x). Adjoints

are forward generators of the time-evolution on densities, as appears e.g. in Master

equations. For the diffusion (3) the adjoint of L is the operator of the Fokker-Planck

equation (∂tρ = Lρ, see [8])

Lρ = −∇ · (Fρ) + ∆(Dρ) (11)

and L1ρ = −∇ · (F1ρ) so that (10) takes the form

R(τ) = −〈[∇ · F1(0) + F1(0) · ∇ log ρ(0)]A(τ)〉 (12)

which is a specific realization of

R(τ) =

〈L1ρ

ρ
(0)A(τ)

〉

= 〈B(0)A(τ)〉 (13)

with observable B(x) = L1ρ

ρ
(x). Note that in general the stationary expectation 〈B〉 = 0

because
∫

dxL1ρ(x) = 0 from the normalization of ρ. Applications of that Agarwal

formula [10] in practice meet the difficulty of needing to know the density ρ (which is

usually not available) and the details of the dynamics for L1. It is thus a result (from

partial integration) on a formal level.

Formula (13) is associated to equilibrium, see formula (2.5) in [11]. Of course we

have only used that ρ is smooth. It is easy to verify that in the case of detailed balance

with conservative forces F = −∇U at temperatureD = 1/β we obtain the Kubo formula

[2] for the linear response relation in equilibrium. Indeed, say for (3) with perturbation

F1 = −∇V around equilibrium ρ ∝ exp[−βU ], we get

L1ρ

ρ
= −β∇V · ∇U +∆V = β LV (14)

so that
〈L1ρ

ρ
(0)A(τ)

〉

= β 〈LV (0)A(τ)〉 = β
d

dτ
〈V (0)A(τ)〉 (15)

which is the (classical) Kubo formula. The last equality has used that under detailed

balance 〈LV (0)A(τ)〉 = 〈V (0)LA(τ)〉 (see further details in Sec. 2.1.3). In a way, the

Agarwal formula (13) repeats Kubo’s original derivation while stopping short before

specifying ρ.

Also others have re-found the Agarwal formula, such as in Theorem 2, formulæ

(2.22) and (2.23), of Chapter 2 in [12]. Weidlich gives a quantum version: his equation

(2.17) replaces L1ρ → i
~
[ρ,H1] with the commutator of the perturbing Hamiltonian

H1 [13]. Hänggi and Thomas in [14] find the Agarwal formula in their equation (3.12)

for time-dependent processes. In the review [4] formula (2.70)–(2.73) is the Agarwal

formula. We also find these formulæ such as (12) involving log ρ presented in the book

by Risken, formula (7.10)–(7.13) in [8], and as formula (7) in [15]. There also re-started

the emphasis on log ρ as “generalized” potential.
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2.1.2. Information potential The formula that Falcioni, Isola and Vulpiani [16] derived

for tiny displacements of the initial condition along a unit vector ê,

R(τ) = 〈ê · ∇ log ρ(0)A(τ)〉 (16)

(see it also as formula (3.13) in the review [4]) corresponds to the case of diffusion

with constant perturbation F1 = −ê (impulsive constant force in the direction −ê) in

(12). Again, as there is no explicit dependence on the noise level the formula can be

readily tried for chaotic dynamics with smooth stationary density [17]. The function

I ≡ − log ρ is sometimes called the information potential. In fact, that potential gets

a prominent place in various works on nonequilibrium linear response that follow the

Hatano-Sasa formalism [18], such as in the more recent [19] or [20].

Other formulæ focusing on I can be found in the works by Prost, Joanny and

Parrondo [20] and by Speck and Seifert [77]. Consider the stationary density ρh for

the perturbed dynamics with generator Lh and the linear response ρh(x) − ρ(x) =

h ρ1(x) + O(h2). From stationarity Lhρh = 0 we get L1ρ + Lρ1 = 0. For the Agarwal

formula (13) we need

B =
L1ρ

ρ
= −Lρ1

ρ
(17)

On the other hand,

−∂hIh = ∂h log ρ
h = lim

h→0

ρh − ρ

h ρh
=

ρ1
ρ

(18)

(∂h is understood in h = 0) so that for inserting in (13), B = L(ρ ∂hIh)/ρ. We conclude

R(τ) =

∫

dxL(ρ ∂hIh)(x)eτLA(x)

=

∫

dx ρ(x) ∂hIh(x)LeτLA(x)

=
d

dτ

∫

dx ρ(x) ∂hIh(x) eτLA(x) (19)

or

R(τ) =
d

dτ
〈∂hIh(0)A(τ)〉 (20)

This formula with the special emphasis on the presence of the information potential

appears in [77] (but with a different time-derivative), where I is called stochastic entropy.

The result of [20] starts from expanding the Hatano-Sasa identity, which effectively

makes a special choice for the observable A. There one imagines the process and hence

also the I to depend on a family of parameters λ and one asks how the expected value

of A = ∂λI at λ = λ∗ changes under a small change in these parameters around a given

λ∗. The answer is provided by (20), which is equation (5) in [20].

