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Abstract
There does not exist a general positive correlation between important life-supporting properties and
the entropy production rate. The simple reason is that nondissipative and time-symmetric kinetic
aspects are also relevant for establishing optimal functioning. In fact those aspects are even crucial in
the nonlinear regimes around equilibriumwherewefind biological processing onmesoscopic scales.
Wemake these claims specific via examples ofmolecularmotors, of circadian cycles and of sensory
adaptation, whose performance in some regimes is indeed spoiled by increasing the dissipated power.
Weuse the relation between dissipation and the amount of time-reversal breaking to keep the
discussion quantitative also in effectivemodels where the physical entropy production is not clearly
identifiable.

1. Introduction

The complexmechanisms of life cannot be sustained in thermodynamic equilibrium; they emerge only as a
result of steady processes running far enough from equilibrium.Hence, it does not seemwholly unnatural to
believe that life can only become better, stronger, andmore robust when farther and farther from equilibrium.
One standardmeasure of the distance from equilibrium is the dissipation rate.Wemay be tempted then to
expect that there exists a quite general positive correlation between dissipation rate and properties which are
beneficial for life. In fact in recent decades and probably starting with the vision of life as a dissipative structure
[1], there has been a strong focus on the role of entropy production and on energy–entropy balances in the
evolution and functioning of life; see e.g. [2–8].

However, if steady dissipation as hallmark of irreversibility was the key-element for explaining the structure
of lifemechanisms, their stability and performance should be related systematically with the dissipation rate. For
example, some types of currents are seen as oscillations, such as circadian cycles [9–11] or biorhythms. The
presence of such cycles and their period are important andmust be endogenously robust.Would it help to
increase the dissipation rate? (We show a novel counterexample in section 3.2.) Similarly, onemaywonder
whether rigidity transitions in biological tissues [12, 13] are essentially steered by dissipative effects.

In some caseswe alreadyknow that increaseddissipation corresponds to regimeswith lower efficiency or
performance. Formolecularmotors [14–16], there existmodelswhere the efficiency of themotorwas shown
explicitly todecrease bydriving the system farther away fromequilibrium [17].Weadd anewexample in section3.1.
Another case is that of kinetic proofreading [18]: biological error corrections serve thepurpose of producing the
correct population inversionwith respect to the equilibriumdistribution. In somemodels of proofreading and
similar dynamics [19–24], it is clear that the selectionof the ‘correct oruseful’ configuration statistics is not decidedby
the entropyproduction rate andmaybe evendecreasingwith it. Biological processes also appear to behelped
sometimes bybeing ‘jammed’ in some state [25], for improved stability such as in cellular physiological homeostasis.
It is not clearwhether such lowsusceptibility is better reachedby increasing thedissipation rate.However, there are
models of sensory adaptation inwhich thebiological levels of specific concentrationswouldbedestabilizedby an
increaseddissipation [26, 27] (wewill touch this issue in section3.3). A larger dissipationmayverywell be associated
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with the greater possibility of establishing complexpatterns far fromequilibrium, but that doesnot seem to suffice
and intermediate values of dissipation appear tobepreferred in real systems.

In this paperwe explainwhy the quality of a life-supporting process cannot depend only on the amount of
dissipation. There is indeed a good theoretical reason for not focusing entirely on entropy productionwhen
dealingwith nonequilibrium systems.We know since some time thatminimumandmaximumentropy
production principles [28] are in general restricted to the linear regime around equilibrium,while true stationary
nonequilibrium statistics is also governed by time-symmetric kinetic aspects; see e.g. the blowtorch theoremof
Landauer [29, 30]. A steady nonequilibrium condition for an open system is not only characterized by
dissipation, but also by kinetic aspects that quantify the activity in the system and that are nondissipative by
definition [16, 29, 31–33, 35–45].

We start in the next session by recalling the connection of entropy productionwith the breaking of time–
reversal invariance. This furnishes a general way to estimate the distance of a process from equilibrium. At the
same time, what is complementary to entropy production can be identifiedwith time-symmetric components
and parameters in the path-probabilities andwith quantities such as the dynamical activity.

