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Triggering cascades and statistical properties of aftershocks

Chad Gu1, Aicko Y. Schumann1, Marco Baiesi2,3 and Jörn Davidsen1

Abstract. Applying a simple general procedure for identifying aftershocks, we inves-
tigate their statistical properties for a high-resolution earthquake catalog covering South-
ern California. We compare our results with those obtained by using other methods in
order to show which features truly characterize aftershock sequences and which depend
on the definition of aftershocks. Features robust across methods include the p-value in
the Omori-Utsu law for large mainshocks, B̊ath’s law, and the productivity law with an
exponent smaller than the b-value in the Gutenberg-Richter law. The identification of
a typical aftershock distance with the rupture length is a feature we confirm as well as
a power law decay in the spatial distribution of aftershocks with an exponent less than
2. Other results we obtain, but not common to all other works including Marsan and
Lengliné [2008]; Hainzl and Marsan [2008]; Zhuang et al. [2008], are (a) p-values that
do not increase with the mainshock magnitude, (b) the duration of bare aftershock se-
quences that scales with the mainshock magnitude, (c) an additional power-law in the
temporal variation, at intermediate times, in the rate of aftershocks for mainshocks of
small and intermediate magnitude and (d) a b-value for the Gutenberg-Richter law of
background events that is sensibly larger than that of aftershocks. Tests on synthetic cat-
alogues generated by the epidemic-type aftershock sequence model corroborate the va-
lidity of our approach.

1. Introduction

One of the hallmarks of seismicity is the clustering of
earthquakes in space and time. This is particularly evident
from the observation that the local rate of seismic activ-
ity increases significantly after large earthquakes. From a
physical perspective, the spatiotemporal clustering of earth-
quakes typically indicates that the vast majority of them
are triggered by the preceding ones due to static or dy-
namic stress changes, fluid flow, afterslip and/or other mech-
anisms [Main, 2006; van der Elst and Brodsky , 2010]. While
it is known that earthquakes, independent of their sizes,
can trigger other earthquakes, one commonly denotes the
largest earthquake in such a cluster as the mainshock and
all following (preceding) ones as aftershocks (foreshocks).
As far as we know, there is no physical distinction in the
relaxation mechanism between mainshocks, foreshocks and
aftershocks [Houghs and Jones, 1997; Helmstetter and Sor-
nette, 2003] such that the classification of earthquakes re-
lies on correctly identifying triggering relationships between
them. Moreover, some aftershocks classifications not only
include those earthquakes that are directly triggered by the
mainshock — the first generation of aftershocks — but also
earthquakes that are indirectly triggered, e.g., earthquakes
directly triggered by other triggered events. Thus, a se-
quence of aftershocks corresponds to a cascade of triggering
that extends the reach of the initial mainshock. A long-
standing challenge is to determine which earthquakes are
connected, either directly or indirectly, and to identify after-
shock sequences based on causation [Parsons and Velasco,
2009].
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To separate earthquakes between mainshocks and after-
shocks, several declustering algorithms have been proposed
in the past [Gardner and Knopoff , 1974; Keilis-Borok et al.,
1980; Reasenberg , 1985; Davis and Frohlich, 1991; Molchan
and Dmitrieva, 1992; Zhuang et al., 2002, 2004; Baiesi and
Paczuski , 2004, 2005; Zaliapin et al., 2008; Marsan and
Lengliné, 2008]. Some of these methods have arbitrary
rules and are rich in parameters, calling their objectiv-
ity in question. For example, declustering schemes based
on a sharp space-time aftershock window following a large
earthquake may suffer from the loss of long-range trigger-
ing and/or the inappropriate selection of the window shape.
To overcome such problems, a number of methods trying
to estimate earthquake correlations were proposed [Zhuang
et al., 2002, 2004; Baiesi and Paczuski , 2004, 2005; Zaliapin
et al., 2008; Marsan and Lengliné, 2008]. It is this class
of methods that we consider here. Specifically, we choose
to study the algorithm proposed by Baiesi and Paczuski
[2004] (BP), which is able to distinguish between popula-
tions of events triggered by other events and background
activity as shown by Zaliapin et al. [2008]. We compare
the statistical properties of aftershocks obtained in this
way with those observed using other methods, especially
the schemes proposed by Zhuang, Ogata and Vere-Jones
(ZOV) [Zhuang et al., 2002, 2004] and by Marsan and
Lengliné [2008] (ML). While there are some formal simi-
larities between these techniques, there are also significant
differences: In the BP approach, one defines a space-time-
magnitude nearest-neighbor distance between earthquakes,
based on phenomenological laws of seismicity related to the
Gutenberg-Richter law, while ZOV assume that Epidemic-
Type-Aftershock-Sequence (ETAS) models with observed
phenomenology at the level of earthquake activity can be
used to describe seismicity; finally, ML implemented an iter-
ative algorithm based on a linear superposition of triggering
rates of events that does not rely on a specific model. A de-
tailed comparison of our results with those obtained using
the other methods allows us to identify statistical proper-
ties of aftershocks sequences that are apparently robust and
well-defined across methods. However, we also show that
several statistical features depend sensitively on how one
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defines and identifies aftershocks. An additional motivation
of our work is to test whether the results in the BP scheme
are robust with respect to variations in the method itself.

The outline of the paper is as follows: in Section 2, we
discuss in detail how we identify a trigger of a given earth-
quake. One particular focus is on the difference between
directly and indirectly triggered events which allows one to
define aftershocks in at least two different ways. In Sec-
tion 3, we introduce the ETAS model which we use in the
following sections to i) establish the robustness of the ap-
plied methodology and ii) for comparison with our analysis
of a high-resolution catalog from Southern California. Sec-
tion 1 presents our findings for the rate of aftershocks af-
ter a mainshock of a given magnitude. In particular, we
discuss aftershock productivity. The temporal duration of
aftershock sequences is investigated in Section 5. In Sec-
tion 6, the frequency-magnitude distribution of aftershocks
and background events are analyzed. Our findings regard-
ing B̊ath’s law are presented in Section 7. We discuss in
detail the spatial distribution of aftershocks in Section 8 as
well as its implication for the ongoing discussion on static
and dynamic triggering of aftershocks. Finally, we present
a discussion and our conclusions in Section 9.

2. Aftershock identification

To identify aftershocks, we follow the method first pro-
posed by Baiesi and Paczuski [2004]. It is based on a metrics
quantifying space-time-magnitude distances between seis-
mic events in order to identify the nearest neighbor for
any given earthquake. The distribution of all these near-
est neighbor distances then allows one to identify potential
triggering relationships [Zaliapin et al., 2008]. Thus, this
procedure is similar to other recent approaches used to iden-
tify functional networks in complex systems [Egúıluz et al.,
2005]. The general goal is to sparsify a weighted network —
here described by the matrix of space-time-magnitude dis-
tances between all earthquakes — thereby keeping only a
backbone composed by the set of “significant” correlations.
The process of weight assignment must be based on a proba-
bilistic argument, and thus should conform to the empirical
laws appropriate to the systems of concern.

For our specific case, consider a time-ordered earthquake
catalogue given as (tj , ~xj ,mj), where tj is the time of occur-
rence of the j-th event, ~xj its epicenter or hypocenter, mj

its magnitude and 1 ≤ j ≤ N . For every earthquake j, we
compute the expected number of events for every precedent
index i [Baiesi and Paczuski , 2004, 2005; Baiesi , 2006]:

nij = c · (rij)Df tij10
−bmi (i < j)& ((tij − rij/v̄) ≥ 0),

(1)
where v̄ is the propagation speed and the conditions en-
sure causality. This expression is based on the empirical
Gutenberg-Richter law, which states that the expected num-
ber of earthquakes N bigger than a given magnitude m in a
given (large) area over a given (large) time interval follows
N = a10−bm with b ≈ 1 [Gutenberg and Richter , 1949].
The prefactor a depends on the size of the considered area
and on the length of the considered time interval [Turcotte,
1997]. On average, a increases linearly with the length of
the time interval and approximately as a power law with
fractal dimension Df with the linear size of the considered
area. These dependencies are directly reflected in Eq. (1),
where tij = tj − ti and rij = d(~xi, ~xj) are the time sepa-
ration and spatial distance, respectively. It is important to
realize, though, that the spatial distribution of seismicity is
not a simple fractal but shows a) signs of multifractality if
one considers epicenters [Davidsen and Goltz , 2004] and b)
strong finite size effects and depth dependence if one consid-
ers hypocenters [Kagan, 2007]. Thus, there is huge uncer-
tainty in the choice ofDf . To address this point, we consider
different values of Df centered around Df = 2.2 in the fol-
lowing. The latter value has been estimated as the asymp-
totic correlation dimension of hypocenters for shallow-crust

seismic activity in Southern California, which takes place at
depths less than 30 km [Kagan, 2007]. Note that we explic-
itly focus on hypocenters and three-dimensional distances
between them, allowing us to analyze values of Df > 2 in
contrast to [Baiesi and Paczuski , 2004; Zaliapin et al., 2008].