As already noticed for (13) a disadvantage of incorporating the information

potential into the correlation function of (16) and (20) is that it is generally unknown

and not directly measurable. Not only do we not know the stationary density, but also

no clear physically relevant interpretation in terms of heat, work or thermodynamic
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potential has been found for I. On the plus side, a clear advantage of (16) and

(20) is that no detailed information on the dynamics is needed and that one can use

parametrized forms of the stationary density ρ to put in I. Typically, (quasi-)Gaussian

approximations are tried for ρ to make formulæ (12), (16), (20) more explicit and

practically useful; see e.g. [21, 12, 22, 23]. Note that there is no reference in formula

(12) to the noise strength except through the stationary ρ. If one replaces the ρ in the

B of (13) by a Gaussian, its variance will effectively reflect the noise level but needs to

be fitted.

Finally, recent works on time-dependent processes with feedback rewrite the

positivity of the entropy production in terms of the expected information potential

(relative entropies) which appears useful for understanding work relations, see e.g.

[24, 52]. At any rate, (20) is the climax of the analytic approach for smooth probability

densities, preserving the Kubo form (15) most faithfully.

2.1.3. State velocity There is a relation between the information potential I and the

state-space velocity u. For diffusion processes with generator (3) this state velocity is

u ≡ jρ
ρ

= F −D∇ log ρ = F +D∇I (21)

as can be readily checked from the expression for the stationary probability current

jρ appearing in the Smoluchowski equation ∂tµt + ∇jµt
= 0 expressing conservation

of probability µt. Of course this probability velocity needs not be related to physical

currents, but an interesting observation writes a nonequilibrium response formula as a

co-moving (equilibrium) fluctuation-dissipation theorem.

In a stationary process two quantities A and B have time-translationally invariant

correlations 〈B(0)A(t)〉 = 〈B(−t)A(0)〉. As we mentioned above, the Kubo formula

(or, the fluctuation-dissipation theorem) holds under detailed balance, i.e., for an

unperturbed evolution which gives rise not only to a stationary but also to a time-

symmetric distribution of trajectories. Nonequilibrium means breaking time-reversal

invariance. We introduce the operator L∗ that generates the time-reversed motion to

describe for example

〈B(−t)A(0)〉 =
∫

ρ(dx)A(x)
(

etL
∗

B
)

(x), t ≥ 0 (22)

One can alternatively write
∫

ρ(dx) (Lf)(x) g(x) =
∫

ρ(dx) f(x) (L∗g)(x), from which

we see that L∗g = L(ρg)/ρ. For the overdamped diffusion processes that we have

considered so far, from (3) and (11), L∗ = L− 2u · ∇ = −F∇+D∆+ 2D∇ log ρ∇.

Note now that the Kubo formula (15) would follow from the Agarwal formula when

in (13) we take B = −βL∗V . Indeed,

〈L∗V (0)A(τ)〉 = 〈V (0)LA(τ)〉 = d

dτ
〈V (0)A(τ)〉 (23)

Detailed balance corresponds to L = L∗ (i.e., 〈B(−t)A(0)〉 = 〈B(t)A(0)〉) and

corrections to the Kubo formula will thus arise from choosing in (13)

B(x) = −L+ L∗

2
V (x) = −L∗V (x)− L− L∗

2
V (x) (24)
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for some function V . In other words the antisymmetric part L−L∗

2
V in the formula (24)

for B will be responsible for violating the Kubo formula and will show the nonequilibrium

aspect. Moreover, L−L∗ = 2u · ∇ relates to the state velocity (21). Substituting these

relations via (24) in (13), we find that for diffusions (3) (with D = 1/β)

R(t, s) = β
d

ds

∫

dx ρ(x)V (x) e(t−s)LA(x)

− β

∫

dx ρ(x) u(x) · ∇V (x) e(t−s)LA(x) (25)

abbreviated as

R(t, s) = β
d

ds
〈V (s)A(t)〉 − β〈[u(s) · ∇V (s)]A(t)〉 (26)

The equation (26) shows that the equilibrium Kubo form gets “restored” when

describing the system in the Lagrangian frame moving with drift velocity u. The

passage to the Lagrangian frame of local velocity d/ds → d/ds − u · ∇ “removes”

the non-conservative forcing from the formula, as explained in [15, 26, 27]. Still, if we

do not know the stationary ρ, the formula (26) implies a statistical average over the

unknown vector u.

2.2. Acting on the observable

We go back to the original (9) and we move to an algorithm focusing on the evolution of

the observable A rather than that of the density ρ. Various contributions to the theory of

dynamical systems start exactly from that formula for the formulation of linear response

as there still no assumption is needed on the smoothness of the probability ρ.

The main player now is L1e
tLA in (7), and L need not to commute with L1.

Typically the generator of the perturbation is L1 = F1 · ∇ for states x ∈ R
d. We

are thus interested in obtaining a useful relation for ∇etLA. In other words, we need to

start from

R(τ) =

∫

ρ(dx)F1(x) · ∇eτLA (x) (27)

Ruelle treated a formula with this form for deterministic dynamical systems [28, 11],

recently applied especially in studies of simple models for climate response [22, 29, 30].

