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Abstract

Recent theoretical findings suggest that the lo-
cal flexibility of a polymer, linked to the chem-
ical details of the molecule, can affect both the
position and the size of knots along the polymer
itself. Being of relevance in biology and ma-
terial science, we further investigate this issue
by performing molecular dynamics simulations
on a model of diblock flexible-stiff polymer ring
hosting a trefoil knot. We show that, when both
blocks are sufficiently long to accommodate the
knot, by raising the temperature T one may
shift the knot position from the flexible part to
the stiffer one. Even a very short flexible re-
gion has a high probability of lying within the
knotted portion at lower temperatures. In ad-
dition we observe that there is a tendency for
either extremities of the knot to pin at the in-
terface of the two blocks. This correlation be-
tween knot position and bending inhomogene-
ity supports the view that enzymes, binding the
DNA in proximity of single-stranded gaps and
nicks have a better chance to alter the global
topology of the chain. Finally we observe that
knots, initially squeezed within flexible portions
shorter then the typical knot size, may give rise
to long-lived metastable states. 1

1This document is the unedited Author’s ver-
sion of a Submitted Work that was subsequently ac-
cepted for publication in Macromolecules, copyright

Introduction

Long linear polymers in dilute solution can
be self-entangled and knots can be found in
circular chains ensuing from a ring closure.1

This phenomenon is relevant in molecular bi-
ology: topological entanglement would prevent
the segregation of DNA after replication in bac-
teria, and specific enzymes such as topoiso-
merases and recombinases 2–4 are needed to
eliminate knots and linking between the two
DNA strands. The presence of knots also influ-
ences the the spatial organization of viral DNA
condensed in capsids.5,6

In the last years, properties such as the knot-
ting probability, the knot complexity and the
knot average size of models of circular polymers
have been extensively studied as a function of
the chain contour length, the solvent quality as
well as the degree of spatial confinement and
the strength of mechanical constraints.1,7–15

Despite the advances in determining the de-
gree of complexity and localization of the knot
in the whole polymer, the interplay between
these global topological properties and the
chemical details of the polymer itself is not com-
pletely understood. The degree of flexibility of
the polymer, for example, is known to affect its

c©American Chemical Society after peer review. To
access the final edited and published work see DOI
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knotting probability,15–17 but only recently it
has been put in some relationship with a spa-
tial confinement of the knotted part.14,18 In-
deed, it has been demonstrated that for a knot-
ted linear chain under stretching there exists
an optimal stiffness at which the free-energy of
the knotted state, relative to that of the un-
knotted state, is minimal. This would suggest
that for equilibrated knotted polymer chains,
made by regions of different stiffness, the knot
would reside with high probability in the region
with the stiffness closer to the optimal one, at
least if such region is long enough to host the
knot.18 Stiffness heterogeneity occurs for ex-
ample in diblock copolymers made by a rigid
rod and a flexible tail that self-assemble into
novel macroscopic soft structures. These sys-
tems have many potential applications in or-
ganic electronics and biotechnology.19,20 Stiff-
ness heterogeneity is a frequent feature also
in DNA molecules: for example, in double-
stranded DNA (ds-DNA) a region of the back-
bone rich of AT base pairs is roughly twice more
flexible than a corresponding CG-rich region.21

Moreover, the persistence length lp ≈ 50nm of
the double helix of DNA is roughly five times
larger than that of single stranded DNA. The
latter is found for instance in local opening
of base pairs due to thermal fluctuations22,23

These local softenings may have important im-
plications in the process of topological simplifi-
cation of knotted circular ds-DNA. Indeed there
is recent evidence that topoisomerases prefer to
bind to softer regions of DNA,24 whose knots
tend to localize in the vicinity of single-stranded
gaps.25

These observations motivate us to address the
question of how a local property of the polymer,
its (heterogeneous) stiffness, can affect topolog-
ical properties such as the position and size of
knots within a circular knotted polymer. For
simplicity, we will restrict ourselves to stiff-
flexible diblock rings where the circular poly-
mer chain of total contour length L is com-
posed by two portions, one fully flexible and
the other stiff (technically, “semiflexible”) with
a given persistence length lp. For this system,
two length scales can be naturally identified:
the persistence length lp and the contour length

of the stiff sub-chain Ls or, complementary, the
contour length of the flexible block Lf = L−Ls.
For knotted diblock rings an additional length
scale, associated to the average size of the knot-
ted region, must be considered and, by the in-
terplay of these length scales, many different
scenarios may occur.