In general one quantifies correlations by detecting devi-
ations from randomness. In other words, one states a null
hypothesis of uncorrelated events and measures departures
from that [Baiesi and Paczuski , 2005]. In seismicity, based
on Eq. (1), we can identify the most likely candidate i that
triggered event j as the one that minimizes the expected
number of earthquakes nij , since it is the least probable
event pair to have actually occurred at random. The collec-
tion of all minimal pairs or nearest neighbors {k, j}, where
k satisfies nkj = mini<j{nij} ≡ n∗

j for a given j, constitutes
the pool of possible triggering relations. From this pool, one
can identify those earthquake pairs for which the triggering
relations are indeed statistically significant as shown by Za-
liapin et al. [2008]. This allows one to separate earthquakes
into two classes as discussed in detail below: triggered events
and non-triggered or background events. This classification
sets the BP method apart from other probabilistic meth-
ods used for aftershock identification including the schemes
proposed by Zhuang, Ogata and Vere-Jones (ZOV) [Zhuang
et al., 2002, 2004] and by Marsan and Lengliné [2008] (ML).
In the ZOV and the ML scheme, each event is assigned a
set of non-zero probabilities. For a fixed event, each of these
probabilities quantifies the likelihood of a specific preceding
event being the trigger of the fixed event, with the excep-
tion of a single probability which quantifies the likelihood
of the considered event being a background event. While
the assignment of these probabilities in the ZOV and the
ML scheme is formally similar to the inverse space-time-
magnitude metric given in Eq. (1) — see, for example,
[Zhuang et al., 2004] — both schemes involve an iterative
estimation of such a metric itself in the process. For the
BP method, the estimation of the parameters quantifying
the Gutenberg-Richter law in Eq. (1) is performed indepen-
dently and discussed below.

2.1. Southern California

Here, we apply the BP analysis described above to seis-
mic data obtained through the Southern California Seis-
mic Network, where seismic activities from 1984 to 2005,
within an area of approximately 356, 528 km2 have been
compiled [Lin et al., 2007]. The events in the current cat-
alogue have been relocated by computing waveform cross-
correlation from seismographic data, yielding higher spatio-
temporal resolution of low-magnitude events in active re-
gions closer to the detection sources. We assumed complete-
ness of measurements for all events above a lower magnitude
cutoff mth = 2.5 [Wiemer and Wyss, 2000; Schorlemmer
and Woessner , 2008] such that we are left with N = 27539
events and N − 1 minimal pairs. In computing the {nij}’s
according to Eq. (1), we also applied a lower cutoff for the
inter-event time to avoid unphysical selection, keeping only
inter-event times tij > rij/v̄. Here, v̄ = 6 km/s is the propa-
gation speed of P -waves in the Earth’s crust, averaged from
the seismic wave velocity model used by Lin et al. for the
relocation procedure in the catalog [Lin et al., 2007]. We
also set b = 1.09, since an estimate for this catalog based on
the maximum likelihood method discussed in [Naylor et al.,
2009] gave b = 1.09± 0.07.

From the set {n∗
j} one can identify two statistically

distinct populations of earthquake pairs by defining the
weighted relative distances in space and time, respectively:

τkj = tkj10
−bmk/2,

lkj = r
Df

kj 10−bmk/2. (2)
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This follows from Fig. 1 which shows density plots of the set
{n∗

j} split into its τkj and lkj contributions as first proposed
by Zaliapin et al. [2008]. Note that n∗

j = τkj lkj where we
have set c = 1 without loss of generality. The denser regions
in Fig. 1 correspond to the most probable occurrences of
weighted relative time and distances of all extremal pairs,
and a bimodal structure is clearly visible for all Df . The
existence of this bimodality indicates that the triggering re-
lations of event pairs with log n∗

j < log n∗ (indicated by the
straight solid lines in Fig. 1) are statistically significant
while event pairs above the threshold n∗ are not [Zaliapin
et al., 2008]. Thus, we may naturally identify all events j
with log n∗

j < log n∗ as triggered events, while we can con-
sider all other events — which have not been triggered by
events in the catalog — as background events. All results
presented in the following do not depend significantly on the
exact choice of n∗ as long as it correctly separates the bi-
modal structure in the density plots, see also [Zaliapin and
Ben-Zion, 2013].

Due to the bimodality, we can reduce the number of po-
tential triggering relationships to those that are significant.
These remaining pairs {k, j} of a triggering earthquake k
and the event j it triggered allow us to represent seismicity
in the form of triggering cascades. Mathematically speaking,
seismicity can be represented by a sparse directed network,
which consists of disconnected trees: each tree corresponds
to a triggering sequence and the root of each tree corre-
sponds to an event j, for which n∗

j > n∗. These events are
background events, which are not triggered by any preceding
earthquake in the catalog. For a given event, we define its
first generation aftershocks as those directly triggered by it.
In contrast, the full set of aftershocks of a given event con-
sists of all directly or indirectly triggered events, where the
latter is already intrinsic in the transitivity of the directed
network structure (if C is triggered by B, and B is triggered
by A, then C is indirectly triggered by A). Following the ter-
minology in related literature, these are called the bare and
dressed aftershock sequences, respectively [Helmstetter and
Sornette, 2002; Marsan and Lengliné, 2008]. Note that our
definition of aftershocks is independent of the magnitudes of
the triggered events — similar to the approach by Marsan
and Lengliné [2008] but in contrast to many other definitions
that include the notion of foreshocks (see, for example, Zali-
apin and Ben-Zion [2013]). In particular, every earthquake
that triggers another one is considered a mainshock.

Similar to the findings in [Zaliapin et al., 2008], the value
of log n∗ does not depend on mth (not shown). Holding
the fractal dimension fixed (Df = 2.3), we found the same
threshold values n∗ in each case, by varying the lower mag-
nitude threshold from mth = 2.5. This is particularly true
for mth = 3.0 and mth = 3.5, which we use for some analy-
sis in the subsequent sections. We also would like to point
out that, for Df ≤ 2, there are no qualitative differences be-
tween using hypocenters and three-dimensional Euclidean
distances on one hand and using epicenters and geodesic
distances on the surface of a sphere on the other hand.

3. Synthetic ETAS catalogs

To further establish the reliability of the above BP
method to identify triggering cascades and recover their sta-
tistical properties as well as for comparison with our find-
ings for Southern California, we also study surrogate cata-
logs generated by the Epidemic-Type Aftershock Sequence
(ETAS) model [Kagan and Knopoff , 1987; Helmstetter and
Sornette, 2002; Ogata and Zhuang , 2006; Peixoto et al.,
2010]. The ETAS model and related models (as, for ex-
ample, [Turcotte et al., 2007]) are based on the assumption
that any earthquakes can trigger other earthquakes. This is

quantified in terms of triggering rates which depend on space
and time such that the ETAS model falls into the class of
non-homogeneous spatio-temporal Poisson processes. The
overall rate of activity is given by

λ(~r, t) = λb(~r) +
∑

ti≤t

φmi(t− ti, ~r − ~ri), (3)

where ti, ~ri, and mi refer to the time, location, and magni-
tude of earthquake i, respectively. φmi(t−ti, ~r−~ri) describes
the occurrence rate of earthquakes triggered by event i while
λb(~r) is the spatially varying background activity. For the
ETAS model, the occurrence rate is defined as

φmi(t− ti, ~r − ~ri) = ρ(mi)Ψ(t− ti)Φmi(~r − ~ri), (4)

where ρ(mi) is the number of directly triggered earthquakes
(which is a random variable itself and its distribution de-
pends on mi), Ψ(t − ti) is the normalized temporal distri-
bution of directly triggered events and Φmi(~r − ~ri) is the
normalized spatial distribution of directly triggered events
in two dimensions. The functional form of these three dis-
tributions are derived from empirical observations.