It is probably notpossible and evennotmakingmuch sense to give a general definitionof biological quality or
efficiency. That iswhywehave chosen tobe explicit by illustration and todefine there each timewhatwemeanby
‘quality’or ‘efficiency.’Wemakeour casemore specific by treating three examples, in section3,where thedistance
fromequilibrium ismeasured via suitable dissipation rates, andwhat is good and efficient for the life process is
defined andmotivated in each specific case.Wedealwithmodels of the kinesinmolecularmotor [15], of a circadian
cycle, andof sensory adaptation [6, 46], all discussedon the level ofmesoscopic biophysicsmodeling.

In section 4, besidesmentioningmore examples, we discuss howkinetic considerations are related to
nonequilibrium response and effective forces, and to how those forces are not entirely—and sometimes entirely
not—entropic.

The paper is not a review, nor is it focused on debunking existing views or hyped claims expressed in papers.
That has been done before, e.g. in [47, 48] concerning the so-called ‘principle ofmaximumentropy production.’
Rather, we offer a theoretical framework and illustrations via simple examples to clarify the question of life
versus dissipation. That certainly begins already in the next sectionwith an explanation of how tomeasure
dissipation in (very) coarse-grainedmodels and ofwhatmakes an essential complementary player in the time-
symmetric fluctuation sector.

2.Quantifying time (anti)symmetry

In this sectionwe recall how symmetry versus antisymmetry under time–inversion leads to complementary
concepts in the construction of nonequilibriumphysics.We start with dissipation as a time-antisymmetric
concept, andwe endwith the time-symmetric sector.

2.1.Dissipation anddistance to equilibrium
Thermodynamic equilibrium for the particle density or energy profile in amacroscopic closed isolated system is
obtained at the value *x whose phase space volume *( )W x (which counts themicroscopic states compatible
with *x ) is overwhelmingly larger than that of other xʼs. Onemay thus quantify the departure from equilibrium
via the entropy difference * -( ) ( )S x S x , where =( ) ( )S x k W xlogB . However, a notion of distance from
equilibriumbased on the entropy S(x) or on free energy for open systems becomes less useful when dealingwith
observables that depend on trajectories, such as currents ormeasures of dynamical activity (roughly speaking,
the latter corresponds to the number of jumps between different states [31–33]).Moreover, kineticmodeling
often does not come explicitly with a thermodynamic interpretation. These considerations, in particular, are
applicable tomany biologicalmodels onmesoscopic scales.

Another notion for the distance to equilibrium thenmay enter, which is basically telling us how large are the
dissipative currentsmaintained in stationary nonequilibrium systems through the steady contact with different
reservoirs. The correspondingmean entropy production is the total change of (equilibrium) entropy in the
environment, the sumof the entropy changes in each reservoir (which is large and always in its own
equilibrium), or the sumof the dissipated heat in each chemo-thermal reservoir divided by temperature [49]. An
interestingfinding of about twenty years ago is that at least under some conditions of local detailed balance
[49–52], the path-dependent entropy flux as introduced above can be obtained also directly from the dynamics of
the subsystem itself; see [51, 53–56]. Skipping the details, one result has been that the stationary entropy
production per kB for a given process over time t equals the relative entropy between the forward and the
backward evolution probabilities,
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whereσ is themean entropy production rate.
In this formula, the formal integration goes over all possible trajectoriesω of the subsystemon some level of

biological or chemophysical coarse graining; θω is the time-reversal ofω. As a consequence of the assumed
fundamental reversibility of physical systems, whenω is an allowed trajectory, so is θω. The probabilitiesP[ω]
andP[θω] are only equal in general under equilibrium.Off-equilibrium, as formany biological processes,

q¹P P which says that time-reversal symmetry is violated. In thementioned references that distinction (1)
between these two stationary path-probabilities, measuring the plausibility of a trajectory against its time-
reversal was found to be coincidingwith the stationary entropy production per kBwhen the appliedmodeling
allows a thermodynamic identification of heat and entropy fluxes.

