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Abstract. The thermal response of nonequilibrium systems requires the knowledge

of concepts that go beyond entropy production. This is showed for systems obeying

overdamped Langevin dynamics, either in steady states or going through a relaxation

process. Namely, we derive the linear response to perturbations of the noise intensity,

mapping it onto the quadratic response to a constant small force. The latter, displaying

divergent terms, is explicitly regularized with a novel path-integral method. The

nonequilibrium equivalents of heat capacity and thermal expansion coefficient are two

applications of this approach, as we show with numerical examples.

PACS numbers: 05.70.Ln, 05.40.-a, 05.20.-y

1. Introduction

The determination of response functions is arguably one of the most topical issues in

statistical physics. Even though its history dates back to the works of Einstein, Nyquist

and Onsager [1, 2, 3, 4], it was Kubo [5, 6] who subsumed the later developments

[7, 8, 9] under a general theory. For a system slightly driven off equilibrium, the Kubo

formula gives the linear response of an observable in terms of the equilibrium time-

correlation between the observable itself and the entropy produced by the perturbation.

The first systematic application of Kubo’s theory —along with kinetic theories based

on generalized Boltzmann equations— underscored the endeavor to calculate the

transport coefficients of moderately dense gasses [10]. These efforts culminated in the

discovery of the algebraic decay in time of the correlation functions entering Kubo

formulas [11, 12, 13], which prevents the existence of transport coefficients in low

dimensions.

Later, the possibility to perform progressively more efficient computer simulations

and thus to compute response functions numerically, led to the extension of the original
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theory to thermostatted systems arbitrarily perturbed from an initial equilibrium state

[14]. Remarkably, it was established that the (nonlinear) response to an external driving

is largely insensitive to the choice of the thermostatting mechanisms [15], represented

by the artificial forces required to maintain nonequilibrium steady-state conditions [16].

In contrast to such major achievements, the related theory for the response upon

perturbation of nonequilibrium states has progressed far more slowly. Apart from the

obvious obstacle represented by the lack of knowledge of nonequilibrium phase-space

distributions, further difficulties are met when dealing rigorously with deterministic

dynamical systems, owing to the fractal nature of their invariant distribution [17, 18,

19, 20]. Nonequilibrium response theories have rather flourished for stochastic dynamics

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], which is applicable to a

wide variety of complex systems in physics as well as in related sciences. However, most

of these results are usually restricted to mechanical perturbations and do not consider

thermal perturbations. Thus, they do not allow one to compute quantities such as

nonequilibrium heat capacities and thermal expansions coefficients, which would arise

as the (integrated) linear response to step variations of the temperature, i.e., of the

noise intensity in the stochastic dynamical equations. Besides some previous formal

results [37, 29], only recently there appeared formulas for the thermal response of driven

stochastic systems, which are given in terms of correlations between state observables

calculated in the unperturbed state. Apparently, the mathematical difficulties entailed

by handling noise variations require either to introduce an explicit time-discretization

to avoid divergences in the response [38, 39] or to rely on a rescaling of the stochastic

dynamics in order to derive regular results [40].

The present work is devoted to show that neither of these expedients is actually

necessary. A well-defined thermal response formula can be derived by standard path

integral techniques, in close analogy to the case of deterministic perturbations. After

introducing the model equations in section 2, we define in section 3 the linear response

to a temperature perturbation of a generic observable of the system. In section 4 after a

brief explanation of the formal differences from the ordinary response to a deterministic

forcing, we tackle the problem first showing that the thermal response is equivalent

to a portion of the quadratic (i.e. second-order) response to a constant force. Such

expression, which displays divergent terms, is then explicitly regularized in section 5 and

is showed to be equivalent to a Kubo formula in equilibrium. In section 6 we illustrate

two applications of these results: the energy susceptibility of a driven quenched particle

(that is the non-equilibrium specific heat for zero driving) and the thermal expansion

coefficient of an anharmonic lattice subjected to large heat flows. Moreover, in the

simplest tractable case of a freely diffusing particle we connect our formulas to the