To generate a surrogate catalog based on the ETAS
model, we consider a time interval [0, T ] and a square spatial
area of size L × L with periodic boundary conditions. The
triggering activity is initialized by independent, spatially
non-uniformly- and temporally Poisson-distributed back-
ground earthquakes with an average rate of 〈λb〉. The mag-
nitudes, mi, for each earthquake (background and triggered
events) are drawn from a normalized Gutenberg-Richter
probability density function

p(mi) = b ln(10) · 10−b(mi−m0) (5)

with lower-threshold magnitude m0 such that mi ≥
m0. After initialization, triggered events are added time-
progressively such that the productivity of each earthquake
is Poisson-distributed with average

〈ρ(mi)〉 = K10α(mi−m0), (6)

where α and K are constants. The waiting times, t − ti,
between an event at time ti and the earthquakes it triggers
at times t > ti are distributed according to the normalized
Omori-Utsu law [Utsu et al., 1995]

ψ(t− ti) =
θcθ

[(t− ti) + c]1+θ
, (7)

with c > 0 and θ > 0. Following recent empirical stud-
ies [Felzer and Brodsky , 2006], triggered events are assumed
to be distributed in space according to a probability density
function Φmi(~r − ~ri) that is isotropic and reduces to

ϕmi(|~r − ~ri|) =
µ|~r − ~ri|

l(mi)2
(

|~r−~ri|2

l(mi)2
+ 1

)1+µ/2
(8)

for the distribution of distances |~r − ~ri|. Here, l(mi)
is the rupture length of the trigger given by l(mi) =
l010

0.45·mi [Peixoto et al., 2010] and µ is another constant.
To minimize the effect of catalog incompleteness due to miss-
ing aftershocks triggered by events that occurred before the
simulation period, we remove all data in the time interval
[0, tc] from the catalog. tc and all other parameter values we
used here to generate ETAS catalogs are given in Table 1.
The specific values were chosen to closely resemble those
empirically observed for Southern California as was the spa-
tially varying background rate. In the following, we mostly
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Table 1. Parameters used for simulating the ETAS model (see Section 3 for details). They are chosen such that
the surrogate catalogs resemble the observed activity in Southern California.

Simulation time
& space

Background
earthquakes

Gutenberg-
Richter law

Omori law Aftershock
productivity

Epicenter
distribution

Parameter T tc L 〈λb〉 m0 b c θ K α µ l0

Unit days days km day−1 – – days – – – – m

Value 8000 365 600 1 2.5 1.09 0.024 0.2 0.155 0.9 0.6 15

focus on one specific ETAS catalog not only as an exam-
ple but also for comparison with the catalog from Southern
California. This ETAS catalog is also provided in the Sup-
plementary Material.

As shown by Zaliapin et al. [2008], the BP method de-
scribed in Section 2 allows one to identify two statistically
distinct populations of events for the ETAS model cor-
responding to triggered and non-triggered or background
earthquakes. This is confirmed by Fig. 2. Due to the statis-
tical nature, there is typically some overlap between the two
populations such that a perfect separation is not possible.
Yet, we show below that this does not significantly affect
the vast majority of statistical properties of the two classes
for the relevant parameter values in the ETAS model.

4. Omori-Utsu law & aftershock productivity

In the language that clearly necessitates a definition of
triggered earthquakes, the Omori-Utsu law is the empirical
observation that the rate of aftershocks following a large
earthquake scales as [Utsu et al., 1995]

r(t) = χ · (t+ c)−p, (9)

where t is the time after the mainshock. Though its validity
has been documented in many cases, the exact nature of its
parameters and their dependencies are not well-known. For
example, the exact origin of the parameter c is still debated.
The most recent results suggest that it is of physical rather
than instrumental origin [Kagan and Houston, 2005; Peng
et al., 2006, 2007; Peng and Zhao, 2009] but a generally ac-
cepted physical interpretation of its meaning is still lacking
despite some progress [Narteau et al., 2009]. In particular,
its quantification might sensitively depend on how one de-
fines aftershocks [Hainzl and Marsan, 2008]. Moreover, its
estimate is often affected by short-term aftershock incom-
pleteness [Kagan, 2004]. In the limit t≫ c, one can instead
study a rate equation of the form

r(t) ∼ χ · t−p, (10)

which avoids the above complications.

4.1. Results for Southern California

Fig. 3 shows both the bare and dressed aftershock rates
for the three largest earthquakes in the Southern California
region over the time-span of the catalog, computed by ap-
plying the BP method for different fractal dimensions. In
all cases, the rates can be well described by the Omori-Utsu
law. Moreover, p ≈ 1.25 in all cases as indicated by the
insets. As expected, the value of χ is higher for the dressed
aftershock rates compared to the bare rate.

Since the importance of small distances rij on identify-
ing the trigger of a given earthquake increases with Df as
evident from Eq. (1) and Fig. 1, the value of Df can have
some impact on the statistical properties of triggering cas-
cades as well. While p seems to be invariant with respect to
the choice of Df for these largest earthquakes, we find that

this is not true for smaller mainshocks. As Fig. 4 shows,
a power-law decay for sufficiently large t might not even be
a good description for Df = 1.6 if we consider the aver-
age rates of aftershocks directly triggered by mainshocks of
magnitude 4.0 ≤ m ≤ 4.5. Yet, Fig. 4 also shows that there
are no significant differences in the bare aftershock rates for
2.0 ≤ Df ≤ 3.0. Hence, it makes sense to use the value
Df ≈ 2.2 estimated for Southern California for calculating
the metrics given by Eq. (1) and to remember that the
relative results are not very sensitive to variations in this
parameter. This also indicates that the influence of finite
size effects (or even multifractality if present) as discussed
in Section 2 is negligible.

Fig. 4 also allows a comparison between the bare and the
dressed aftershock rate for Df = 2.3. At t < 10−2 day, only
the directly triggered aftershocks contribute and thus we see
an agreement between the bare and dressed rates. As ex-
pected, over the domain t > 1 day the dressed rates are much
higher than the bare rates. Yet, as in the case of the largest
earthquakes (see Fig. 3) we find in the same region that both
the bare and dressed rates decay with a similar exponent
p ≈ 1.2 (see inset of Fig. 4). The agreement between the
two rates in the above regimes is also valid for mainshocks
over other magnitude ranges as follows from Fig. 5. On the
other hand, in the intermediate regime 10−2 < t < 1 days,
the functional form of the dressed rates necessarily deviates
from that of the bare rates. Even if short-term aftershock in-
completeness of the catalog were to play a role in our specific
observations, the differences between bare and dressed rates
are necessarily generic. This implies that the exact func-
tional form used to describe aftershock rates will depend
on whether one includes higher-order aftershocks or not as
confirmed by Helmstetter and Sornette [2002]; Marsan and
Lengliné [2008]; Hainzl and Marsan [2008]. Our findings
show, however, that the slope of the power-law decay in the
rates for large t is independent of this choice and, thus, a
robust feature.

Focusing on the robust behavior of the aftershock rates
for t > 1 day, we can investigate the behavior of p(m) and
χ(m) as a function of mainshock magnitude m — similar
to [Hainzl and Marsan, 2008]. From the data shown in
Fig. 5, we obtained for 100 days > t > t0 the best power
law fits to Eq. (10) for aftershocks a) directly triggered (bare
rates, t0 = 1 day) and b) both directly and indirectly trig-
gered (dressed rates, t0 = 4 days) by earthquakes within a
given magnitude range. The estimated parameters p and χ
are shown in Fig. 6. For all three values of Df , we observe a
decreasing trend in p(m) for the bare aftershock rates. The
trend becomes less and less pronounced for larger Df . In
contrast, the dressed p-value appears to be independent of
m forDf = 2.3 in Fig. 6. The scaling of the productivity pa-
rameter χ, however, is unaffected by inclusion of indirectly
triggered aftershocks: χ scales as 10αm for sufficiently large
magnitudes where α ≈ 0.9 in both the bare and dressed
cases.

Instead of evaluating the aftershock productivity by es-
timating χ, we can also analyze the total number of after-
shocks, Nas, directly triggered by an event with a given
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magnitude m. This number is expected to scale on average
as Nas ∼ 10αm as well [Baiesi and Paczuski , 2005]. Indeed,
Fig. 7 confirms this asymptotic scaling giving an estimate of
α ≈ 0.85 for Df = 2.3 for both bare and dressed aftershocks.
Note that α does not depend on the lower magnitude cutoff,
mth, applied to the catalog. This follows from the inset of
Fig. 7.

4.2. Results for ETAS catalogs

Fig. 8 shows that the most important parameters of the
Omori-Utsu law — including those of the productivity law
— can be recovered. In particular, panels A and B of Fig. 8
indicate that both the bare and dressed aftershock rates of
the ETAS catalog can be fitted very well by Eq. (10) —
independent of the specific magnitude ranges of the main-
shock. More importantly, we find that p = 1 + θ within
the uncertainties for large mainshocks indicating that the
aftershock identification method allows us to successfully
recover the parameter θ of the ETAS model. Panel C of
Fig. 8 further indicates that there is a tendency to over-
estimate p for mainshocks of smaller magnitude, especially
for directly triggered aftershocks. Yet, this feature is much
less pronounced or even absent if we consider variations of
the ETAS model for which the spatial distribution of trig-
gered events, Φmi(~r − ~ri), has a slightly different form or
is anisotropic [Moradpour et al., 2013], which is the more
realistic scenario.

The expected exponential increase of χ with mainshock
magnitude (see Eq. (6)) is documented by panel D of Fig. 8.
Specifically within the uncertainties, we recover the ETAS
parameter α = 0.9 that characterizes the aftershock produc-
tivity. Instead of evaluating only the scaling of the after-
shock productivity by estimating χ, we can directly analyze
the total number of aftershocks, Nas, triggered by an event
with a given magnitude m and compare it to Eq. (6). As
Fig. 9 shows, both agree very well for the bare case. While
the productivity is necessarily higher in the dressed case, one
can observe a very similar behavior. These findings provide
additional evidence that the BP method described in Sec-
tion 2 gives reliable estimates of the statistical properties of
triggering cascades or aftershocks.