Here we focus on three typical cases, all rel-
ative to stiff-flexible diblock copolymer rings
hosting a 31 knot (the simplest knot1): (i) rings
where the two halves are equally long (Lf = Ls)
and sufficiently large to accommodate the knot
in its relaxed state, (ii) rings where the flexi-
ble block is too short to accommodate the knot
even in its minimal size conformation, and (iii)
diblock rings where the flexible part has a con-
tour length that is just below the natural knot
size. These different setups complement each
other and give an overview of the possible sce-
narios for knot positioning in ring polymers
with heterogeneous stiffness. The paper is or-
ganized as follows: the model and the simu-
lation settings are described in section Model
and methods. In section Results all our findings
are presented according to the above mentioned
cases. Finally, the Conclusions section is de-
voted to a summary of the main results and to
conclusions.

Model and methods

The circular polymer is modeled as a ring of
N beads of mass m = 1 and diameter σ.
With this coarse-grained description the poly-
mer contour length is given by L = Nσ. In
the following, the position in space of the cen-
ter of the ith bead is indicated by ~ri while the
distance vector of beads i and j is denoted as
~di,j = ~ri − ~rj and its norm as di,j. The steric
interaction (self-avoidance) between beads is
taken into account by a truncated and shifted
Lennard-Jones potential (also known as Weeks-
Chandler-Anderson potential)

ULJ = 4ε

[(
σ

di,j

)12

−
(
σ

di,j

)6

+
1

4

]
θ(21/6σ−di,j) .

(1)

2



where θ(x) is the Heaviside function and ε is
the characteristic unit of energy of the system
that is set equal to the thermal energy kBT .
The connectivity of the chain is enforced by the
finitely extensible non-linear elastic (FENE26)
potential acting between two consecutive beads
(i, i+ 1)

UFENE(i, i+ 1) = −α
2
R2

0 ln

[
1−

(
di,i+1

R0

)2
]
,

(2)
for di,i+1 < R0 and UFENE(i, i + 1) = ∞ other-
wise; here we chooseR0 = 1.5σ (so that crossing
of bonds does not occur in the simulations) and
α = 30ε. In our simulation the temperature is
given in units of ε/kB with ε = kB = 1.

Each ring is partitioned into two blocks, one
flexible with Nf beads and one stiff with Ns =
N −Nf beads. The bending rigidity of the stiff
block is expressed by the bending energy po-
tential

Ubend =
Ns∑
i=2

κ

(
1−

~bi−1 ·~bi
|~bi−1| |~bi|

)
, (3)

where ~bi ≡ ~ri+1 − ~ri is the i-th chain bond and
the stiffness constant is fixed to κ = 20ε = 20
(the flexible block does not contribute to the
bending energy). Hence, to change the persis-
tence length of the stiff block we use the pro-
cedure of varying the temperature, exploiting
the relation lp = κσ/T . Note that by choosing
σ = 2.5nm (the diameter of a hydrated ds-DNA
strand) the case T = 1 would correspond to
ds-DNAs with lp = 50nm, the expected value
of this molecule for solutions with high ionic
strength.

The kinetics of the rings is studied using
fixed-volume and constant temperature molecu-
lar dynamics simulations with implicit solvent.
The dynamics was integrated numerically us-
ing the LAMMPS package27 with a Langevin
thermostat. Periodic boundary conditions are
applied with the simulation box large enough to
avoid chain self interactions across the bound-
aries. The elementary integration time is ∆t =
0.001τLJ with τLJ = σ

√
m/ε and the friction

coefficient γ corresponds to γ/m = 0.5/τLJ.