Einstein relation. A summary and an outlook are finally given in the conclusions.
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2. Overdamped Langevin dynamics

The overdamped diffusive system we consider consists of N degrees of freedom, denoted

x = {x1, . . . xN}. For instance, xj may be a component of a particle position vector in

d-dimensions, so that N = nd if the system is composed by n particles. The dynamics

is given by the overdamped Langevin equation

ẋj(t) = µjFj(x(t)) +
√

2µjTjξj(t), (1)

where each Gaussian white noise ξj is uncorrelated from the others,

〈ξj(t)ξj′(t′)〉 = δ(t− t′)δjj′ . (2)

The j-th bath temperature Tj and mobility µj (which is the inverse of a damping

constant) determine the strength of the noise term, while the drift depends on µj and

on the mechanical force Fj(x(t)). Such structure respects local detailed balance and thus

assumes that the baths are noninteracting with each other and always in equilibrium,

regardless of the nonequilibrium conditions experienced by the system. Temperatures

and mobilities in our formalism do not depend on the coordinates, hence there is no

ambiguity in the interpretation of the stochastic equation. Throughout this paper we

will always consider the Stratonovich convention, that is the midpoint rule is employed

to discretise in time (1) [41], which means that none of the integrals will be of the Ito

type and the rules of standard calculus can be applied. See Appendix A for more details.

The Fi’s are generic nonconservative forces that may bring the system arbitrarily

far from equilibrium. In the resulting statistical averages, denoted 〈. . .〉, there is

an understood dependence on the initial density of states ρ0(x0), with x0 = x(0).

This may coincide or not with the steady state density. Finally, we introduce the

backward generator of the Markovian dynamics (1), written as a sum of “one-coordinate”

operators Lj,

L =
N∑
j=1

Lj with Lj = µjFj(x)∂j + µjTj∂
2
j , (3)

where we set ∂xj ≡ ∂j to avoid clutter. It gives the average time derivative of a state

observable O(t) as d
dt
〈O(t)〉 = 〈LO(t)〉. Hereafter for any state observable we use the

shorthand notation O(x(t), t) ≡ O(t) to indicate the implicit (and possibly explicit)

dependence on the time t.

3. Linear response in path integral formalism

We imagine to perturb the system (1) varying the noise amplitude through a time

dependent parameter θ(t)� 1 switched on at time t = 0, namely

Ti → Θi(t) ≡ Ti + εiθ(t), (4)
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where εi is a constant determining the i-th amplitude of the perturbation. This renders

(1) for a perturbed degree of freedom into the form

ẋi(t) = µiFi(x(t)) +
√

2µiΘi(t)ξi(t). (5)

Without loss of generality we assume the mobility to be independent of temperature.

The extension to the case where µi = µi(Θi) does not involve particular difficulties, since

the linear response would be just the sum of the temperature response here described

plus a standard response to a deterministic perturbation [34, 35], which arises linearising

the term µiFi.

The aim is to calculate the linear response of a generic observable O(t) to the just

introduced temperature change, defined by

RO,θ(t, t
′) ≡ δ〈O(t)〉θ

δθ(t′)

∣∣∣∣∣
θ=0

=
δ

δθ(t′)

∫
Dxθdx0O(t)Pθ[x]ρ0(x0)

∣∣∣∣∣
θ=0

. (6)

Here 〈. . .〉θ denotes an average performed in the perturbed dynamics (5) starting

from the state ρ0(x0), which is unaltered by the perturbation. The associated path

weight, proportional to the probability of a trajectory [x] ≡ {x(s) : 0 6 s 6 t} solution

of (5), is expressed as [42]

Pθ[x] = expAθ[x], (7)

with the action functional

Aθ[x] = −
N∑
j=1

{∫ t

0

ds
(ẋj(s)− µjFj(s))2

4µjΘj(s)
+
µj
2

∫ t

0

ds∂jFj(s)

}
. (8)

The last term in (8) appears as the functional Jacobian in deriving the the path-weight

for [x] from the Gaussian path-weight associated to the noise ξi, and depends on the

convention used to discretise (5) (e.g. it would be absent with the Ito convention).