Onmesoscopic scales where the relevant energies are of the order of the thermal energy kBT theoretical
modeling uses stochastic processes that, while case by case relevant for the discussed biophysics, do however not
always provide a simple identification of the physical entropy production. In those cases, (1) can still be used as
an estimator of the distance to equilibrium. In fact, if only as an abuse of terminology, one could verywell keep
calling (1) itself the stationary entropy production per kB, even in the absence of a clear thermodynamic
interpretation for themodel at hand. Theσ in (1) certainly keeps themeaning of a dissipativemeasure of
distance away from thermal equilibrium, of course always to be understood as corresponding to a given level of
coarse-graining.

2.2. Nondissipative parameters and quantities
As a natural continuation of the previous explanations, we consider nondissipative those parameters or
quantities that are time-symmetric. See [40] for a recent pedagogical review.

To be specific and to introduce some of the notation that follows in the next sections, we concentrate here on
mathematicalmodeling of an open systemdynamics via aMarkov jumpprocess for which the state occupations
ρt(x) changewith time following theMaster equation,

år r r= -˙ ( ) [ ( ) ( ) ( ) ( )]x k y x y k x y x, ,t
y

t t

The states denoted by x, y,K give, for example, the position of particles or the chemomechanical configuration
of amolecule, or the occupation on an energy level, etc. The transition rates ( )k x y, 0 for the jump x y can
always be decomposed in a time-symmetric and a time-antisymmetric part,

y

=

º

( ) ( ) ( ) ( )
( )

( ) ( )( )

k x y k x y k y x
k x y

k y x

x y e

, , ,
,

,

, 2s x y, 2

assuming that ¹( )k x y, 0 iff ¹( )k y x, 0 to retain dynamical reversibility. That dynamical reversibility is
sometimes violated in bio-modeling (as in other applications), but it either plays no big role (as for the
Brusselator below) or it should bemodified indeed to allow the formalism towork. Under the same assumptions
aswhere (1) gives the physical dissipation, we can call
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,

,
, 3

the entropy change per kB in the environment over the transition x y . Again, inmany cases of physical
interest, such physical interpretation follows from the dynamical reversibility of standardHamiltonian
mechanics, as referred to already above (1). On the other hand,

y y= =( ) ( ) ( ) ( ) ( )x y k x y k y x y x, , , , 4

is symmetric between forward and backward jumps and gives the ‘width’ or ‘accessibility’ of the channel.We call
y ( )x y, 0 the activity parameters; they are frequencies andmay depend on intensive parameters of the

reservoir(s) but also on external forces or differences in reservoir temperatures and chemical potentials, and on
(free) energy barriers separating x from y.

A nondissipative effect occurs when the relative strength or nature of theψ(x, y) changes the nonequilibrium
condition, in particular through their variationwith the external field. Of course, the dissipationσ in (1) also
depends on these activity parameters, but it is the fact that there is no potential  for which

 = -( ) ( ) ( )s x y x y, for all (x, y), whichmakes s ¹ 0.
A second class of nondissipative effects arise from the role played by time-symmetric path-observables. In

the notation of (1)wewould be speaking about observablesO(ω)which are function of the trajectory over time-
interval [0, t] and are invariant under time-reversal θ, i.e.,O(ω)=O(θω) . Examples are even powers of particle
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or energy currents, or the number of jumps in that time-interval (which is ameasure of dynamical activity
[31–33]), or the residence time in a certain state or collection of states; the value of each of those path-dependent
quantities does not changewhen playing themovie of the trajectory backward. It is an ongoing challenge to
make these nondissipative parameters and observables ‘visible’ in experiments. First important examples in
colloidal physics are for example found in [34].