To test the ergodicity of the system with re-
spect to the position of the knot within the di-
block ring, we often consider two different ini-
tial configurations: (i) the 31 knot is generated
on the surface of a wide torus such that it is
spread along the whole ring; (ii) the knot is lo-
calized within a short portion (≈ 24 monomers)
of the Nf flexible block. When not explicitly
specified, it is understood that the long time
dynamics is independent of the two initial con-
ditions and the results obtained from both sim-
ulations are combined together.

For a given initial condition and temperature,
T , we perform a long molecular dynamics tra-
jectory and we monitor the time evolution of
the position and size of the knotted region. The
identification of the knotted region within the
ring is in general a non trivial task to perform
due to the intrinsic difficulty of providing a con-
sistent definition of the knotted arc within a
curve.1 This produces some sensitivity of the
determination of the knot position to the par-
ticular search scheme.28 Here we rely on a de-
tection algorithm that was introduced by Mar-
cone et al. 29 (refined by Tubiana et al. 28) to
measure the equilibrium size of knots in poly-
mer rings in good solvent solution, which later
proved to work very efficiently in different situ-
ations.30,31 In this method, for a given knotted
ring, various open portions are considered and,
for each of these, a closure is made by joining
its ends with a path designed to minimally in-
terfere with the portion itself. The knotted arc
is then identified with the shortest portion still
displaying the original knot type (i.e., sharing
the same Alexander polynomial32).

For sufficiently long trajectories, one can also
compute statistical properties of the knot loca-
tion in terms, for example, of the probability
distribution function of the position of the knot
extremities along the ring. The whole proce-
dure took some months of CPU time for each
studied case. We obtained 2.5÷5×103 samples
for each temperature. If autocorrelation times
relative to the knot size are considered, in the
worst case these data reduce to a few hundreds
of uncorrelated configurations. By comparing
the outcome of two independent runs, we see
that a good degree of ergodicity in the sam-
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(a) T = 0.5 (b) T = 2

Figure 1: Snapshots at (a) T = 0.5 and (b) T =
2 of rings with N = 1000 monomers, divided in
a stiff half (red) and a flexible half (yellow). The
configuration at T = 0.5 does not display the
knot in the stiff half (hence it must be in the
yellow random coil), while the knot is visible
in the stiff half of the configuration (b), on the
left. Note also the lower persistence length of
the stiff part in the snapshot at higher T .

pling is usually achieved. In subsection Knot
trapping and multistability will deal with an in-
teresting counterexample, in which metastable
states are found.

Results

Flexible-Rigid diblock knotted
rings

We first discuss whether and to which extent
a temperature-induced change in the bending
rigidity of the stiff sub-chain affects the equi-
librium size and location of the knotted region
of the ring polymer. Let us start by look-
ing at rings with N = 1000 monomers parti-
tioned into a stiff and flexible region of equal
size (Ns = Nf = 500). Since the typical con-
tour length of a knotted region hosted in a flex-
ible chain of length N = 1000 is expected to be
less than 500,33 in this case the knotted region
should be comfortably hosted in either halves of
the ring. Indeed the mean knot sizes are reason-
ably below N/2: their estimates taken at vari-
ous temperatures are ≈ 300 (T = 0.5), ≈ 380
(T = 1 and 1.5), and ≈ 340 (T = 2). The two
snapshots shown in Figure 1 show typical con-
figurations, one at T = 0.5 (Figure 1(a)) and
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Figure 2: Typical trajectory of the knotted
region within a circular chain of total length
N = 1000 and flexible/stiff halves of equal
length (Ns = Nf = 500), for (a) T = 0.5 and
(b) T = 2 cases. Red and yellow colors high-
light the bead indices belonging respectively to
the stiff and flexible halves of the ring.

one at T = 2 (Figure 1(b)).
In Figure 2 we report a typical steady state

trajectory of the knot along the ring for two
different values of the temperature [T = 0.5,
Figure 2(a) and T = 2, Figure 2(b)], namely,
two different rigidities of the stiff block. The
colored region refers to the set of beads belong-
ing to the knotted region: the yellow and red
code refer to beads respectively of the flexible
and stiff portion of the ring. As the indexing of
the beads is arbitrary and periodic (the chain
is circular), in the figures we shift indices for
best visualizing the knotted region. One can
notice that for both temperatures the knot size
fluctuates in an appreciable way but it rarely
reaches lengths ≈ N/2. At low temperature,
where the stiff block is more rigid, the knotted
region always resides within the flexible region.
Such clear cut dynamical pattern is not present
at T = 2.0, although the propensity of the knot
to reside in the stiff region seems higher.