Indeed (27) is especially suited in case the stationary probability law is strange in the

sense that its lack of smoothness forbids further partial integration to go back to the

Agarwal formula (13). In that same context however, it is useful to further split (27) into

two parts [11], one describing fluctuations along the stable directions of motion and one

parallel to unstable directions (those with positive Lyapunov exponents). Informally you

would expect that the vector ∇eτLA (x) can be given, at least for large τ , in its natural

components exp[τλê(x)] ê ·∇A(x) for local Lyapunov exponents λê corresponding to the

various (stable and unstable) directions ê. Such a decomposition is natural for stationary

distributions ρ which belong to the class of Sinai-Ruelle-Bowen (SRB) measures; these
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have a density in the unstable (expanding) direction (positive Lyapunov exponents) so

that there a further partial integration remains possible towards an Agarwal formula

(13). That is exactly what is suggested in the hybrid form of Section 2.3 of [22].

See [31, 32] for an introduction on SRB-measures with their physical interpretation.

2.2.1. Algorithm for deterministic and stochastic systems The numerical evaluation of

linear response for chaotic dynamics has recently been studied by various groups. In

particular, Abramov and Majda have developed new computational approaches based

on the theory of SRB-measures [29]. We simplify here the presentation to introduce

an algorithm that works also for stochastic systems. To exploit (27), no knowledge

of ρ is required, but we need to get a hold on ∇xe
τLA (x) = ∇x〈A(xτ )〉x0=x where we

have emphasized that the differentiation is on an evolved quantity with respect to the

initial condition x. To solve the problem that ∇ (state derivative) and L (generating

the time-evolution etLA(x)) need not to commute, we unfold the formula a little further.

A practical numerical tool for estimating ∇xA(xτ ) in deterministic dynamics (where xτ

is uniquely determined from x0 = x) was already presented in [33], but the following

numerical method is more efficient for steady states.

Consider first an evolution in discrete time n = 0, 1, . . . (but with a parameter ǫ

that will allow a continuous time limit ǫ → 0),

xn+1 = gn(xn) = xn + vn(xn), x0 = x (28)

with vn(x) = ǫ[F (x) + ξn]

for ξn anything stationary in time, including possible “noise” depending on the time

n, but that does not depend on the state x. This (ξn) is considered frozen so that for

its given realization we take (28) as a deterministic dynamics. The main point is that

∇x〈A(xn)〉x = 〈∇xA(xn)〉x where the 〈·〉 averages over the “noise” (ξn). We then need

to deal with ∇xA(xn) where xn depends on the initial state x through (28). By the

chain rule, applied recursively,

∇xA(xn) = (∇A)(xn) · ∇x(gn−1 ◦ . . . ◦ g0) (x)
= (∇A)(xn) ·Gn−1 (x)

= (∇A)(xn) (∇gn−1)(xn−1) · ∇x(gn−2 ◦ . . . ◦ g0) (x)
= (∇A)(xn) (∇gn−1)(xn−1) ·Gn−2(x) = . . . (29)

where ∇A is a 1×d row vector (easily computed at all times) and Gk(x) ≡ ∇(gk ◦gk−1 ◦
. . . ◦ g0) (x) is a d× d matrix obeying the recursive relations

Gn(x) = ∇gn(xn) ·Gn−1(x) (30a)

G0(x) = ∇g0(x) (30b)

Note now that for each time k, the analytical form of the matrix ∇gk = I + ǫ∇F does

not depend on k or on the “noise” (ξn). Hence,

∇xA(xn) = (∇A)(xn) · [I+ ǫ(∇F )(xn−1)]

· [I+ ǫ(∇F )(xn−2)] · · · [I+ ǫ(∇F )(x)] (31)
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The continuous time version Gt(x) can be obtained in a suitable limit n → ∞ for Gn(x)

with time t = n ǫ and time step ǫ = t/n. In this limit (28) returns the evolution

ẋt = F (xt) for the deterministic case, while for stochastic equations an additional

suitable rescaling to reproduce e.g. Gaussian noise with ξt is needed. At any rate,

from I+ ǫ(∇F )(x) ≃ eǫ(∇F )(x) we get formally

∇xA(xτ ) = (∇A)(xτ ) ·T exp

[
∫ τ

0

ds(∇F )(xs)

]

(32)

where each xs depends deterministically on x for frozen (ξr, 0 ≤ r < s), and T indicates

a time-ordered integral. The formula (32) or its discretization (31) is ready to be inserted

into (27) where the 〈·〉 will first average there over the possible “noise” and then, with ρ,

over the initial condition x. That provides the main algorithm for the analytic approach

working on the observable instead of on the probability distribution.