4.3. Summary

The analysis of the ETAS catalogs shows that the BP
method can reliably recover key parameters of the Omori-
Utsu law and the productivity law such as p and α. The
analysis of the catalog from Southern California further
shows that the observed statistical properties of aftershocks
are robust with respect to variations in the BP method itself
as long as one considers hypocenters and a fractal dimen-
sion close to the estimated correlation dimension. While our
analysis provides clear evidence for α ≈ 0.9 and, thus, α < b
for Southern California, the presence of a variation in p with
mainshock magnitude is not absolutely clear. For Southern
California there is a monotonically decreasing trend in p(m)
(see Fig. 6) which, for Df > 2.0, is similar to the bias ob-
served in the ETAS catalog (see panel C in Fig. 8). This in
combination with the true uncertainties of the fits and the
possible role of spatial anisotropies discussed in Section 4.2
indicates that p(m) is either slightly decreasing with m or
constant around 1.2. Indeed, the dressed p-value appears to
be independent of m for Df = 2.3 in Fig. 6. Alternatively,
this observation could indicate a potential statistical differ-
ence between the first generation of aftershocks and the full
set of aftershocks.

We also observe deviations from the Omori-Utsu law for
intermediate and small mainshocks. For Southern Califor-
nia, the inset of Fig. 4 shows that the power-law decay as
described Eq. (10) with p ≥ 1.2 does not hold for t < 1 day.
For the bare rates, there is evidence of another power-law

decay with exponent ≈ 1.0 in the domain 10−2 < t < 1 day.
While this could be an artifact due to short-term aftershock
incompleteness — we do not correct for this incompleteness
in any way — a recent analysis of high-frequency waveforms
in Japan has shown that only time scales less than 10−2

days after mainshocks of magnitude 3 to 5 are typically af-
fected by this type of catalog incompleteness [Peng et al.,
2007]. Moreover, there is no indication of a comparable be-
havior for the ETAS catalogs we studied (see Fig. 8). This
is even true if short-term aftershock incompleteness is taken
into account (not shown), which can be mimicked by elim-
inating small events from the ETAS catalog that directly
follow large earthquakes according to the time-dependent
magnitude threshold of completeness described in [Helm-
stetter et al., 2006].

Provided that all these observations are applicable to the
catalog from Southern California we study here, it suggests
that our findings are not an artifact and the Omori-Utsu
law needs to be modified if one considers (directly) trig-
gered earthquakes associated with mainshocks of intermedi-
ate magnitude as defined by the method used here. Further
evidence comes from Fig. 5 where the dressed and bare af-
tershock rates are shown for different magnitude ranges of
the mainshock. For the bare case, best fits over the domain
10−2 < t < 1 day give exponents between 0.9 and 1.0 for all
magnitude ranges with m < 6.0. Note that such a break in
scaling implying systematic deviations from the Omori-Utsu
law for small t has also been reported by Peng et al. [2007].

4.4. Comparison with other studies

Understanding whether and how the Omori exponent p
varies with the mainshock magnitude has important phys-
ical implications. Within the framework of the rate-and-
state model [Dietrich, 1994], one can show that the coseismic
stress heterogeneity on the main fault as well as the afterslip
determine the dependence of the parameters in the Omori-
Utsu law on m [Hainzl and Marsan, 2008]. In particular,
empirical stress distributions with high coefficient of varia-
tion in the distribution will give rise to p(m) ≈ constant, in
line with our results here. This is, however, different from
other results.

The nonparametric aftershock identification scheme of
ML [Marsan and Lengliné, 2008] — in some sense a
generalization of the ETAS-based method introduced by
ZOV [Zhuang et al., 2002, 2004] — is model-independent
and linear, since it identifies triggering relationships based
on summing the influences of previous seismic events. Using
the ML scheme and different space-time window methods,
Hainzl and Marsan [2008] found an overall increasing trend
in p(m) as also reported in [Ouillon and Sornette, 2005] but
the high dispersion in their estimates did not rule out the
possibility that p is independent of the mainshock magni-
tude (especially if one takes systematic errors in the chosen
fitting procedure into account). Since the magnitude ranges
and the catalog studied in [Hainzl and Marsan, 2008] dif-
fer vastly from ours, a more appropriate comparison can be
drawn with the p values reported in [Marsan and Lengliné,
2008], where an earlier version of the Southern California
catalog was analyzed (for all events m > 3.0) using the ML
scheme. For directly triggered aftershocks, their estimated
p-values exhibit a non-monotonic dependence on m, varying
between 0.8 to 1.4. Note that these values vary significantly
if the distance to fault is used instead of the epicentral dis-
tance in the ML scheme and are, thus, not robust. On the
other hand for both indirectly and directly triggered events,
they found p to be generally lower by 0.2–0.4 with a less pro-
nounced dependence on m (0.6 < p < 0.9). Most of these
findings are in sharp contrast to our results presented here.

The analyzed schemes (ML [Marsan and Lengliné, 2008;
Hainzl and Marsan, 2008], ZOV [Zhuang et al., 2008], and
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BP used here) agree on the inequality α < b, which im-
plies that frequent small mainshocks dominate the “produc-
tion” of seismic events. While Hainzl and Marsan [2008]
found that χ increases as 10αm with α = 0.66, Marsan and
Lengliné [2008] found α = 0.6 for Southern California. Yet,
this value varies significantly if the distance to fault is used
instead of the epicentral distance in the ML scheme, giving
α = 0.86 in the former case. Our value of α ≈ 0.9 is in-
stead closer to estimates given by most space-time window
methods [Hainzl and Marsan, 2008]. These observations em-
phasize again that some statistical properties of triggering
cascades and aftershock sequences sensitively depend on the
exact selection method.

Our analysis of the ETAS catalog also shows that the
BP method can recover the model parameter α. This is
even true if the spatial distribution of triggered events in
the ETAS model is anisotropic as for the catalog stud-
ied by Hainzl et al. [2008] and discussed in more detail
in [Moradpour et al., 2013]. This is a clear advantage over
the ZOV method, which underestimates α dramatically in
this case [Hainzl et al., 2008].

5. Duration of aftershock sequences

To compare the relative temporal influence of bare and
dressed aftershock sequences as well as its dependence on
mainshock magnitude, it can be helpful to study the aver-
age time interval between a mainshock and its last after-
shock. This is shown in Fig. 10 for Southern California.
The averaging is performed over the number of correspond-
ing mainshocks in each magnitude bin of width δm = 0.5.
We observe an increasing trend in both the bare and dressed
aftershock durations, with the dressed duration scaling as
100.44m. The later is very similar to what has been observed
using the ML scheme [Marsan and Lengliné, 2008]. For the
bare duration, however, the ML method did not give robust
results: Using epicentral distances, the bare duration was
found to be independent of the mainshock magnitude and
of the order of 10 – 15 days form > 3, while using distance to
fault instead gave results similar to the dressed case, albeit
lower by a factor of 6 to 10. These inconsistencies together
with our findings here provide clear evidence against the
hypothesis put forward by Marsan and Lengliné [2008] that
direct triggering mechanisms are only short-lasting. An in-
crease in the period over which aftershocks typically occur
with mainshock magnitude follows the intuition that larger
earthquakes exert longer-lasting direct temporal influence.

In particular, such behavior is expected based on the
Omori-Utsu law and the productivity law, which in the con-
text of the ETAS model fully determine the average time
interval between a mainshock and its last aftershock: From
extreme value statistics it follows that the average duration
of a directly triggered aftershock sequence scales asymptot-
ically as 10(α/p)m [Schumann et al., 2012]. Fig. 11 shows
that our method to define aftershocks allows us to roughly
recover such a scaling for the ETAS model. Using the esti-
mated values of α and p, Fig. 10 shows that we can recover
such a scaling for magnitudes larger than 4 for Southern
California as well. Note that the average duration for the
largest events (m > 6) is underestimated due to the finite
length of the catalog. For smaller events, this effect is not
absent but much less pronounced due to the shorter dura-
tions.

6. Aftershock magnitudes and background
seismicity

One of the main features of seismicity is its energy-
scale invariance as documented by the empirical Gutenberg-
Richter (GR) law [Gutenberg and Richter , 1949]. It states
that the frequency–magnitude distribution of earthquakes

decays as 10−bm with an exponent b ≈ 1. Since the magni-
tude m is a logarithmic measure of the energy of an earth-
quake [Turcotte, 1997], this corresponds to a power law
in terms of the energies which is a typical sign of scale-
invariance. Moreover, the b value seems to be indepen-
dent of the specific geographic area as long as one con-
siders sufficiently large areas over sufficiently long time in-
tervals [Kanamori and Brodsky , 2004; Gulia and Wiemer ,
2010]. Recently, it has been shown that the GR law even
holds down to magnitudes m = −4.4 [Kwiatek et al., 2010].
An often made assumption — which is also one of the main
assumptions in the ETAS model — is that both triggered
and background events follow the Gutenberg-Richter law.
Thus, it is important to test this assumption.