In the following we will also make use of the unperturbed action A ≡ Aθ|θ=0, which

amounts to replacing Θj with Tj in (8).

Deep physical insights come from separating any action of the form (8) into time-

antisymmetric (S) and time-symmetric (K,K0) components:

A[x] =
1

2
S[x]−K[x]−K0[x] (9)

with

S[x] ≡
N∑
j=1

1

Tj

∫ t

0

dsFj(s)ẋj(s) , (10)

K[x] ≡
N∑
j=1

∫ t

0

ds
µj
4Tj

[
F 2
j (s) + 2Tj∂jFj(s)

]
, (11)

K0[x] ≡
N∑
j=1

∫ t

0

ds
ẋ2
j(s)

4µjTj
. (12)



Nonequilibrium temperature response for stochastic overdamped systems 5

The integrated entropy flux S[x] is the antisymmetric part of the action A under

the time-reversal transformation xj(s) → xj(t − s). It is defined consistently with

thermodynamics as the sum of the individual heat fluxes into the reservoirs, each

weighted by the respective bath temperature [41]. The time-symmetric terms have been

studied in connection with the notion of dynamical activity, formerly introduced in the

context of jump systems [43, 44, 45], where it counts the number of jumps and provides

important informations, e.g., on the state of glassy systems. Both K[x] and K0[x] in

fact may quantify an amount of activity in the diffusive system we are considering [46].

Being K0[x] related to the mean square displacement of the N degrees of freedom, it

offers a direct estimate of the trajectory frenzy. Nevertheless, this kinetic-like term

should be understood as part of the functional measure [42, Sec. 2.2], as it selects from

all possible trajectories the Brownian paths that make K0 finite in the limit ds → 0

(i.e. those that satisfy dx2
j ∼ ds). The functionals S and K are then the statistical

weights of such selected trajectories. Therefore, in the following we will reserve the

name dynamical activity for K, which was shown to be a good measure of the system

activity [46]. Written as

K[x] ≡
∫ t

0

dsVeff(x(s)), (13)

it may be seen as a time-integral of a state variable Veff(x) that, for systems with

interactions deriving from an energy potential U(x) and with a global bath temperature

T , would read

Veff(x) =
1

4T

∑
j

µj
[
(∂jU(x))2 − 2T∂2

jU(x)
]
. (14)

Such quantity was called effective potential [47, 48] and is proportional to the escape

rate from a configuration x, as the probability to remain in x for a short time ∆t is

∼ exp(−Veff∆t). For our nonequilibrium systems we generalise such concept by writing

Veff(s) =
∑N

j=1 λj(s), with

λj(s) ≡
µj
4Tj

[
F 2
j (s) + 2Tj∂jFj(s)

]
. (15)

The escape rate of the degree of freedom xj, denoted λj, follows from evaluating

the action at fixed x along a very short trajectory of duration ∆t � 1, that is,

lim∆t→0 Prob(x, s+ ∆t|x, s)/∆t = exp(−
∑N

j=1 λj(s)).

In the following sections we will sometimes also use the name frenesy for describing

correlation functions in the response formulas involving time-symmetrical features. This

alternate naming originated in the response-theory framework [49] and usually refers to

quantities akin to K—more specifically, to its excess generated by a perturbing force—,

namely to quantities assessing the system impatience for changing its state (rather than

direct measures of the trajectory zigzags). Hopefully the double terminology is guiding

the reader through the connections with the recent literature.
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4. Response to heating as response to a force

We are now in the position to develop the thermal linear response theory, but

we immediately find an obstacle. Since the path weight (7) is normalised to one,∫
DxθPθ[x] = 1, the functional measure Dxθ in (6) contains the noise temperatures

Θj (see e.g. [42, 50]), and therefore depends itself on the external parameter θ. This is

a major difference with respect to an external perturbation of the deterministic forces,

which leads to the formal difficulties reported in [38], namely the introduction of an

explicit time-mesh to avoid singularities in the results. To overcome this problem we

first seek a more manageable expression for the path average. That is obtained through

an Hubbard-Stratonovich transformation [51] of the action that, introducing an auxiliary

variable y, linearises the quadratic term in (8) and removes the θ dependence from the

functional measure of the path weight (see e.g. [50]). By doing so, it is easy to bring (6)

in the form (see Appendix B)