3. (Counter)examples

There is no simple or universal definition of quality of a biological process, while, following the previous section,
entropy production and dissipation can bewell defined.We thus need specific processes andmodels, and point
to relevant nondissipative features for the intuitive well-being of the biological performance.We are then ready
for looking at three quite differentmodels, with the aimof testing in these specific instances themetabiological
hypothesis that dissipation is pushing the performances of life processes and hence that themore one dissipates,
the better it is. Themodels provide counterexamples to that idea. Each timewefindparameters underwhich the
entropy production and the performance aremoving in opposite direction.

3.1. Efficiency ofmolecularmotors
Upper bounds onmotor efficiency in general follow from lower bounds on entropy production rate; see e.g.
[57]. Herewe consider themodel of kinesinmotion described in [15] (where one canfind all the details) andwe
use it to show that themost efficient pulling of amolecular cargo takes placewhen the availability of ATP—the
fuel of ourmotor—is at intermediate physiological values, where dissipation is notmaximal.

Themotor can be either in a state ‘A’ or in an activated state ‘B’. The transition between ‘A’ and ‘B’ can take
place through thermalfluctuations (horizontal transitions in the scheme offigure 1) or byATP consumption/
release (diagonal transitions). Infigure 1 each state is displayed versusthe position along themicrotubule over
which themotor is stepping and versusthe amount of consumedATP. Amotor full step 2d≈8 nm,
corresponding to the horizontal gap between two ‘A’ states infigure 1, usually displaces the kinesin on the right,
even if there is a load that imposes an external force Fe<0, i.e., directed on the left.

By plugging in the values of parameters from the fit to experimental data in [15], for f=Fe d/(kB T)=−4
(inmodulus below the value f≈−4.87 obtainedwith the stalling force Fe≈−5 pNof kinesin [58]), we get the
rates (in s−1)
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where concentration [ATP] is inmMunits. Clearly transitionswith rates ka,4, kb,4, and ka,1 are suppressed; the
motor usually repeatsmultiple jumps along the transition 2 till the transitionwith ka,3 is followed.

Figure 1.Portion of the infinite network of states for the kinesinmodel. Lines indicate allowed transitions between the two types of
state (‘A’ and ‘B’) displayed as a function of the accumulated displacement of themolecularmotor and of the number of consumed
ATPs.We have also specified the transition rates from (kaʼs) and to (kbʼs) a particular state ‘A’, see the text formore details.
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Wehave varied the ATP concentration in the typical physiological range, from1mMup to 10mM, to check
if the performance of themotor gets better with increasing dissipation. In the normalized units used above and
infigure 1, where states should be thought on a square lattice with edges of unit side, themotor average velocity v
equals the horizontal displacement per unit time and the average ATPdissipation rate r is themean vertical
displacement per unit time. The quality of themotorʼs performance is quantified by its efficiency

h
m

º -
D

( )fv

r
5

which is the ratio of dissipated power−fv and input power rΔμ (withΔμ=log(k0 [ATP]) and
k0=1.4×10−5mM−1, see [15]). Dissipation is quantified by themean entropy production per unit time,
obtained by averaging in time the entropic contribution from jumps, such as s3(x=A, y=B)=log ka,3/kb,3.

Infigure 2we see that the efficiency is not amonotone function of the dissipation but rather finds a
maximumat intermediate physiological conditions of ATP concentration, afinding likely pointing to a natural
selectionmechanism that led kinesin to operate in optimal conditions. For our point, we note that the
performance gets worse if one increases toomuch theATP concentration and consequently the dissipation of
the system.

3.2. Regularity of circadian clocks
To better couple with the environment, for an organism it is often convenient to have a physiological state with
variables (e.g., enzyme concentrations) that follow an oscillation of 24 hours [9–11]. A circadian clock is present
if there is an endogenous component in this oscillation, namely the cycle remains rather stable even in the
absence of external daily stimuli. To simulate a circadian cycle, we consider the so called Brusselator [59, 60],
whichwas invented tomodel well known chemical periodicity, such as in the Belousov–Zhabotinsky reaction.
In order to emphasize the role of the time-symmetric componentsψ(x, y) in front of the jumping rates (2), we
add a parameterψ before a pair of forward-backward transition rates tomodulate the volume of jumps along
that direction and show that the entropy production decreases withψ, while the quality of the clock becomes
better at intermediate values ofψ, as detailed in the following.