6.1. Results for Southern California

Using Df = 2.3 in the BP method as before to com-
pute the triggering cascades, Fig. 12 compares the frequency
magnitude distributions of triggered and background events
in the catalog from Southern California we study here. Us-
ing the maximum likelihood method discussed in [Naylor
et al., 2009], we find b = 1.04 ± 0.02 for triggered events
and b = 1.19 ± 0.02 for background events. This result in-
dicates a statistically significant difference between the two
populations. Increasing the magnitude cutoff to mth = 3.0
(mth = 3.5), we obtain b = 1.00± 0.03 (b = 0.94± 0.05) for
triggered and b = 1.14±0.04 (b = 1.10±0.07) for background
events. Thus, the Gutenberg-Richter exponents for the two
populations are not significantly affected by mth, strongly
suggesting that the difference between the two populations
is a robust feature.

6.2. Results for ETAS catalogs

Fig. 13(a) shows the frequency-magnitude distribution
for the two populations separately as identified for a sin-
gle ETAS catalog. Clearly, there are no statistically signifi-
cant differences between the b-values of the two earthquake
populations. This is even true if short-term aftershock in-
completeness is taken into account: Fig. 13(b) shows the
frequency-magnitude distributions if short-term aftershock
incompleteness is mimicked by eliminating small events from
the ETAS catalog that directly follow large earthquakes ac-
cording to the time-dependent magnitude threshold of com-
pleteness described in [Helmstetter et al., 2006]. The b-value
decreases only very slightly for the triggered events. This is
true for all ETAS catalogs we tested — including variations
in the model parameters given in Table 1 and other realistic
scenarios like spatial anisotropy in Φmi(~r − ~ri) [Moradpour
et al., 2013] — and, thus, seems to be a robust result.

6.3. Summary & Discussion

The analysis of the synthetic ETAS catalogs shows that
the BP method can reliably recover the correct and identi-
cal b-values for both triggered and background events, in-
dependent of the presence of short-term aftershock incom-
pleteness. This clearly indicates that the difference in the
b-values for triggered and background events in Southern
California is not an artifact due to the BP method used
to define aftershocks, which is also supported by findings
in [Shearer , 2012].

One possible explanation for the higher b-value of the
background events could be the fact that some of these
events were actually triggered by events below the magni-
tude threshold, i.e., their trigger is not part of the cata-
log. As model studies show, the number of such “misla-
beled” events can be significant and it is a general prob-
lem for identifying background events [Wang et al., 2010a;
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Zhuang et al., 2008; Wang et al., 2010b]. Using a maxi-
mum likelihood estimator based on an ETAS model and/or
the ZOV method, the same model studies found also that
the proportion of background events depends sensitively on
the applied magnitude threshold mth. This is, however, not
the case for the method used to identify background events
here. Not only are our estimates of the b-values indepen-
dent of mth but also the percentage of background events
seems to be independent of the magnitude threshold we ap-
ply before analyzing the catalog with the BP method: the
background events consist of about 39.6% of the total num-
ber of m > 2.5 earthquakes and for mth = 3.0, mth = 3.5,
mth = 4.0 and mth = 4.5, we obtain 39.3%, 39.9%, 38.8%
and 41.8% background events, respectively. To better un-
derstand these percentages, we note that in our tests with
ETAS catalogs, the background rate tends to be overesti-
mated by the BP method. The overestimation is mostly due
to wrongly identified singles (events that were not triggered
and do not trigger other events).

Our findings are also very different from the results ob-
tained by using the ML scheme [Marsan and Lengliné,
2008]. The authors of that method did not find any statis-
tical differences in the b-value between triggered and back-
ground earthquakes. Additionally, the background events
were found to consist of about 19.5% of the total number of
m ≥ 3.0 earthquakes and this percentage increased mono-
tonically with mth reaching 68% for mth = 5.0. As these
results show, the estimation of the seismic “background”
is highly dependent on the exact method to define back-
ground events and such a classification might not even be
well-defined. An additional complication is that such esti-
mations — including those based on the ML and the ZOV
scheme — are intrinsically unreliable even for the ETAS
model [Sornette and Utkin, 2009].

7. B̊ath’s law

Apart from the Omori-Utsu law and the Gutenberg-
Richter law for aftershocks, a third empirical scaling law has
been proposed for aftershock sequences. B̊ath’s law states
that the average magnitude difference between a mainshock
and its largest aftershock is ≈ 1.2, independent of the main-
shock magnitude [B̊ath, 1965]. Some progress has been
made in understanding its origin based on the framework
of the ETAS model — and branching models in general —
where it arises as a natural consequence of the model as-
sumptions and typical definitions of aftershocks [Helmstet-
ter and Sornette, 2003; Saichev and Sornette, 2005; Vere-
Jones and Zhuang , 2008]. In particular, it was shown that
B̊ath’s law only strictly holds for those parameter regimes
in the ETAS model that are close to criticality and satisfy
α > b/2. In the subcritical case, the average magnitude dif-
ference between a mainshock and its largest aftershock actu-
ally increases with the main shock magnitude. Specifically,
the average magnitude of the largest aftershock, m∗

as, de-
pends on the mainshock magnitude, m, as 〈m∗

as〉 = α
b
m+d,

where d is some constant.
Fig. 14 shows that the BP method given in Section 2

allows us to recover this behavior for sufficiently large main-
shock magnitudes from ETAS catalogs though B̊ath’s law
remains a reasonable approximation. This is independent of
whether we consider only directly triggered aftershocks or
all aftershocks. In both cases, the deviations from the two
possible behaviors for small mainshocks are expected due
to the lower magnitude cutoff of the catalog. This cutoff
directly leads to a bias in our estimate of the magnitude
of the largest aftershock since earthquakes triggering only
events below the threshold of observation are not included
in our estimate. Thus, the average magnitude of the largest
aftershock will be overestimated.

To test the general validity of and the possibility of devi-
ations from B̊ath’s law for real seismicity, we use our defini-
tion of aftershocks based on the BP method for the catalog

from Southern California. We find that B̊ath’s law holds
to a very good approximation for mainshocks with magni-
tude bigger than approximately mth + 2, see Fig. 15. In
particular, within the given uncertainties it is as good an
approximation as the behavior expected based on the ETAS
model, which predicts deviations from B̊ath’s law in the sub-
critical regime. The corresponding behavior is shown as the
dash-dotted line in Fig. 15 for comparison. For dressed af-
tershocks, the average magnitude of the largest aftershock
is always bigger compared to the bare case. However, this
difference is surprisingly small indicating that B̊ath’s law
is quite insensitive to the inclusion of indirectly triggered
aftershocks.

8. Decay of aftershock density with distance

In addition to the temporal characteristics of aftershock
sequences discussed in the sections above, we can enrich the
description of the aftershock statistics by studying the spa-
tial distribution of aftershocks relative to their mainshock.
This distribution is a signature of the triggering process
and, thus, plays an important role in discriminating between
potential candidates for this mechanism [Felzer and Brod-
sky , 2006; Gomberg and Felzer , 2008; Lippiello et al., 2009;
Marsan and Lengliné, 2010; Richards-Dinger et al., 2010;
Powers and Jordan, 2010].

8.1. Results for Southern California

As before, we consider the three-dimensional distance be-
tween hypocenters, rij , separating an aftershock j from its
mainshock i. For directly triggered aftershocks, the left
panel of Fig. 16 shows the spatial probability density func-
tion of aftershocks, P (r), for different ranges of the main-
shock magnitudes. It is evident that these distributions have
a shape almost independent of the magnitude of the main-
shock. Of course, increasing this magnitude mi, their maxi-
mum shifts toward larger distances, but upon rescaling r by
a factor 10−σmi with σ = 0.42(3), one obtains a distribution
of the rescaled distances λ = r 10−σmi with little trace of
mi, see right panel of Fig. 16. The only non-scaling fea-
ture is the cutoff at large distances, which seems to arise for
r & 10-20 km (left panel). A possible explanation is that the
finite width of the earth crust starts to be relevant for this
statistics for distances longer that tens of km, similar to the
known depth-dependencies and finite size effects reported
by Kagan [2007]. This is supported by the absence of this
feature for the ETAS catalogs — which use epicenters — as
shown below.

The generic shape of the distance distributions, however,
is characterized by two regimes. For short distances, it in-
creases as a power ∼ r1.5. This indicates a fractal organiza-
tion of aftershocks on short spatial scales since the increase
corresponds to a correlation dimension DC ≈ 1.5 + 1 = 2.5.
This is clearly incompatible with a homogeneous distribu-
tion of events in three dimensions (DC = 3.0) as well as with
aftershocks concentrated on a single two-dimensional fault
plane (DC = 2.0).