A similar expression can be found in the Appendix B of Ref. [33] for the case of

deterministic dynamics. In that work, however, the estimate of (∇A)(xn)Gt(x) was

performed with an adjoint scheme, by integrating numerically backward in time the

final value (∇A)(xn) with the equation

∂t(∇A)(xt) + (∇A)(xt) · (∇g)(xt) = 0 (33)

(In [33] they wrote the equation for the column vector rather than for the row vector

∇A, and a transpose of (∇g) was used). Although that scheme is equivalent to our

(31), it requires a CPU time O(n2) for a perturbation active during all n iterations,

as opposed to the O(n) matrix multiplications (2.2.1) for estimating matrices Gk for

k ≤ n. Our scheme is exploiting stationarity: the propagator from time n − k to time

n is the same as Gk from time 0 to k. In transient regimes we would lose this property

and we would also need O(n2) operations.

A further study of such a numerical algorithm is contained in [22, 29]; in particular

Appendix A of [29] explains the derivation above (without the generalization to

stochastic evolutions). For questions of dealing in a similar context with the impact

of stochastic perturbations, we refer to [34].

2.2.2. Numerical illustration To illustrate the numerical scheme (29) for estimating

Ruelle’s linear response formula (27) in a simple context, we consider a set of equations

introduced in biology to describe circadian cycles, that is the periodicity of biorhythms,

for Drosophila [35, 36]. The state space has d = 5 dimensions, with states x = (P0, P1,

P2, PN , M). The dynamics couples the concentration M of mRNA with those of four

types of proteins, written as P0, P1, P2, and PN in Ref. [36], where one can find the

details of these equations. Denoting
[

P

K

]

≡ P

P +K
(34)

we have equations of motion ẋ = F (x) of the form

dP0

dt
= kSM − ν1

[

P0

K1

]

+ ν2

[

P1

K2

]

(35a)
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Figure 1. Evolution of the concentration of mRNA and of the four proteins of the

model from random initial conditions, according to (2.2.2).

dP1

dt
= ν1

[

P0

K1

]

− ν2

[

P1

K2

]

− ν3

[

P1

K3

]

+ ν4

[

P2

K4

]

(35b)

dP2

dt
= ν3

[

P1

K3

]

− ν4

[

P2

K4

]

+ νd

[

P2

Kd

]

− k1P2 + k2PN (35c)

dPN

dt
= k1P2 − k2PN (35d)

dM

dt
= νS

[

Kn
I

P n
N

]

− νm

[

M

Km

]

(35e)

with parameters as in previous papers,

(νS = 0.5, νm = 0.3, ν1 = 6, ν2 = 3, ν3 = 6, ν4 = 3) nMh−1

(Km = 0.2, KI = 2, K1 = 1.5, K2 = 2, K3 = 1.5, K4 = 2) nM

(kS = 2, k1 = 2, k2 = 1) h−1, n = 4

Integration of (2.2.2) was performed with a simple Verlet scheme with a discrete time

step ǫ = 0.0025. Starting from random concentrations, the model reaches quickly a

cyclic regime, as shown in Fig. 1.

We check the response in the mRNA concentration M to a change of the rate

kS → kS(1 + h), starting from the steady state, i.e., a random phase of the cycle.

The dynamical perturbation introduced by that change is hF1 = (hM kS, 0, 0, 0, 0),

since a change in kS affects only the evolution equation of variable P0, see (35a). The

observable A(x) = M has a gradient (∇A)(x) = (0, 0, 0, 0, 1), which is coupled to

the perturbation via the “propagator” matrix Gn. With the setup of Sec. 2.2.1, we can

estimate Gn by a sequence of matrix multiplications. Given an evolution in discrete time

g(x) = x + F (x)ǫ, we are interested in matrix ∇g(x) = I +∇F (x)ǫ, or in coordinates

(∇g)ij(x) = δij + dFi/dxj ǫ. The rows of the matrix (∇F ) are
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Figure 2. Linear response function R(τ) of the mRNA density M to an impulsive

change in the parameter kS → kS(1 + h0) as a function of time and response

δ〈M(τ)〉/δh0 computed with h0 = 10−3. Units are nM vs. hours.

(

−ν1

[

P0

K1

]

P0

, ν2

[

P1

K2

]

P1

, 0, 0, kS

)

(36a)

(

ν1

[

P0

K1

]

P0

,−ν2

[

P1

K2

]

P1

− ν3

[

P1

K3

]

P1

, ν4

[

P2

K4

]

P2

, 0, 0

)

(36b)

(

0, ν3

[

P1

K3

]

P1

,−ν4

[

P2

K4

]

P2

− νd

[

P2

Kd

]

P2

− k1, k2, 0

)

(36c)

(0, 0, k1,−k2, 0) (36d)
(

0, 0, 0, νS

[

Kn
I

P n
N

]

PN

,−νm

[

M

Km

]

M

)

(36e)

where derivatives with respect to P are denoted as
[

P
K

]

P
= 1

P+K
− P

(P+K)2
and similarly

for
[

Kn

I

Pn

N

]

PN

. This matrix with x0 = (P0, P1, P2, PN ,M)0 yields (∇g)(x0) = I+(∇F )(x0)ǫ,

coinciding with G0. Iteratively, G1 = (∇g)(x1) ·G0, and so on.