δ〈O(t)〉θ
δθ(t′)

∣∣∣∣∣
θ=0

=
∑
i

εi
µi
R

(2)
O,fi(t, t

′, t′). (16)

Here R
(2)
O,fi is the second-order response function to a constant force perturbation fi of

the i-th degree of freedom [52], namely

R
(2)
O,fi(t, t

′, t′′) ≡
δ2〈O(t)〉f
δfi(t′)δfi(t′′)

∣∣∣∣∣
f=0

, (17)

where 〈. . .〉f now denotes the average with respect to the perturbed dynamics

ẋi = µi(Fi(x) + fi) +
√

2µiTiξi. (18)

Formal calculation of response functions to external forces poses no technical difficulty

[23, 32, 34]. After integrating out the auxiliary variable y, it is straightforward to find

for (16)

R
(2)
O,fi(t, t

′, t′) =
1

2Ti

δ

δfi(t′)
〈(ẋi(t′)− µiFi(t′)− µifi(t′))O(t)〉f

∣∣∣∣
f=0

=
1

4T 2
i

[〈
(ẋi(t

′)− µiFi(t′))2O(t)
〉
− 2µiTiδ(0)〈O(t)〉

]
. (19)

Summing up, a standard Hubbard-Stratonovich transformation has allowed us to write

the linear response of an observable O to a temperature change as the second-order

response to a state-independent force, thus arriving at the intermediate result

RO,θ(t, t
′) =

∑
i

εi
4µiT 2

i

[〈
O(t)

(
ẋ2
i (t
′)− 2µiẋi(t

′)Fi(t
′) + µ2

iF
2
i (t′)

)〉
− 2µiTiδ(0)〈O(t)〉

]
.

(20)
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As anticipated, this result is slightly different from that of a previous approach [38]

where the Ito convention was adopted for the path-integrals.

Let us add an alternative, intuitive mapping between linear thermal response and

quadratic force response, through a less formal derivation of (16). To the purpose,

it is sufficient to consider only one degree of freedom. Defining the small parameter

µf(t) ≡
√

2µθ(t) and splitting the noise into two independent, zero-mean and white

Gaussian noises η and χ, equation (5) reads

ẋ = µFi +
√

2µTη + µfχ. (21)

In view of Eq. (21), all trajectories can be regarded as generated by the noise η and

perturbed by the external random force µfχ. The corresponding response is obtained

by further averaging over χ. Essentially, we wish to connect the average response to

µfχ with the response to the deterministic force µf . We thus write the path weight

associated to (21) for a single realization of χ, and expand it up to second order in the

perturbing force:

Pθ[x|χ] = exp

(
− 1

4µT

∫ t

0

ds(ẋ− µF − µfχ)2 +
µ

2

∫ t

0

ds∂xF

)
' P [x]

(
1 +

1

2µT

∫ t

0

dsµf(s)χ(s)(ẋ(s)− µF (s))− 1

4µT

∫ t

0

dsµf(s)2χ(s)2

+
1

8µ2T 2

∫ t

0

ds

∫ t

0

ds′µf(s)µf(s′)χ(s)χ(s′)(ẋ(s)− µF (s))(ẋ(s′)− µF (s′))

)
.

(22)

Recalling that 〈χ〉χ = 0 and 〈χ(s)χ(s′)〉χ = δ(s− s′), averaging χ out gives

Pθ[x] ' P [x]

(
1− δ(0)

4µT

∫ t

0

dsµf(s)2 +
1

8µ2T 2

∫ t

0

dsµf(s)2(ẋ(s)− µF (s))2

)
. (23)

We recognize the latter as the equal-time O(f 2) term in the path weight associated to

(18). So, upon application of δ2/δf(t′)2, it yields the quadratic force response (17) with

t′ = t′′. At the same time, since µf 2 = 2θ, the temperature response is also obtained by

applying δ/δθ(t′) to (23), and we arrive at equality (16).