A state x=(X,Y) of the system is represented by the numbersX andY ofmolecules of two different species,
hence x belongs to the positive quadrant of the square lattice. The stochastic version of the Brusselator,
translating the original deterministic dynamics [59] into aMarkov jump process, takes into account thefinite
size of the system via a ‘volume’Ω [10] that appears in the rates of allowed transitions. Following the sketch of
figure 3(a), these rates are

y
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Figure 2.Kinesin efficiency versusdissipation rate. Points are for values of mD = ( [ ])klog ATP0 equally spaced betweenΔμ=11.85
(corresponding to [ATP]=1mM) andΔμ=14.15 ([ATP]=10mM). Themaximumefficiency is obtained for [ATP]≈3.5mM.
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Wewill setΩ=1000, a=2, b=5. This value of b is large enough to see the appearance of oscillations with a
limit cycle aroundwhich the stochastic dynamics settles quite quickly.

We can use the relative entropy between forward and backward trajectories for estimating themean entropy
production of the Brusselator, as explained in section 2.1. The relevant entropyfluxes are

 + =
W
+

( ) ( )s X Y X Y
a

X
, 1, log

1
, 7

 - + =
W

- - +
( )

( )( )( )
( )s X Y X Y

bX

X X Y
, 1, 1 log

1 2 1
. 8

2

There is a small technical problemwith the transition  +( )Y Y2, 1, 1 (rate y ¹b 0), whose inverse
+ ( )Y Y1, 1 2, is forbidden.We can however locallymodify the scheme and associate an arbitrary small rate

to that reactionwithout changing themain analysis. Thus, (8) is changed into 1 forX=1, 2.We note again
that the activity parameterψ of the jump rates has disappeared from these entropy productions. Figure 3(b)
shows examples of time series ofX (those ofY are similar) obtained for three different values ofψ.

The quality of the Brusselator clock is estimated from the distribution of the periods, specifically from its
standard deviation normalized by themean period, i.e.the periods relative standard deviation. To identify full
cycles and hence their periods, first we smoothen the time series of theX variable by averagingX in time steps
Δt=0.05. Then, we estimate the interoccurrence times between subsequentmain peaks above the threshold
X0=2000. This threshold should be re-crossed frombelow at least after a time 5Δt before restartingwith a new
peak identification.We have tested that values ofX0ä[1900,2100] give similar results.Moreover, by visual
inspectionwe checked that the peak recognitionworkswell, especially forψ<1.

The valuesψ=0.68, 0.84, and 1.2 used infigure 3(b) characterize a non-monotonic trend of the periods’
relative standard deviation, as shown infigure 3(c), wherewe see that the best performance is obtained around
ψ=0.84, an intermediate value if the rangeψä [0.6, 1.2] is considered. By comparing specifically the two series
forψ=0.84 (lower dissipation rate) andψ=0.68 (higher dissipation rate), shown infigure 3(b), we see that the
decays after peaks in theψ=0.84 time series have amore regular pace. Thus, there is a regionwhere the increase
of entropy production ratewould lead to a higher volatility of periods. To summarize, we againfind nopositive
correlation between the quality of the system and its dissipation rate.

3.3. Precision of sensory adaptation
Weconsider aminimum feedback network underlyingmany sensory adaptation systems [6]. A level of time-
dependent ‘output activity’ a(t) (not to be confusedwith the dynamical activity in stochastic processes) is
maintained around a physiological level a0 bymeans of a feedbackmechanism: a buffer variablem(t) reacts to
variations of an external stimulus s and, eventually, its feedbackmaintains the level of a close to the optimal a0.
We are interested to see if on average a remains closer to a0 when dissipation is higher. Again, in the followingwe
show that better performance in general is not associatedwith higher dissipation.