By sampling many trajectories, in parallel for perturbed and unperturbed dynamics

starting from an initial condition from the steady state, the estimate of δM(τ)/δh0 has

been obtained by setting a small constant h for τ > 0 and by evaluating the time

derivative of (〈M(τ)〉h − 〈M(τ)〉)/h (we used h = 10−3). The response function instead

has been calculated with (29) and (27), and well overlaps with the response, as shown

in Fig. 2. Asymptotic stability in this model [36] probably favors a good performance

of formula (27). We computed both the perturbed dynamics and the unperturbed

fluctuation formula just to show graphically that the results are the same, but of course

there is no additional understanding of the process. Obviously, computing the response
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only with unperturbed simulations would be convenient as long as the convergence of

the method is good. We postpone a more detailed study of the efficiency of this and

other numerical schemes to a future work.

3. Probabilistic approach

Linear response makes sense in general only within a statistical theory. That is to say,

sensitive dependence on initial and boundary conditions can create strong and relevant

effects beyond linear order on the microscopic scale while macroscopic linearity remains

valid. For estimating the mobility we do not investigate the microscopic particle’s

individual motion at specific times and how it changes under an external field, but

we ask for a spatio-temporal averaged current and that includes noise. In fact, for

stronger microscopic chaoticity we expect the statistical approach to be more relevant.

While various physical variables can show chaotic behavior in their time-evolution, their

spatial or temporal averages will typically have a much smoother behavior, see also [9]

and chapter 6.2 in [37] answering the so called van Kampen objection.

3.1. As noise gets important

In coarsening dynamics of low temperature spin systems, or in spin glasses, a very long

transient regime may exist towards equilibrium, i.e., the nonequilibrium is not imposed

by external gradients and the dynamic equations are actually equilibrium ones. It

is in this context that an extensive response-literature has been produced during the

last decades. We mention briefly some results from 2003, whose focus was mostly to

develop zero-field algorithms, in other words, exploiting fluctuation–response relations

to estimate numerically responses from fluctuations in unperturbed dynamics. Works

of Chatelain [38], Ricci-Tersenghi [39], and Crisanti and Ritort [40] introduced new

schemes for computing the response of the system from correlations in the spins. They

were followed by Diezeman [41] and by Lippiello, Corberi, and Zannetti [42, 43, 44]. The

derivations of these results cannot be reduced in our brief scheme and various forms of

response relations have been obtained. However, the one by Lippiello et al., a specific

case of (41) below, emerged as having clear physical significance beyond numerical

usefulness, because it matched the form of an earlier study by Cugliandolo, Kurchan and

Parisi [45], who proposed a response relation for autocorrelations in Langevin equations.

With the present notation (1), perturbation hsx and observable A(x) = x, that would

read

R(t, s) =
1

2D

{(

d

ds
− d

dt

)

〈xsxt〉 − (〈F (xt)xs〉 − 〈F (xs)xt〉)
}

(37)

showing an “asymmetry” term in addition to the form of the Kubo formula. The

derivation of (37) is based on the equality 〈xtξt〉 = 2DβR(t, s), hence it is centered on

the presence of noise ξt. This was new, certainly with respect to derivations presented

in previous sections where eventually noise was just an aspect of the dynamics, not
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fundamental for the derivations. An equation similar to (37) appears in a more recent

study for nonequilibrium steady states [46], based on a path-space formulation by

Harada and Sasa [47], see their Appendix B. The Harada-Sasa approach has really

pioneered the path-space approach of the next subsection. The consistency between the

approaches of Refs. [45, 42, 47] indeed shows that these belong to a general framework

with new significant physical content. In the following section we discuss the path-

space formulation embracing these results and we mention the physical interpretation

that goes beyond merely dissipative aspects. Noise becomes visible then as dynamical

activity, ruling the time-symmetric fluctuations.

3.2. Path space approach

The origin of dynamical ensembles is the projection of a microscopic Hamiltonian

dynamics on the dynamics of reduced variables. That Mori-Zwanzig projection [48, 49]

originates from making a physical partition of the phase space, depending on the physical

situation at hand, in which each microstate X is mapped (many–to–one) to a reduced

state x(X). That induces noise in the reduced dynamics, for example on the mesoscopic

level of description. It is then natural to consider dynamical ensembles, i.e., probability

distributions on path space where a path refers to a trajectory on the mesolevel. Such

was already the approach of Onsager and Machlup starting dynamical fluctuation theory

in [50]. These trajectories, under certain limiting conditions (e.g. via a weak coupling

limit or via adiabatic elimination), can be described via first-order equations, in which

case we meet the Markov processes of the previous Section 2. Dynamical ensembles can

however also describe non-Markovian processes describing important memory effects,

see e.g. [51] for the application of a response relation in a visco-elastic medium.