To better quantify the knot tendency to sit-
uate in a given block at a given temperature
T , we estimate the probability density ρ(i, T )
that the i-th bead of the ring belongs to the
knotted region. In Figure 3(a) we show ρ(i, T )
for different values of T (i.e., effectively, dif-
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←    stiff polymer     → ←  flexible polymer → 

Figure 3: (a) Profile of the frequency of knot
per monomer, at four temperatures (see leg-
end), for a loop copolymer of length N = 1000
with Ns = 500 stiff monomers (white region)
and Nf = 500 flexible monomers (yellow re-
gion). Note that the knot prefers to sit in either
the flexible portion at low T or in the stiff part
at high T . The profile at T = 2 is everywhere
lower than that at T = 1.5 because the knot is
on average shorter at the higher temperature.
In the two panels below we plot the probability
of finding the first (b) or the last (c) monomer
of the knot in given position i of the diblock
ring.

ferent values of the bending stiffness in the stiff
part). As one could easily anticipate by looking
at Figure 2(a), the distribution ρ(i, T ) is biased
towards the flexible region when the stiff sub-
chain has a long persistence length. This con-
firms that the most probable equilibrium low-T
configurations are those in which the knot is
within the flexible sub-chain. The situation is
reversed by raising the temperature: at T ' 1.5
the density ρ(i, T ) becomes more peaked in the
stiff region, signaling a preference of the knot-
ted region to sit on the stiffer half of the ring.

We can explain this temperature-driven flip-
ping of the knot location by considering recent
results for a model of stiff linear knotted chain
under tension: Matthews et al. 18 found that
the free energy cost of forming a knot attains

a minimum for a finite value of the bending
rigidity. This value depends on the tension ap-
plied at the chain extremities. By extrapolat-
ing to the zero tension limit the values shown
in Figure 4 of Ref.18 for N = 512, one ob-
tains a value of κmin/kBT ≈ 10 that is com-
patible with the value we obtain for T ≈ 1.5,
i.e., κmin = 20/Tmin = 20/1.5 ≈ 13.

The time series in Figure 2(a) suggests an-
other peculiar feature: for stiff portions that
are sufficiently rigid (T = 0.5 for example) the
knotted region not only resides most of the time
in the flexible region, with the flexible-stiff junc-
tions acting as reflecting boundaries, but its po-
sition is more biased towards the proximity of
one of the two junctions. In fact one of the knot
extremities is often pinned on the stiff side of
the border (see the small red spots at the bor-
der of the yellow regions in Figure 2(a)). This
effect can be quantified by estimating the prob-
ability of finding the first or last monomer of the
knot in a given position i along the ring. These
are plotted Figure 3(b) and Figure 3(c), respec-
tively. The peaks in these distributions confirm
that one extremity of the knotted region is most
likely located just outside the flexible region.

Knotted rigid rings with a soft de-
fect

In the statistics considered so far both halves
were equally long and each large enough to ac-
commodate the fluctuating knot. The opposite
situation occurs when, for example, the flexi-
ble region is too short to fully accommodate
the knot. This can arise in knotted ds-DNA
when small denatured bubbles are formed by
thermal fluctuation well below the denaturation
temperature. We check the extent to which
the presence of a softer small region (i.e., a
kind of soft defect) in an otherwise stiff ring
can influence the statistics of the knot size and
position. In this respect we consider a trefoil
diblock copolymer ring with Ns = 490 beads
forming the stiff block and only Nf = 10 for
the flexible one. Snapshots for this configura-
tion at T = 0.5 are shown in Figure 4. Since
almost the whole ring is quite rigid at low T ,
in this case we could not achieve a good and
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(a) (b)

(c) (d)