Thewhole system represents a smallfluctuating ensemble ofmolecules, which is conveniently described at a
mesoscopic level by diffusion equations (see [61] for the jump process version of themodel). In the notation of
[6], these are

Figure 3. (a) Sketch of the allowed transitions from a state x=(X,Y) of the Brusselator and their rates. (b)Time series of theX variable
for three different values of the activity parameterψ. (c)The relative standard deviation of periods versusentropy production rate, for
the Brusselator. Squares from right to left are parametrized by values of the activity parameterψ=0.6, 0.64,K, 1.2 . In this range the
best regularity in periods is achieved around the valueψ=0.84.
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that representbiochemical interactions at a coarse-grained level. For theG(s,m) functionwe take theMichaelis-Menten
form = + - -( ) ( )G s m se, 1 m2 1,with∂sG<0and∂mG>0as required for anegative feedbackmechanism.The
dynamics is stochastic via thewhitenoise terms ξa, ξmwith amplitudesΔa,Δm, respectively. Following [6],
= w

w
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Thus,βparametrizes thenonequilibriumcomponent in the forceFm and the system is characterizedbyanontrivial
feedbackdynamics for large enoughβ,which leadsa tofloat arounda0. Indeed, in thedeterministic version (deleting
thewhitenoise in (9)) there is afixedpoint, *( )a m, s0 with * =( )G s m a, s 0,which is stablewhen

*

b b> =
¶

+ ¶ =

( )
( )

( )C G s m

C G s m

,

1 ,
11c

m

m m m

Note that a0 in the stablefixed point does not depend on the stimulus s.
The noisy dynamics (9) brings the system tofluctuate slightly off the fixed point and leads to amean

dissipation rate s º á D + D ñ◦ ◦F da F dm dta a m m (products in the Stratonovich sense [62] and the
statistical average in the steady process is denoted by á ñ· ).

Tomeasure the quality of the adaptation [6], one looks at the deviation á ñ -∣ ∣a a0 for cases whereβ>βc.
The á ñ -∣ ∣a a0 is a sort of error of the feedbackmechanism, hence smaller á ñ -∣ ∣a a0 values indicate good
adaptability. The question is whether the feedback gets better by decreasing noise amplitudes or by increasing
the feedback rateωm, andwe are interested to knowhowbetter adaptation is correlated with the dissipation rate.
That was also themajor question in [6], where it was concluded that their study ‘reveals a general relation among
energy dissipation rate, adaptation speed and themaximumadaptation accuracy.’Themathematical
proportionality (equation (5) in [6]) between dissipation rate and adaptability is however not convincing
without amore general study of the factor of proportionality.

Infigure 4(a)we show an example inwhichwe vary the amplitude of the noise on the feedback variablem
andwe clearly see that the error á ñ -∣ ∣a a0 has no general correlationwith the dissipation rate. The same is true
for variations ofωm, see figure 4(b). These examples show that optimal points for the feedbackmechanismdo
not correspond tomaxima of the entropy production rate.

Figure 4. (a)Deviation of the average activity á ña from ideal a0=0.6 (i.e., ‘error’ á ñ -∣ ∣a a0 )plotted versusthe dissipation rateσ for
different values of the noise amplitude of the control variable,Δm=0.01,0.011,K, 0.05.We see that the quality of the feedback is
optimal for an intermediate value ofΔm and of the dissipation rate, while lowor highΔm produce a higher error, which does not
correlate positively with the dissipation rate. Other parameters areβ=0.6,ωa=10,ωm=0.6 (note that the feedback variablem has
ωm=ωa),Δa=1, s=5.With these parameters we haveβc;0.07 and henceβ>βc brings the system to the nontrivialfixed point
out of equilibrium. (b)Almost the same parameters, with fixedΔm=0.04 and differentωm=0.5,0.055,K, 2.2. Also in this example
there is no general correlation between the dissipation and the quality of the feedback.
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4.Discussion onnondissipative effects