As follows from Fig. 16, the transition from the regime at
short distances to the second regime at larger distances oc-
curs at L(m) ≈ 8×100.42mm. This length scale and its scal-
ing with magnitude is close to the estimated behavior of the
rupture length, LR(m), of an earthquake of magnitude m.
Kagan [2002] gives LR(m) ≈ 20× 10m/2m, while Wells and
Coppersmith [1994] found LR(m) =

√
AR ≈ 18×100.46 mm,

where AR is the rupture area of the earthquake. An-
other estimate was obtained by Davidsen et al. [2008] giving
LR(m) ≈ 12 × 100.45mm. Thus, we have L(m) ≈ 1

2
LR(m)
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indicating that the borders of the rupture area of the main-
shock are the boundary between the spatial region giving
rise to the first regime in P (r) and the region where one
detects the subsequent decay with r.

For distances longer than the typical distance L(m), the
right panel of Fig. 16 shows that the aftershock densities
decay as a power-law r−µ, at least for r . 10-20 km. The
exponent we estimate is µ ≃ 1.6. A similar behavior has
been found in [Marsan and Lengliné, 2010] for the after-
shock sequence of Landers using the ML scheme for after-
shock identification. Our results do not change significantly
if we consider the dressed aftershock density with distance,
see Fig. 17, where we estimate σ = 0.40(3) for this case.

To understand the origin of the observed exponent µ bet-
ter, we consider the spatial probability density function of af-
tershocks conditioned on their time of occurrence, Pm(r|T ).
Thus, Pm(r|T ) represents the distribution of spatial dis-
tances between a mainshock of magnitude m and only those
of its aftershocks that occur within a time interval T after
the mainshock. As an example, Pm(r|T ) averaged over all
mainshocks within the magnitude range [3, 4[ is shown in
Fig. 18 for different time intervals. For other magnitude
ranges, we observe qualitatively similar results. Most strik-
ingly, Pm(r|T ) does not decay with an exponent µ ≃ 1.6
and the distribution changes significantly with T . While
the location of the maximum is invariant with respect to T ,
the decay for larger values of r is not. Considering only af-
tershocks occurring within an hour of the mainshock, there
is a power-law decay with an exponent µ̃ ≈ 1.3 up to ap-
proximately 10km, followed by a much steeper decay. This
transition point does not remain at 10km for aftershocks
occurring at later times, but instead it moves to smaller val-
ues, reaching a few hundred meters for T = [1 month,∞].
This clearly indicates that µ ≃ 1.6 is an effective exponent
that arises due to a weighted superposition of different dis-
tributions which obey a different power-law with exponent
µ̃ over varying and rather limited ranges.

8.2. Results for ETAS catalogs

For the ETAS model, the spatial probability density func-
tion of directly triggered aftershocks is given by Eq. (8).
Fig. 19 shows that the BP method can reconstruct fairly
well its form, with some systematic deviations. While the
scaling of the most likely distance with the rupture length
as well as the full scaling collapse of the distributions for
different mainshock magnitudes are recovered, the power-
law increase at shorter distances has a smaller exponent
and the power-law decay at larger distances has a bigger
exponent compared to Eq. (8). The deviations in the ex-
ponents are about 0.35 in both cases for the ETAS catalogs
considered. It is important to realize, though, that these
deviations can change significantly if different spatial dis-
tributions of triggered events, Φmi(~r − ~ri), are used in the
ETAS model [Moradpour et al., 2013].

Yet, these deviations are absent if one considers the spa-
tial probability density function of aftershocks conditioned
on their time of occurrence, Pm(r|T ), with T < 1 hour, see
Fig. 20. It is clear that any aftershock detection method
will be more effective for shorter times, because a long delay
after the mainshock implies that many other events have oc-
curred in the meantime which may potentially “shadow” the
correct assignment of an aftershock. In our case, according
to the space-time-magnitude metrics given by Eq. (1), an
earthquake occurring long after an event can only be recog-
nized as an aftershock of that event (i.e. not being an after-
shock of some other event or distinguished from background
seismicity) if the two are close enough in space. This ex-
plains the deviations from the true behavior for P (r), which
considers aftershocks at all times.

8.3. Summary & Discussion

The analysis of the ETAS catalogs shows that the BP
method can reliably recover the spatial probability density
function of directly triggered aftershocks if one considers
only those aftershocks that occur close in time to their re-
spective mainshock. Including all aftershocks can lead to a
bias, which gives rise to an overestimation in the absolute
value of the power-law exponent characterizing the behavior
at large distances, while the most likely distance being half
the rupture length is not affected.

Indeed, we observe a similar behavior for the catalog from
Southern California. In particular, the association of the
rupture length with the most likely distance of aftershocks is
a robust finding with respect to variations in our method to
define aftershocks [Baiesi and Paczuski , 2004, 2005; Baiesi ,
2006; Lippiello et al., 2009] and provides a solid justification
of the often-made assumption that the aftershock zone scales
with the rupture zone [Kagan, 2002]. Moreover, a similar
scaling exponent σ = 0.43 was found independently with
the ML scheme to define aftershocks [Marsan and Lengliné,
2008]. This is clear evidence that these are characteristic
features of the spatial distribution of aftershocks.

The results for Southern California also show that the
exponent of the power-law increase for short distances is in-
distinguishable from the correlation dimension Df ≈ 2.2 es-
tablished for seismicity in Southern California [Kagan, 2007]
if the bias is taken into account (see Fig. 18). This indi-
cates a clear self-consistency between the spatial distribution
of aftershocks and of seismicity in general on short spatial
scales.

Moreover, we find that the power-law decay for distances
larger than the rupture length is characterized by an ex-
ponent µ ≈ 1.3, taking the bias into account. While ini-
tially it was thought that an exponent of µ < 2 indi-
cates that triggering of aftershocks by dynamic stress plays
an important role [Felzer and Brodsky , 2006], it was ar-
gued more recently that triggering of aftershocks by static
stress changes alone can also lead to values of µ as low as
one [Richards-Dinger et al., 2010], depending on the b-value
and the productivity exponent α. Specifically, it was ar-
gued that µ = 1.49(−b+ α)− 1 if only static stress changes
are taken into account. For the catalog studied here, this
would imply that µ ≈ 1.49(−1.09+0.87)−1 = 1.33. This is
identical to the directly measured value µ ≈ 1.3 and seems
to indicate that static stress changes are sufficient to ex-
plain the triggering of aftershocks. However, the approach
by Richards-Dinger et al. [2010] assumed that aftershocks
are uniformly distributed along the rupture surface – this
assumption is clearly violated for the catalog studied here
since Dc > 2. Thus, it is still conceivable that dynamic
stress changes significantly influence or even dominate the
triggering of aftershocks.

Our observed values of µ and µ̃ for Southern California
are very different from the value 1.94±0.04 reported in [Lip-
piello et al., 2009] for aftershocks occurring within 5 hours
of the mainshock. While the method used to identify after-
shocks and catalog studied in their work are very similar to
ours, it is likely that the differences arise due to the sensitive
dependence on the fractal dimension Df discussed in Sec-
tion 1. In [Lippiello et al., 2009], only Df ≤ 1.6 and epicen-
ters were considered. Pm(r|T ) was also estimated using the
ML method to identify aftershocks and for T = [0; 15 min]
an exponent of 1.76 ± 0.35 was estimated for mainshocks
within the magnitude range [3, 4[, while for T = [12 h; 24 h]
an exponent 1.97±1.11 was obtained [Marsan and Lengliné,
2010]. Within these huge statistical uncertainties, the expo-
nents are, hence, comparable to ours, though the functional
form of Pm(r|T ) for small r could not be resolved. These
different observations for the approximate power law decay
of P (r) and Pm(r|T ) for values of r larger than the rupture
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length indicate that the behavior depends crucially on how
one defines aftershocks. Moreover, these probability density
functions might not even follow a well-defined power law
over extended ranges and an analysis to distinguish between
different triggering mechanisms purely based on the value of
the corresponding exponent might be questionable from the
start. Further support for this comes from our current un-
derstanding of the overall spatial distribution of seismicity
which is not a simple fractal but shows signs of multifrac-
tality if one considers epicenters [Davidsen and Goltz , 2004]
and strong finite size effects and depth dependence if one
considers hypocenters [Kagan, 2007].