Paths are trajectories ω = (xs, 0 ≤ s ≤ t) in state space, say looking at the

states xs in the time-interval [0, t]. For the sake of simplicity we characterize the

unperturbed (perturbed) process by the probability weight P (ω) [P h(ω)] with respect

to some reference dω. The mathematical idea is to turn perturbed expectations

〈A(t)〉h into unperturbed ones
〈

A(t)P h(ω)/P (ω)
〉

. Defining the relative action U(ω) =
logP (ω)/P h(ω) and splitting U(ω) = [T (ω)−S(ω)]/2 into a time-symmetric T (ω) and

a time-antisymmetric S(ω), we get

〈A(t)〉h − 〈A(t)〉 =
∫

dω P (ω)A(xt)(e
−U(ω) − 1) (38a)

=
〈

A(t) (e−U(ω) − 1)
〉

(38b)

=
1

2
〈A(t)S1(ω)〉 −

1

2
〈A(t)T1(ω)〉+O(h2) (38c)

where T1 and S1 are the linear contributions in h of T and S, respectively, around h = 0

(where U = 0). This formula is general but the point is that in physical systems with

local detailed balance [47] we have a good physical understanding of the path functions

T and S [53, 54, 55, 56]. Let us first look under global detailed balance. We already see

here that since the observable A(t) − A(0) is time-antisymmetric (ignoring momenta),
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under detailed balance

〈A(t)〉h − 〈A(t)〉 = 〈A(t)− A(0)〉h

=
1

2
〈[A(t)− A(0)]S1(ω)〉

= 〈A(t)S1(ω)〉 (39)

because 〈[A(t)− A(0)])T1(ω)〉 = 0 and 〈A(t)S1(ω)〉 = −〈A(0)S1(ω)〉 by time-reversal

symmetry of the reference equilibrium process. The result (39) should equal the Kubo

formula (15), and indeed it does as will become clear. When the perturbation is from a

potential −hsV (xs), it is well established that the time-antisymmetric S(ω) = S1(ω)

must be the path-dependent entropy flux into the environment as caused by the

perturbation potential V [57, 58]. If the environment is at uniform temperature, for

small constant h for times t > 0 the change in entropy is S(ω) = βh[V (t)−V (0)], namely

dissipated energy h[V (t) − V (0)] divided by temperature. The first term on the right-

hand side of (38c) has thus the same form one finds in equilibrium (39), but in general the

unperturbed process is in steady nonequilibrium and S(ω) = βh[V (t)−V (0)] is an excess

of entropy production with respect to that already generated by the nonequilibrium

dynamics. Hence, the derivative δ〈A(t)S(ω)〉/δhs = β d
ds
〈V (s)A(t)〉 also mimics the

equilibrium Kubo formula.

We now turn to the second term on the right-hand side of (38c). Eq. (38c) must

be true also for a constant A, for which the response is zero. We thus get

β
d

ds
〈V (s)〉 = δ

δhs

〈T1(ω)〉 =
〈

δ

δhs

T1(ω)

〉

(40)

If δ
δhs

T1(ω) equals a state function B(s), then, since d
ds
〈V (s)〉 = 〈LV (s)〉, one deduces

that B(s) = βLV (s), arriving at

R(t, s) =
β

2

d

ds
〈V (s)A(t)〉 − β

2
〈LV (s)A(t)〉 (41)

For diffusion processes (1) with generator (3) and temperature D = 1/β we see that

indeed LV (x) = (F ·∇V )(x)+D∆V (x) is a state function. The same is true for Markov

jump processes (for specific derivations of (41) using stochastic calculus, see [55]).

The function LV quantifies the time-symmetric volatility of V under the unperturbed

dynamics, also named “frenesy” [53]. It is related to the “dynamical activity” in discrete

systems, where it quantifies the change in escape rates; T (ω) is the excess in dynamical

activity over [0, t]. We refer to [54, 55, 56] for more details and examples. Thus, there is a

new contribution next to the first term in (41) (taking one half of the Kubo formula (15)

and referring as usual to dissipation). In particular, its form now clearly deviates from

response formulæ such as (20). One then wonders in what sense the decomposition in

formulæ like (41) is intrinsically natural. We think it is, as that splitting makes the first

term time-antisymmetric and the second term symmetric in time s, which corresponds

to the dissipative and the reactive part of the susceptibility, respectively.

It remains to be discovered what is the operational meaning of the notion of

dynamical activity, and whether the frenetic contribution is on an equal footing with the
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entropic part in the response. What is certain however is that the dynamical activity

and the entropy flux merge for systems close to equilibrium, as it should be indeed for

recovering the linear response around equilibrium. So the frenetic part of the response

only starts to play its independent role from second order around equilibrium. We then

expect that thermodynamic forces in that regime pick up non-gradient contributions

that are directly related to the frenetic response.

Note that in (41) one computes averages without needing an explicit knowledge

on the stationary probability. On the other hand some knowledge is required on the

dynamics sitting in the generator L. It is still not clear how much kinetic information

is truly needed and how practical that gets. We summarize the general physical idea in

the formula

〈A(t)〉h − 〈A(t)〉 = 1

2
〈Entr[0,t](ω)A(t)〉 − 1

2
〈Esc[0,t](ω)A(t)〉 (42)

where Entr[0,t](ω) is the excess in entropy flux over the time period [0, t] and Esc[0,t](ω)

is the excess in dynamical activity due to the perturbation. The physical challenge is

to learn to guess or to find that Esc[0,τ ](ω) from partial information on the dynamics.