Apossible reasonwhy dissipation or entropy production continue so often to play a central role in foundational
discussions on life-functioning and nonequilibriumphysics is thewide appreciation and familiarity with
irreversible thermodynamics, where local equilibrium and linear force-current relations constitute the usual
assumptions.Moreover, in or near equilibrium, the one and same entropy uniquely relates to heat capacity,
density of states, theH-theorem, the fluctuation-dissipation theorem, thermodynamic forces, andmore. In
recent years, however, it has often been emphasized that in true nonequilibrium regimes the Boltzmann-
Clausius correspondence between heat and degeneracy, or between thermodynamic potential and fluctuations
gets broken. From second order onward in any driving, the nonequilibrium statistics is described dynamically
both by a dissipative, time-antisymmetric quantity (entropy production) ánd by kinetic time-symmetric
estimators, sometimes called dynamical activity [31–33], traffic [63], or frenesy [37, 39] (see also [40]).

The role of time-symmetric activity becomes evident in a version of linear response [36, 37, 39, 44, 45] in
which the differentialmobility, the change of a current J over [0, t] due to a variation of a parameter or to a
perturbation,

 w w w w¶á ñ = á ñ - á ñ( ) ( ) ( ) ( ) ( )J J K J
1

2
12

iswritten as a difference between two terms, bothbeing dynamical correlations in theunperturbed steady
nonequilibriumwith á ñ· averaging over thepossible trajectoriesω.Here the  w( ) is the path-dependent entropyflux
due to theperturbation, andK(ω) is the path-dependent time-symmetric dynamical activity (e.g., including the
changes in residence times or inundirected currents causedby theperturbation). Veryoften the relevant current is
itself proportional to  . Then, for µJ in (12), thefirst correlation á ñ > 02 is certainly positive, and it is only
possible to cancel it by the second correlation á ñK when far enough fromequilibrium. Such a cancellation is indeed
impossible in equilibrium,where always w w w wá ñ = = á ñ( ) ( ) ( ) ( )K J K0eq eq by time-reversal symmetry [37, 39].
That is a typical example of how, through thepresence of nonzerodissipation innonequilibrium, the time-symmetric
sector (in termsofK )becomes relevant and creates important possibilities in bio-processing. E.g., to reach a
homeostatic regime, biological processesmight exploit a stallingof relevant quantities/currents to external stimuli.
Thephysics of glasses, inwhich caging is the important effect, and the corresponding studies of changes indynamical
activity have also becomebiologically relevant [13]. In adifferent context,whendealingwithdrivenparticles, the
stallingmight be thepoint at the onset of a regimeof negative differentialmobility [39, 64–66].

Physics-oriented studies of adaptabilitymay also consider response relations like (12), inwhich the
observable is nownot a current but rather a state function, like in section 3.3, andwhere again the second term
in (12)now in the form á ñK makes the essential difference from the usualfluctuation–dissipation relation (a
fluctuation-dissipation relation reproducing the standard equilibrium version can be found for stalled currents
in [67]) enabling for example to decrease the susceptibility. Similar relations and considerations apply starting
from second order around equilibrium [68].

In a recent work [20]wemayfind other results supporting our point, whichwere however presentedwithout
the emphasis of the present paper. Somemodels of exonuclease proofreading and biological error-correction
were investigated [20] and the error probability was seen to increase togetherwith the entropy production rate as
a function of growing nucleotide concentration in physiological regimes. It is the dependence of the activity
parameters on driving that allows the error probability to decrease with the nucleotide concentration.

MyosinV, amolecularmotor, is another examplewhere the role of time-symmetric quantities emerges
clearly [16]. Tuning the activity parameters in the corresponding jump rates, it was shown that themotion of
myosinV can even change direction if the volume of transitions between specific states is changed [16, 40, 41].
This has nothing to dowith entropy production, as the bi-directional increase of jumps between say states x and
y (the traffic) is governed by the activity parameterψ(x, y)=ψ(y, x) defined in section 2.1. Indeed, the transition
frequency along a given channel is themain factor determining the direction of themolecularmotor.