In addition, an approximate power-law decay of P (r) with
an exponent less than or equal to 2 also indicates that a
quantity such as the mean distance of aftershocks 〈r〉 is
somewhat ill-defined, as this average is mostly determined
by the upper cutoff in the power-law. This cutoff can de-
pend, for example, on the time-window used to collect af-
tershocks (see Fig. 18) as well as on the finite spatial range
of the catalog. The very limited content in 〈r〉 is also re-
flected in the fact that the corresponding standard devia-
tion is at least as large as 〈r〉 — of course this is again
due to the power-law tail in P (r). Since almost all pub-
lished methods have obtained probability density functions
for aftershock distances decaying with power-laws compara-
ble to r−2 or weaker [Felzer and Brodsky , 2006; Gomberg and
Felzer , 2008; Lippiello et al., 2009; Marsan and Lengliné,
2010; Richards-Dinger et al., 2010; Powers and Jordan,
2010], this seems to be a generic feature. We conclude that
the mean aftershock distance is a quantity much influenced
by uncontrolled parameters, mathematically ill-defined for
P (r) ∼ r−µ with µ ≤ 2, and thus with little information
on the seismic process. This casts doubts on the analysis of
aftershock “diffusion” as, for example, presented in [Marsan
and Lengliné, 2008].

9. Discussion and Conclusions

We have tested the robustness of the statistical properties
of aftershocks as defined by the BP method first proposed
in [Baiesi and Paczuski , 2004, 2005] and extended by Zali-
apin et al. [2008]. The method is very simple to apply and
does not require any assumptions on the underlying physics
of earthquakes, being only based on known empirical laws
and on general statistical arguments: correlations are mea-
sured as deviations from randomness, using the space-time-
magnitude metrics given by Eq. (1). We have tested the
performance of the BP scheme by considering synthetic cat-
alogs generated by the ETAS model, showing that the laws
assumed in the aftershock generation are recovered correctly
in the statistics, and that other empirical laws of seismicity
are also found. Moreover, the scheme based on Eq. (1)
also gives meaningful results for real earthquake catalogs
and the statistical properties of aftershocks are even robust
with respect to variations in the method itself as long as one
considers hypocenters and a fractal dimension close to the
estimated correlation dimension.

However, one has to be careful in interpreting findings
based on a single identification scheme [Wang et al., 2010b],
because aftershocks may be defined in different ways. Cur-
rently we are not aware of precise general physical argu-
ments distinguishing correct identifications of aftershocks
from incorrect ones, especially outside specific modeling
frameworks. Thus, one is left with the option to compare
the results in the literature to identify commonalities and
features that are robust across several definitions of after-
shocks. In order to be concise, we choose to compare our
findings mostly with those obtained by the ZOV decluster-
ing technique [Zhuang et al., 2004, 2008] and especially the

recently proposed ML method [Marsan and Lengliné, 2008;
Hainzl and Marsan, 2008] in which long range effects in
space and time are also contemplated, similar analysis are
carried out and the same seismic catalogue is studied.

Concerning the seismicity observed in Southern Califor-
nia, the aftershocks as defined by the BP method follow
asymptotically an Omori-Utsu law with a p-value that is
either slightly decreasing with m or constant around 1.2,
while ML find a more variable p-value with p < 0.9 if di-
rectly and indirectly aftershocks are considered. We also ob-
serve a productivity parameter α ≈ 0.9, in line with other
studies and with the conclusion that, since α < b (of the
Gutenberg-Richer law), frequent small events are responsi-
ble for triggering most of the observed seismic activity, thus,
dominating the production of aftershocks. The same con-
clusion is reached by ZOV and ML. For ML, this is despite
the fact that their estimates of α and p for directly trig-
gered aftershocks as well as the temporal duration of bare
aftershock sequences are not robust with respect to varia-
tions in their method. We further provide evidence that the
temporal duration of aftershock sequences scales with the
mainshock magnitude similar to what is expected for the
bare case based on the Omori-Utsu law and the productiv-
ity law and also similar to what has been observed by ML
for the dressed case. Our findings also show that in con-
trast to what is often assumed, some of the properties of
aftershock sequences of small mainshocks might actually be
different from those of large mainshocks as systematic devia-
tions from the Omori-Utsu law at small to intermediate time
scales indicate — similar to findings by Peng et al. [2007].

We also find a percentage of background activity that is
not changing with the lower magnitudes cutoff. This sup-
ports the picture that seismicity has a hierarchical structure,
and it is again at variance with results by ML. Another de-
viation is the sensible difference that we note between the
b-value of the Gutenberg-Richer law for aftershocks and for
background events. The latter are found with a larger b-
value, independently on the lower cutoff. Since this phe-
nomenon is absent in the analyzed ETAS catalogs (where
we know by construction that there is a unique b) even if
short-term aftershock incompleteness is taken into account,
we conclude that the observed b-value of background seis-
micity being larger than that of aftershocks is likely to be a
real feature of seismicity.

One of the most solid results, found in the literature and
confirmed here, is the appearance of a typical length scale
of aftershocks, scaling with the mainshock magnitude m as
100.42m (the index 0.42 being compatible with values from
other methods). This length scale can be identified with the
rupture length of the mainshock. On the other hand, it is
important to note that the average aftershock distance is an
ill-defined quantity and hence that it is not meaningful to
use it for studying diffusion of aftershocks. The underlying
reason for this problem is a power-law tail in the aftershock
distance distribution ∼ r−µ with µ < 2 (all studies in the
literature find this) indicating the absence of a finite first
moment 〈r〉. We find µ ≈ 1.3 if measurement biases are
eliminated. As a direct comparison shows, the exact value
of µ depends sensitively on the chosen method. Thus, for the
moment, results concerning the form of the tail in the after-
shock distance distribution cannot help much in the debate
on whether dynamic or static stress changes are responsible
for triggering far events. From our findings we are inclined
to assign a significant role to static stress changes, though
clearly this is still an open point.

The spatial organization of hypocenters in Southern Cal-
ifornia is close to be a monofractal with fractal dimension
Df ≈ 2.2, but other options are possible (multifractality, for
example). For our purposes this is not much relevant, as we
show that the results based on Eq. (1) do not depend sen-
sibly on this value of Df as long as Df > 2.0. Moreover, a
posteriori, we recover a correlation dimension of aftershocks
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≈ 2.2 in the aftershock region within the typical distance
from the mainshock.

To summarize, the comparison of our findings with those
obtained using different schemes to identify aftershocks
clearly shows that many features of aftershock sequences
depend sensitively on their identification. Fortunately, a
significant number of statistical features of aftershock se-
quences seems to be robust. Most importantly, these include
a productivity law with an exponent less than the b-value
in the frequency-magnitude distribution — indicating that
smaller earthquakes dominate the seismic energy budget due
to their higher frequency — and a clustering of triggered
events within a distance comparable to the rupture length
of a mainshock.
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Figure 1. Southern California: Density plots of the
set {n∗

j} represented in log τ–log l space as defined in
Eq. (1) for Df = 1.6, 2.0, 2.3, 3.0. Time is measured
in seconds and distances are measured in meters. Darker
shading represent higher densities as quantified in the
legend. In all cases, two different populations are visi-
ble, which can be separated as indicated by the straight
lines. The straight lines correspond to constant thresh-
olds n∗ such that log τ + log l = log n∗. For increasing
Df , the blue lines are given by log n∗ = 7.0, 8.6, 9.5 and
12.0 respectively. Between 60 and 62% of each set {n∗

j}
are below the respective threshold and correspond to sig-
nificant values of n∗

j . The complement of {n∗
j} are then

considered to be background events according to our def-
inition. The dashed line in the top left panel indicates
the threshold log n∗ = 8.0 used previously in [Baiesi and
Paczuski , 2004]. This choice results in an additional in-
clusion of 15% from the set {n∗

j} to the significant set.



GU, SCHUMANN, BAIESI AND DAVIDSEN: STATISTICAL PROPERTIES OF AFTERSHOCKS X - 13

Figure 2. As Fig. 1, but for a surrogate catalog gener-
ated by the ETAS model with the parameters given in Ta-
ble 1 (N = 26986). The blue line represents log n∗ = 8.0.
About 50% of the set {n∗