5. Regularization of the response

In (20) the divergence caused by the Dirac delta formally compensates the divergence

in the squared velocity. This can be heuristically understood recalling that (20), despite

being formally expressed in continuous time notation, can be interpreted in terms of

discrete, albeit small, time intervals ∆t [42, 53]. Therefore one has ẋ2
i ∼ 1/∆t, being

the dynamics diffusive at short times, and clearly δ(0) ∼ 1/∆t. However, it would be

convenient to recast (20) as an explicit result devoid of singular terms. In the following

we perform such operation, first for a single degree of freedom (N = 1), and then

extending the result to arbitrary N .
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5.1. One degree of freedom

With one degree of freedom the parameter εi is superfluous and is thus set to 1. We

first focus on the kinetic-like term by starting with the rewriting (valid for t > t′) ‡

〈
ẋ2(t′)O(t)

〉
=

1

2

d2

dt′2
〈
x2(t′)O(t)

〉
− 〈ẍ(t′)x(t′)O(t)〉, (24)

and by seeking a replacement for the correlation function 〈ẍ(t′)x(t′)O(t)〉. This can be

achieved recalling that the integral of a total derivative involving the path weight is null.

Therefore, we may exploit the identity

0 =

∫
Dx δ

δx(t′)
B[x]P [x] =

〈
δB
δx(t′)

〉
+

〈
B δA
δx(t′)

〉
, (25)

where B is any functional of {x(s) : 0 6 s 6 t}, and A[x] is the unperturbed action

A[x] = − 1

4µT

∫ t

0

ds(ẋ(s)− µF (s))2 − µ

2

∫ t

0

ds∂xF (s) , (26)

corresponding to (8) calculated at θ = 0, with N = 1. First, we evaluate the second

term in (25) making use of the expression for the functional variation of the action

derived in Appendix C, see (C.3). The entropy variation is shown to vanish, while the

variation of K[x] expressed in terms of the backward generator L gives〈
B δA
δx(t′)

〉
=

〈
B δK
δx(t′)

〉
=

1

2µT

〈
B
[
ẍ(t′)− µLF (t′)

]〉
. (27)

Hereafter we restrict to the case in which F does not depend explicitly on time, but

only via x. In order to extract from (27) the sought substitute for 〈ẍ(t′)x(t′)O(t)〉, we

choose B = O(t)x(t′) and the first term in (25) becomes〈
δB
δx(t′)

〉
=

〈
δO(t)

δx(t′)
x(t′)

〉
+ 〈O(t)〉δ(0). (28)

If O is a state observable, i.e., it depends only on the trajectory endpoint, the first term

on the right hand side of (28) drops for all t′ 6= t, since it reads δO(t)
δx(t′)

= ∂xO(t)δ(t− t′).
Putting all the pieces together we get the compact expression

〈ẍ(t′)x(t′)O(t)〉 = µ〈O(t)x(t′)LF (t′)〉 − 2µTδ(0), (29)

which, plugged in the response formula (20), gives finally

RO,θ(t, t
′) =

1

4T 2

[
1

2µ

d2

dt′2
〈
O(t)x2(t′)

〉
+
〈
O(t)µF 2(t′)

〉
− 〈O(t)x(t′)LF (t′)〉 − 2〈O(t)ẋ(t′)F (t′)〉

]
. (30)

‡ Note that average values and time derivatives commute in the Stratonovich convention [42].
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for t′ < t. This is a regularised version of (20) valid for N = 1 and any state observable

O. We have traded the kinetic-like term and the Dirac delta in (20) with a second-order

time derivative and a correlation involving the backward generator. The second-order

time derivative, even tough unusual for a linear response formula (but not for a second-

order response function [52]), is indeed necessary to obtain the correct result, as it can

be easily verified in the analytically solvable case of a particle in free diffusion (see

section 6.3).