For the overdamped dynamics of e.g. (41) it means to consider the expected rate of

change of the perturbing potential V under the original dynamics. The response relation

out of equilibrium is no longer a fluctuation-dissipation relation but a fluctuation–

dissipation-activation relation. In fact, the formula can now be turned around and from

measuring “violations” of the fluctuation–dissipation relation one obtains informations

about the active forces [51]. Harada and Sasa [47, 46] already expressed the mean rate of

dissipation as the deviation from the equilibrium fluctuation–dissipation relation: such

approach was also used to study active forces for a single F1-ATPase molecule [52].

3.3. Inertial case

We open a separate subsection on the inertial case of Langevin dynamics because its

linear response is much less discussed in the literature despite the obvious interest for

example for models of heat conduction. The main point however is that the ideas

summarized under (3.2) and (42) remain unchanged.

For states (q, p) = (q1, q2, . . . , qn; p1, p2, . . . , pn) ∈ R
2n of positions and momenta

we attach standard white noise ξit to each 1 ≤ i ≤ n, with constant strength Di and a

friction coefficient γi to model heat baths at temperature Di/γi = T i:

q̇i = pi

ṗi = F i(q)− γipi + ht

∂V

∂qi
+
√
2Di ξit (43)

The forces F i can contain a nonconservative part but are confining when we want a

stationary regime where the particles typically reside in a bounded region. We already

inserted the perturbation V (q) with small time-dependent amplitude hs for s ≥ 0. The
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linear response is given by formula (17) in [53]:

R(t, s) =
∑

i

1

2T i

〈

∂V

∂qi
(qs) p

i
sA(t)

〉

−
∑

i

1

2Di

{〈

∂V

∂qi
(qs)F

i(qs)A(t)

〉

− d

ds

〈

∂V

∂qi
(qs) p

i
sA(t)

〉

+
∑

j

〈

∂2V

∂qj∂qi
(qs) p

j
s p

i
s A(t)

〉}

(44)

The first sum again corresponds to the dissipative part from the entropy fluxes in the

reservoirs at temperatures T i. The remaining sums give the frenetic contribution. As

not recognized yet, formula (44) can still be rewritten in a similar way as done in (41).

Supposing Di = γ/β we must replace there V → V̇ /γ = p · ∇qV/γ,

R(t, s) =
β

2γ

d

ds
〈ps · ∇qV (s)A(t)〉 − β

2γ
〈L(ps · ∇qV )(s)A(t)〉 (45)

in which the generator L for (43) now reads

Lf(q, p) = p · ∇qf + (F − γ p) · ∇pf +D∆pf (46)

and is the underdamped version of (3). Note however that the dissipative last term

D∆pf does not contribute in (45) and that these formulæ do not work in case Di = 0

for an i with ∂V/∂qi 6= 0. In that case the best alternative is probably to apply the

algorithm of Section 2.2.

An important application of (44) is to the modification of the Sutherland-Einstein

formula relating transport coefficients such as mobility with fluctuation quantities such

as the diffusion constant [59].

4. Further remarks and conclusions

4.1. Nonlinear responses

There is also a growing number of works on higher-order terms around equilibrium. In

fact part of the book by Evans and Morriss is devoted to that [60]. Other references

include [61], Section 10 in [58] or the more recent [4, 62, 63, 64]. One typical start

is the fluctuation symmetry in the distribution of the entropy flux, transient from the

reference equilibrium system as also explained in [65] for thermostated dynamics.

As was emphasized in [66] the main point is probably not to be able to write formal

expansions and formulæ, but to find useful structures and unifying interpretations.

We will not deal with that here, except for mentioning one particular general relation

between second order and first order terms that has been largely unnoticed [67], and an

instance of which has appeared as identity (25) in [66].

∂2

∂h2
〈A(t)〉h

∣

∣

∣

∣

h=0

= β
∂

∂h
〈[A(t)− Ā(0)][V (t)− V (0)]〉h

∣

∣

∣

∣

h=0

(47)
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The Ā equals A up to flipping the sign of the momenta. All terms are explicitly

expressed as correlation functions in the equilibrium reference process (indicated with

the superscript 〈·〉0). The derivation of (47) uses linear response around nonequilibrium

for non-state functions (i.e., the correlation function in the right-hand side).

4.2. Non-state functions

In case of observables that depend explicitly on time or are functions of the trajectory

over several times (such as products A1(t1)A2(t2) . . . An(tn)), some of the formulæ must

change. The basic techniques remain however in place. A typical application is how

the heat depends on a change in parameters, e.g., for estimating nonequilibrium heat

capacities [68]. Heat is not a state function but varies with the trajectory and the

applied protocol.

4.3. Note on effective temperature

A traditional approach to violation of the equilibrium fluctuation-dissipation theorem

is to imagine an effective temperature in the otherwise unchanged Kubo formula [69].