Figure 4: Snapshots of rings with N = 500
monomers at T = 0.5. In (a) the knot encloses
the short flexible (yellow) segment, while in (b)
such segment is outside the knotted region. (c)
Smooth version of (a) representing the ensem-
ble of configuration in C1 (see the text). (d)
Smooth version of (b), representing the ensem-
ble of configuraton in C2. In (c)-(d) the darker
part includes the knot.

robust sampling of equilibrated configurations
just by running basic Langevin molecular dy-
namics. We have thus coupled the molecular
dynamics simulation with the multiple-Markov
chain (or replica) technique, in which several
temperatures are simulated in parallel and one
allows swapping between configurations at dif-
ferent temperatures.34 This procedure has the
well known advantage of increasing the mobil-
ity of the stochastic sampling also at very low T
and to furnish the equilibrium statistics within
a wide range of temperatures at once.

In Figure 5(a) we show the behaviour of the
knot density ρ(i, T ) at a few sampled tempera-
tures. It appears clear that the flexible region
has, on average, a remarkably high probability
to be within the knot. This is confirmed by
comparing the fraction of configurations hav-
ing the knotted part including the flexible re-
gion with the same fraction for knotted portions
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(c)

Figure 5: (a) Profile of the frequency of knot
per monomer for a loop copolymer of length
N = 500 with Nf = 10 flexible monomers (yel-
low strip). (b) Probability of finding the first
monomer of the knot in a monomer. Being the
knot on average ≈ 280 monomers long, at both
peaks marked with C1 at T = 0.5 the flexi-
ble portion is within the knot and near its end
[e.g., as in Figure 4(a)], while in configuration
C2 the flexible part is not included in the knot
[Figure 4(b)]. (c)-(d) As in (a)-(b) but statis-
tics based only on configurations with knots of
length at most 225, that is 45% of the chain
length.

of the same length randomly placed along the
ring, see Figure 6. As the temperature is low-
ered the fraction becomes significantly higher
than the randomized counterpart. Moreover
the probability of finding the first monomer of
the knot at a given position is strongly mod-
ulated by the presence of the defect, see Fig-
ure 5(b). There, the two peaks C1 represent
configurations where the knot most likely in-
clude the flexible defect (e.g., such as in Fig-
ure 4(a) and (c)). On the other hand, configu-
rations with a knot starting at the C2 peak ex-
clude the defect from the knot (e.g., Figure 4(b)
and (d)). While C2 is symmetric with respect
to the flexible part (Figure 4(d)), note that C1
in Figure 4(c) can be realized by configurations
in which the knotted region either starts just
after or ends immediately before the flexible
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Figure 6: Probability of finding the Nf = 10
flexible monomers within the knot, compared to
that of knots of equal length placed randomly
along the chain (N = 500), as a function of
temperature.

part (an orientation of the polymer backbone
is understood). Thus, the two C1 peaks in Fig-
ure 5(a) represent the same kind of configura-
tions, although they have different heights due
to statistical fluctuations.

This pattern is enhanced if one consider
only knots of length up to 45% of the chain
length (225 monomers), see Figure 5(c) and
Figure 5(d). Since the pattern C1 is more rep-
resented than C2, we observe that a copolymer
endowed with a soft defect relaxes tension (with
respect to a totally stiff chain) preferentially by
including the soft part within the knot.

Knot trapping and multistability

Above we have shown that the knotted re-
gion at low temperatures equilibrates within
the softer portion of the ring, if this portion
is long enough. Further interesting features
arise whenever this portion is not sufficiently
long to easily accommodate the knot in its un-
constrained form. The squeezing of a delocal-
ized knot in the softer region is a process that
should require overcoming a free-energy barrier.
At low temperatures this barrier may be very
high. Hence, due to the competition between
the bending rigidity and the configurational en-
tropy of the knot at low T , one expects the for-
mation metastable states that crucially depend
on the initial conditions.

In order to explore this issue we consider a
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Figure 7: Time series of the knotted region for
N = 500 and Nf = 100. (a) Simulation at
(low) T = 0.5, started from a knot localized
within the Nf monomers of the flexible polymer
(yellow region) and (b) from a fully delocalized
knot. (c) Simulation similar to (a) but at a
higher temperature, T = 1: in this case the
thermal energy allows the knot to escape from
the flexible part, and to eventually return there
freely (e.g., at time ≈ 700).