If one is interested in the response of path-dependent observables (namely, O
is a functional of the trajectory up to time t), the first summand in (28) is non-

zero and hence (30) has to be supplemented by the term −2µT
〈
δO(t)
δx(t′)

x(t′)
〉

. As an

example we may consider the heat exchanged with the thermal bath in a time t,

Q[x] ≡
∫ t

0
dsF (s)ẋ(s). It turns out that the response formula (30) requires no additional

term in this case, since

δQ(t)

δx(t′)
= ∂xF (t′)ẋ(t′) +

∫ t

0

dsδ̇(s− t′)F (s)

= ∂xF (t′)ẋ(t′)− ∂xF (t′)ẋ(t′) = 0 . (31)

5.2. Many degrees of freedom

The procedure is easily extended to a system composed of N > 1 degrees of freedom.

Equations (24), (25) and (28) are still valid replacing x with xi, and taking the action

(corresponding to (8) calculated at θ = 0)

A[x] =−
N∑
j=1

{
1

4µjTj

∫ t

0

ds(ẋj(s)− µjFj(s))2 +
µj
2

∫ t

0

ds∂jFj(s)

}
, (32)

where we reverted to the notation accommodating the particle labels. Equation (27) is

then generalised to (see Appendix C)〈
B δA
δxi(t′)

〉
=

1

2µiTi
〈Bẍi(t′)〉 −

〈
B δK
δxi(t′)

〉
+

1

2

〈
B δS
δxi(t′)

〉
. (33)

In the following we focus on systems with two-body potential interactions, deferring the

more general result (valid for arbitrary d, generic driving and interactions) to Appendix

C. Yet, the results reported here are general enough to describe the thermal response

of a broad class of non-equilibrium systems, such as heat conducting lattices in contact

with different heat baths [Eq. (38)], and aging systems [Eq. (40)]. Under the above

assumption, the variation of K[x] in (33) is given by

δK
δxi(t′)

= L(Ti)Fi(t
′), (34)

where we identified the operator

L(Ti) ≡
N∑
j=1

Ti
Tj

Lj =
N∑
j=1

(
Ti
Tj
µj∂j + Ti∂

2
j

)
(35)
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which acts on the observables as if all temperatures were equal to Ti and all forces Fj
were rescaled by Ti/Tj. Interesting, this rescaling is found by rewriting the Langevin

dynamics in terms of a new time variable, the thermal time τj ≡ t
Tj
Ti

, by which (1) reads

dxj
dτj

= µj
Ti
Tj
Fj +

√
2µjTiξj. (36)

While L is the generator of the stochastic dynamics in the kinematic time t, in view of

(36), the operator L(Ti) acts as the generator of the corresponding dynamics in thermal

time coordinates. This permits to rationalize the variation of the dynamical activity (34)

as the tendency to change Fi measured with respect to the thermal time.

Coming back to the regularization of (20) we operate as before. We choose

B = O(t)xi(t
′) and obtain, by means of (25), (28) and (33)

〈O(t)ẍi(t
′)xi(t

′)〉 =µi
〈
O(t)xi(t

′)L(T )Fi(t
′)
〉

+ µiTi

〈
O(t)xi(t

′)
δS

δxi(t′)

〉
− 2µiTiδ(0),

(37)

where a state observable O was considered. Finally, using the explicit form of the

entropy variation (C.10), we find for the response function (t′ < t)

RO,θ(t, t
′) =

∑
i

εi
4T 2

i

[
1

2µi

d2

dt′2
〈
O(t)x2

i (t
′)
〉
−
〈
O(t)xi(t

′)L(Ti)Fi(t
′)
〉

+
〈
O(t)µiF

2
i (t′)

〉
− 2〈O(t)µiẋi(t

′)Fi(t
′)〉

+
N∑
j=1

〈O(t)[xiẋj∂jFi](t
′)〉
(
Ti
Tj
− 1

)]
. (38)

This equation simplifies if the system is isothermal before the perturbation is applied,

i.e., the heat reservoirs are all at the same temperature Tj = T ∀j. In this case δS
δxi

vanishes and (33) boils down to〈
B δA
δxi(t′)