The above situations aremuch different from themacroscopic effect of currents (and power) increasingwith
a driving potential (as inOhmʼs law), towhichwe are acquaintedwith near-equilibrium linear response. Far
from equilibrium, induced forces are no longerminus the gradient of a thermodynamic potential, and they can
realizemotion or increased stability offixed points only by the combination of entropic and frenetic effects [69].
Near equilibrium the entropy production is just quadratic in the current, but thatmay change drastically farther
from equilibrium. That appears again in recent studies of thermodynamic uncertainty relations [70–75],
concentrating on lower bounds for the entropy production rate and giving interesting refinements to the
positivity of entropy production or toCarnot efficiency, see [76] and references therein, in particular [40] for an
interpretation of lower bounds on the dissipation rate. One should not forget that quadratic lower bounds for
the dissipation rate, in terms of currents, are not at all sharp in the nonlinear force-current regimes. For instance,
the efficiency of the kinesinmodel discussed in section 3.1 is well below the upper limit given by the
thermodynamic uncertainty relation [75].
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As a simplemathematical illustration of the possible discrepancy between high dissipation and low current,
we consider a one-dimensional walker on Îx with rates to jump to the right k(x, x+1 )=ψ(E)e E/2 and to
the left k(x, x−1)=ψ(E) e−E/2.We useE to denote the Joule heating caused by dissipating the external work
done on the particle, reduced to dimensionless units. For short,E refers to a driving field and the escape rate

y+ + - =( ) ( ) ( ) ( )k x x k x x E E, 1 , 1 2 cosh 2

is non-monotone in Ewhen the activity parameterψ(E)∝ e−E/2/E is chosen to be decreasing inE, a situation
often occurring in the presence of obstacles. The time-integrated current per unit time, i.e., the number of jumps
to the rightminus the number of jumps to the left per unit time, is on average

y=( ) ( ) ( )J E E E2 sinh 2

and themean entropy production rate isσ=E J(E).Withψ(E)∝ e− E/2/Ewe see thatσ(E) ismonotone
increasing and saturating asymptotically inE, while J(E) goes to zero as  ¥E with an intermediatemaximum.
It is then certainly not so that highest current is reached at highest entropy production.Moreover, the variance of
the net number of forward jumps (time-integrated current) is completely decided by the escape rate,

yá ñ = ( ) ( )J J t E E; 2 cosh 2

so that the stationary dispersion, a negative quality feature of the current,

y
á ñ
á ñ

= µ- ¥
( ( ) ( ) ( ))J J

t J
E E E E

;
2 tanh 2 sinh 2

E

2
1

diverges (forψ(E)∝ e− E/2/E)where the entropy production rate reaches itsmaximum. Therefore, the optimal
driving value for thewalker is not where themean entropy production ismaximal if onewants to have a large
value of the current with limited dispersion.

5. Conclusions

The absence of universal positive correlations between life-supporting properties and the amount of
irreversibility (steady entropy production) is not truly surprising. Trivially, in any givenmodel of a biological
systemdissipative processes can be added that lower its quality. The point of the present paper is however to give
a relevant systematic and quantitative analysis, including the role of non-thermodynamic aspects. This paper has
used threemodels to show thatmore specifically: (a) kinesin in typical physiological conditions hasmaximum
efficiency at intermediate values of ATP concentration, where the dissipation of themolecularmotor is not
maximum; (b) the regularity of the periods in amodel of circadian clocks, the Brusselator,may become better
for intermediate values of the dissipation rate; (c) amodel of sensory adaptation shows no clear pattern of
feedback precision improvingwith the entropy production rate. It does not appear generally true that ‘more
accurate and/or faster adaptation inevitably requiresmore energy dissipation per unit of time’ [7].

While similar claims have beenmade before for several biological processes, we have presented a tool for
general analysis and pointed explicitly to the role of nondissipative (time-synmmetric features). Both dissipative
and time-symmetric kinetic considerations are necessary to reach a complete picture of regimes far from
equilibrium, of which biological processes are an important example.
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