That idea has had most success with mean field type systems, but it has remained

more unclear how the effective temperature can provide a consistent and general tool for

realistic systems. Still today it serves as a paradigm for interpreting experimental results,

see e.g. [70]. One possible approach for the future would be to associate an effective

kinetic temperature to the ratio between the frenetic and the entropic contribution in

(42), see Appendix A in [55].

4.4. Transient case

Lots of attention have been devoted to the linear response behavior for relaxational

processes. We mentioned some of that in Section 3.1, but there is no way to be complete.

For example, the interest in ageing and glassy dynamics has much stimulated the search

of modified fluctuation-dissipation relations [71]. Here we emphasize that the analytic

approach and in particular the methods of Section 2.1 loose their simple structure when

the unperturbed reference is time-dependent (and not stationary as was assumed). On

the other hand, formulæ like (41) are unchanged when one is not starting at time zero

from the stationary distribution, but one needs to take the average in the unperturbed

transient regime. Also causality is automatically verified there as the second term in

(41) equals the first term when s > t. This unification in expressions for the transient

and the steady regime is only natural as even the stationary regime is physically and

ultimately but a very long transient.

4.5. General properties of linear response

Some formal properties of linear response go basically unchanged from equilibrium to

nonequilibrium contexts. For example, sum rules and Kramers-Kronig relations only
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depend on the presence of an underlying Hamiltonian dynamics for the total system

plus environment or on causality. Of course, specific expressions can differ but there

is physically nothing new, see also [72, 73]. Nevertheless, there do exist essential

differences. We have already alluded to the fact that the name “fluctuation–dissipation

theorem” is no longer so appropriate because of the importance and complimentary

character of changes in the dynamical activity (and not only in the dissipation). In

fact, the word “fluctuation” also becomes less correct as the time-correlations in the

expressions for R(t, s) no longer express a symmetrized time-correlation. To make that

point, let us evaluate the equilibrium Kubo formula (15)) when the perturbing potential

V equals the observable A:

〈V (t)〉h − 〈V 〉 = −〈V (0)[V (t)− V (0)]〉 = 1

2
〈[V (t)− V (0)]2〉 ≥ 0 (48)

which is the variance (or the “diffusion”) of the displacement V (xt) − V (x0). That is

sometimes called a generalized Einstein relation. In fact all linear transport coefficients

for equilibrium can be expressed like that, as was understood already in 1960 by

Helfand [74]. For nonequilibrium linear response, that relation including its positivity

gets violated, see also [59, 7]. In the words of the previous subsection, negative

effective temperatures become possible in nonequilibrium. The origin lies in the frenetic

contribution, e.g. the second term on the right-hand side of (41), which can overrun the

first dissipative term. Examples of negative effective temperature in active matter are

already known [75, 76, 77].

4.6. Outlook

Response theory is primarily about predicting the reaction of a system in terms of

its unperturbed behavior. As we mostly have in mind response in time, that involves

temporal correlations. Therefore, dynamical fluctuation theory can be expected to be

most prominent. (See [78] for the distinction between static and dynamic fluctuation

theory: statics looks at deviations around the law of large numbers at single times, for

example for the average over many copies of the system, while dynamical fluctuations are

around the law of large times, for deviations around time-averages.) Around equilibrium,

dynamical fluctuations are governed, just as static fluctuations, by the entropy and

dissipation functions. That further enables connecting different response coefficients,

such as in Onsager reciprocity or via Maxwell relations. Nonequilibrium makes a more

drastic difference between static and dynamical fluctuations. In particular, no useful

connections between different types of responses have been discovered for nonequilibrium

processes. We think of the analogue of relations between compressibilities, heat

capacities and conductivities. In our opinion, that challenge will require finding

experimental access to quantities like the dynamical activity which is complementing

entropic characterizations in the description of nonequilibrium processes.
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4.7. Conclusions

We have presented a concise guide (with plenty of references) to the multi-faceted

world of linear response for systems out of equilibrium. From there we have discovered

similarities but also some missing pieces that otherwise would not be evident. One

such piece was the extension to stochastic systems of Ruelle’s formulation, which we

have introduced, together with an efficient algorithm. That also allows for numerical

calculations where an explicit knowledge of the density of states is not required, as

opposed to other (analytic) formulations that we have described. However, the resulting

linear response formula contains a correlation function whose physical meaning is not

very clear.

In contrast, a rich physical picture emerges from a probabilistic approach based

on path space weights, where the stationary distribution is also not needed. Besides

the quite different mathematical apparatus compared to the more standard analytical

approach, the probabilistic way indeed emerges as the one that currently offers

more relations with dynamical fluctuation theory: one has to study also how the

system correlates with the activity of the perturbing potential, a time-symmetric

quantity complementary to the time-antisymmetric fluxes of entropy. The combination

fluctuation-dissipation therefore does not suiffice to characterize the linear response of

nonequilibrium systems.

Acknowledgments M.B. thanks M. Colangeli, A. Vulpiani and J. Wouters for useful

discussions.
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