j} constructed from the catalog
are below this threshold. More than 96% of all back-
ground events in the simulated ETAS catalog are cor-
rectly identified as such.
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Figure 3. Southern California: Aftershock rates of three
major events in the catalogue: Northridge (m=6.7), Hec-
tor Mine (m=7.1) and Landers (m=7.3) (from left to
right). Bare rates for Df = 1.6 are represented by the
solid curves, while bare and dressed rates for Df = 2.3
are represented by coloured symboled and dashed curves,
respectively. Hypocentre distances are considered in both
cases. The insets show the rates rescaled with the respec-
tive p value of the Omori-Utsu law.
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Figure 4. Southern California: Average aftershock
rates for mainshock magnitudes 4.0 ≤ m ≤ 4.5, com-
puted with different fractal dimensions. The dressed
(dark green dashed) curve for Df = 2.3 overlaps with its
bare counterpart (dark green) up to roughly 10−2 days.
The dressed curve decays softly at first in the interme-
diate time range but for t > 1 day all curves for which
Df ≥ 2.0 share a similar decay exponent. The inset
shows the rescaled rates.
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Figure 5. Southern California: Average aftershock rates
of mainshocks within the given magnitudes increments,
computed using Df = 2.3, considering directly triggered
aftershocks only (left panel) and all aftershocks (right
panel). Best power law fits to χ · t−p in the regime of
t0 < t < 100 days are shown as dashed lines for the bare
and the dressed case, respectively. For magnitude ranges
with m < 6.0, clear deviations from the Omori-Utsu law
(Eq. (9)) can be observed for shorter time scales. For the
bare case, the deviations in the regime of 10−2 < t < 1
days follow another power law with an exponent about
1.0 as indicated by the solid line.
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Figure 6. Southern California: i) Left panel: Variation
of the exponent p in the Omori-Utsu law with mainshock
magnitudem— see Fig. 5 for a specific example of how p
was estimated. For Df < 2.0, the statistical properties of
the detected aftershock sequences are not robust for small
m — see text for details. For Df ≥ 2.0, 〈p〉 ≈ 1.2 (indi-
cated as the horizontal dotted black line in the panel) for
both bare and dressed rates. ii) Right panel: Increasing
behaviour of χ with mainshock magnitudes for different
values of the fractal dimension. The black dotted line
shows a scaling ∼ 100.9m as a guide to the eye. Note
that the given error bars in (a) and (b) correspond to the
statistical errors in the best fits and, thus, underestimate
the true uncertainties (see, for example, [Clauset et al.,
2009]).
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Figure 7. Southern California: Average number of
earthquakes, 〈Nas〉, triggered by earthquakes within a
given magnitude range, incremented by δm = 0.5 from
m = 2.5 which is the lower magnitude threshold applied
to the catalog. Error bars in 〈Nas〉 are taken at the 20/80
quantiles. Dotted curve represents a 100.85m scaling. The
inset shows the rescaled average number of directly trig-
gered earthquakes for different magnitude thresholds and
fixed Df = 2.3. N is the number of events in the respec-
tive catalog.
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(B)

(C) (D)

(A)

Figure 8. Average aftershock rates of mainshocks
within the given magnitudes increments for the same
ETAS catalog as in Fig. 2, computed using Df = 2.0,
considering directly triggered aftershocks only (panel A)
and all aftershocks (panel B). Best power law fits to χ·t−p

in the regime of 0.1 < t < 365 days are shown as dashed
lines for the bare and the dressed case, respectively. The
solid line in panel A corresponds to the expected behavior
for the given ETAS parameters. The estimated parame-
ters are summarized in panels C and D, corresponding to
an average over an ensemble of 10 ETAS catalogs gener-
ated with the same parameters (see Table 1). Note that
the given error bars for p are estimated based on this
ensemble and are, hence, much closer to the true uncer-
tainties than the error bars for Southern California given
in Fig. 6. In panel D, the dashed curve shows a scaling
χ ∼ 100.9m as a guide to the eye.
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Figure 9. Average number of earthquakes, 〈Nas〉, trig-
gered by earthquakes within a given magnitude range for
the same ETAS catalog as in Fig. 2. The magnitude
ranges are incremented by δm = 0.5 from m0 = 2.5. Er-
ror bars in 〈Nas〉 are taken at the 20/80 quantiles. Black
dashed curve represents Eq. (6) for the ETAS parameters
given in Table 1.

Figure 10. Southern California: Average duration of
bare and dressed aftershock sequences, as a function of
mainshock magnitudes. The durations of aftershock se-
quences were computed by calculating for all mainshocks
the delays after which the last direct and last indirect
aftershock occurred. Df = 2.3 was used in computing
the triggering cascades. These delays were then averaged
conditioned on the magnitude of the mainshock: each
mainshock is put into bins of width δm = 0.5, incre-
mented from mth = 2.5 according to their magnitudes.
The dressed duration scales with mainshock magnitude
approximately as 100.44m, as indicated by the dashed
curve. The bare duration scales as 100.74m as indicated
by the dash-dotted curve, which agrees with the expected
asymptotic scaling of 10(α/p)m (see text for details).
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Figure 11. Average duration of bare and dressed after-
shock sequences, as a function of mainshock magnitudes
for the same ETAS catalog as in Fig. 2. The dura-
tions of aftershock sequences were computed by calcu-
lating for all mainshocks the delays after which the last
direct and last indirect aftershock occurred. These de-
lays were then averaged conditioned on the magnitude of
the mainshock: each mainshock is put into bins of width
δm = 0.5, incremented from mth = 2.5 according to their
magnitudes. As indicated by the dash-dotted curve, the
bare and dressed durations scale roughly as 10(α/p)m as
expected for the bare case (see text for details).
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Figure 12. Southern California: Histogram of earth-
quake magnitudes for triggered and background events,
from the triggering cascades computed using Df = 2.3.
The dashed curves indicate a Gutenberg-Richter scaling
of the form 10−bm with b = 1.04± 0.02 for the triggered
events and b = 1.19±0.02 for the background events. The
b-values and their errors are determined using a maxi-
mum likelihood method [Naylor et al., 2009]. Clearly,
there are statistically significant differences between the
b-values of the two earthquake populations.
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Figure 13. (a) Histograms of earthquake magnitudes
for triggered and background events, from the trigger-
ing cascades for the same ETAS catalog as in Fig. 2.
The dashed curves indicate a Gutenberg-Richter scaling
of the form 10−bm with b = 1.08 ± 0.02 for background
events and b = 1.10 ± 0.02 for triggered events. The b-
values and their errors are determined using a maximum
likelihood method [Naylor et al., 2009]. Note that back-
ground events constitute roughly 50% of the total number
of events in the catalog. (b) The same as in (a) but with
short-term aftershock incompleteness in the ETAS cata-
log (see text for details). In this case, b = 1.08 ± 0.02
for background events and b = 1.07 ± 0.02 for triggered
events.

Figure 14. The magnitude of the largest aftershock,
m∗

as, averaged over all mainshocks in magnitude bins of
width δm = 0.5 for the same ETAS catalog as in Fig. 2.
Dashed line corresponds to 〈m∗

as〉 = 〈m〉 − 1.15 and the
dash-dotted line corresponds to 〈m∗

as〉 = α
b
〈m〉+d where

d = −0.26 is a fitted parameter and α and b are the
corresponding parameters of the ETAS model.



X - 20 GU, SCHUMANN, BAIESI AND DAVIDSEN: STATISTICAL PROPERTIES OF AFTERSHOCKS

Figure 15. Southern California: The magnitude of the
largest aftershock, m∗

as, averaged over all mainshock in
magnitude bins of width δm = 0.5. The dotted straight
line corresponds to 〈m∗

as〉 = 〈m〉−1.15, which represents
B̊ath’s law. The dash-dotted line corresponds to 〈m∗

as〉 ∝
α
b
〈m〉, which is the behavior expected based on the ETAS

model — see Fig. 14 for comparison. Here, α = 0.9 and
b = 1.09 as estimated above.

Figure 16. Southern California: i) Left: Probabil-
ity density function of spatial distances between directly
triggered aftershocks and their mainshocks, for different
ranges of mainshock magnitudes. Bins of these magni-
tudes are [2.5, 3[, [3, 4[, [4, 5[, etc. and the average mag-
nitudes within these bins are indicated in the legend. ii)
Right: Probability density function of spatial distances
between directly triggered aftershocks and their main-
shocks, where the distances (in meters) are rescaled by

a factor 10−σ〈m〉 with σ = 0.42 and 〈m〉 is the aver-
age mainshock magnitude for the considered magnitude
range.
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Figure 17. Southern California: Probability density
function of dressed aftershock distances, for different
mainshock magnitudes. The inset shows the probabil-
ity density function of λ = r10−σ〈m〉 for σ = 0.40, where
r is the dressed aftershock distance and 〈m〉 is the aver-
age mainshock magnitude for the considered magnitude
range. For small λ, the function scales approximately as
λ1.5 and the decay after the maximum is proportional to
λ−1.6 for not too large λ.

Figure 18. Southern California: Conditional probabil-
ity density function of the spatial distance between main-
shocks and their directly triggered aftershocks for main-
shock magnitudes between 3 and 4. Different conditions
with respect to the time of occurrence of the aftershocks
are shown.
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Figure 19. ETAS: i) Left: Probability density function
of spatial distances between directly triggered aftershocks
and their mainshocks, for different ranges of mainshock
magnitudes. Bins of these magnitudes are [2.5, 3[, [3, 4[,
[4, 5[, etc. and the average magnitudes within these bins
are indicated in the legend. ii) Right: Probability density
function of spatial distances between directly triggered
aftershocks and their mainshocks, where the distances (in

meters) are rescaled by a factor 10−σ〈m〉 with σ = 0.45
and 〈m〉 is the average mainshock magnitude for the con-
sidered magnitude range. The dashed line corresponds to
the expected behavior given by Eq. (8).

Figure 20. ETAS: Conditional probability density func-
tion of the spatial distance between mainshocks and their
directly triggered aftershocks for mainshock magnitudes
between 3 and 4. Different conditions with respect to
the time of occurrence of the aftershocks are shown. The
dashed line corresponds to the expected behavior given
by Eq. (8).