N = 500 diblock trefoil ring with a Nf = 100
flexible region, well below the expected knot
natural size Nk ≈ 180 (this estimate has been
obtained by simulating a fully flexible trefoil
ring of N = 500 and measuring the aver-
age size of the knotted region). For this sys-
tem we follow the dynamical trajectories at
the fixed temperature T = 0.5 by consider-
ing two particular conditions: one in which
the trefoil is initially tied within the flexible
block, and the other where the knot is spread
across the whole ring (fully delocalized). Fig-
ure 7 shows the trajectory of the knotted re-
gion when the knot is initially localized in the
flexible block, see panel (a), or fully delocal-
ized, panel (b). One can readily see that the lo-
calized knot remains trapped within the softer
region while the delocalized one resides most
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(a) (b)

Figure 8: Snapshots of rings with N = 500
monomers, of which Nf = 100 form the flex-
ible part (yellow) and Ns = 400 form the stiff
part (red), at low T = 0.5. (a) Snapshot from
a simulation started with the knot fully within
the flexible part; the stiff part acts as a bow
with strength increasing with 1/T . (b) From a
simulation started with a delocalized knot.

of the time in the rigid counterpart, leaving
the flexible block unaffected. Typical config-
urations of these two long-lived states are given
in Figure 8(a) and (b). These results emerge
because the rigidity of the stiff block is relevant
at this temperature: the stiffer segments could
not be passed through the flexible knot, or bent
sufficiently to transmit the knot from the stiff
portion to the flexible one, and vice versa . At
higher temperatures such phenomenon disap-
pears, as shown for T = 1 in Figure 7(c). In
this case the relative rigidity between the flexi-
ble and stiff regions is low enough, the tension
at the boundaries weakens, and we observe a
relaxation of the knot towards its natural size
and its free trespassing in the stiff part.

Conclusions

We have shown that the interplay between stiff-
ness heterogeneity and topology in flexible-stiff
diblock knotted rings gives rise to non trivial
scenarios in the size and location of the topo-
logical entanglement. In particular the dynam-
ics and the equilibrium statistics of the knotted
region within the ring depends on several fac-
tors, such as the rigidity of the stiff block and
the length of the flexible one compared to the
natural length of the knotted region.

For sufficiently long stiff and flexible blocks
the equilibrium statistics of the knot posi-
tion depends on the persistence length of the
stiff block, as expected from free energy argu-
ments.14,18 At low temperatures, where the stiff
polymer has a large persistence length, the knot
prefers to sit in the flexible part. The situation
is reversed by raising the temperature. Hence,
in principle, a topological relocation along the
copolymer may be achieved by changing the
solvent temperature or any parameter affecting
the persistence length of the stiff block.

When the length of the flexible block is too
small to accommodate the knot, we still detect
a marked increase in the probability of finding
it within the knotted region, often near one of
its two boundaries.

In general we note that the boundaries be-
tween the two blocks of different rigidities are
frequently overlapped with the extremities of
the knotted region. This correlation between
knot position and sharp bending variation in
the ring could enable a local mechanism of knot
identification by topoisomerases in addition to
the ones already suggested in literature.35,36 Es-
sentially, topoisomerases finding bending vari-
ations should have an enhanced probability to
meet also knotted regions. Another interesting
picture emerges when the length of the flexi-
ble block is not negligible yet smaller than the
natural knot size. We detect the presence of
metastable states that differ by the location
and size of the knot and whose lifetimes de-
pend on the relative length and rigidity of the
two blocks. At sufficiently low temperature, a
very intriguing trapping of a squeezed knot is
observed within the flexible block, if the knot
is initially located there: Within the timescale
of our simulations, the squeezed knot forms a
metastable state and a breaking of ergodicity
occurs. This multistability can offer a good
method to control the size and position of the
topological entanglement.

Hence, there emerges the possibility of using
the parameter temperature for switching from
one (metastable) state to another, and to con-
dition the location and size of the knot along
the ring. This is worth further investigation.
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