〉
=

1

2µiTi

〈
B
[
ẍi(t

′)− µiLFi(t′)
]〉
, (39)

once we recognise L(Ti)|Tj=T =
∑N

j=1 Lj as the total generator of the dynamics in the

complete state space. Consequently, for isothermal systems the response formula takes

the simpler form (t′ < t)

RO,θ(t, t
′) =

1

4T 2

∑
i

εi

[
1

2µi

d2

dt′2
〈
O(t)x2

i (t
′)
〉
− 〈O(t)xi(t

′)LFi(t′)〉

+
〈
O(t)µiF

2
i (t′)

〉
− 2〈O(t)ẋi(t

′)Fi(t
′)〉
]
, (40)

which is a straightforward generalization of (30) to a many-body system.
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As noted above, if O is a path-dependent observable one needs to include in the

response formula the additional term

−2µiTi

〈
δO(t)

δxi(t′)
xi(t

′)

〉
, (41)

coming from the first summand of (25). For the example of the total heat flux into the

reservoirs, Q[x] ≡
∑N

j=1

∫ t
0
dsFj(s)ẋj(s), the supplementary term contains

δQ(t)

δxi(t′)
=

N∑
j=1

(
∂iFj(t

′)− ∂jFi(t′)
)
ẋj(t

′) , (42)

and thus vanishes when the interactions derive from a two-body potential.

5.3. Susceptibility

Upon integration of (38) we get an equation for the susceptibility of the system,

χO,θ(t) ≡
∫ t

0

dt′RO,θ(t, t
′) = S1 + S2 +K1 +K2 (43)

with

S1 = −

〈
O(t)

∑
i

εi
2T 2

i

∫ t

0

dt′ẋi(t
′)Fi(t

′)

〉
(44a)

S2 =

〈
O(t)

∑
i

εi
4T 2

i

N∑
j=1

(
Ti
Tj
− 1

)∫ t

0

dt′[xiẋj∂jFi](t
′)

〉
(44b)

K1 =

〈
O(t)

∑
i

εi
4T 2

i

∫ t

0

dt′
[
µiF

2
i (t′) + xi(t

′)L(Ti)Fi(t
′)
]〉

(44c)

K2 =
d

dt′

〈
O(t)

∑
i

εi
8µiT 2

i

x2
i (t
′)

〉∣∣∣∣∣
t′=t

t′=0

(44d)

where we recall that integrals are in the Stratonovich sense and L(Ti) was introduced

in (35). The term S1 is the standard correlation between observable and entropy

production, appearing with a 1/2 prefactor with respect to the equilibrium version

(see next section), in which it would be the only correlation relevant for determining

the linear response. The term S2 is a novel correlation between observable and a time-

antisymmetric quantity, proportional to the functional variation of the bath entropy
δS[x]
δx

, which may be non-zero only if Tj 6= Ti for some j. The remaining correlations, the

frenetic terms [49] K1 and K2, collect correlations between the observable and time-

symmetric dynamical features. As in previous studies of force perturbations, both

S’s and K’s contain, respectively, the entropy and frenesy [49] in excess due to the

perturbation.
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In order to correctly evaluate the time derivative of the correlation in K2, when

dealing with data it is important to avoid taking discrete-time derivatives with t′ > t

because cusps are not unusual in correlation functions for t′ → t. To compute

numerically d
dt′
〈x2

i (t
′)O(t)〉|t′=t, in the examples of the following section we have

estimated the slope of data for 〈x2
i (t
′)O(t)〉 with t′ . t.

Only if averages are evaluated in a steady state, K2 can be modified as

Ks
2 =

〈
LO(t)

∑
i

εi
8µiT 2

i

[x2
i (0)− x2

i (t)]

〉
(44e)

because

d

dt′
〈
O(t)x2

i (t
′)
〉∣∣∣∣t′=t
t′=0

= − d

dt

〈
O(t)x2

i (t
′)
〉∣∣∣∣t′=t
t′=0

= −
〈
LO(t)x2

i (t
′)
〉∣∣∣∣t′=t
t′=0

(45)

A steady state susceptibility χsO,θ(t) = S1 + S2 +K1 +Ks
2 is associated with Ks

2 .

5.4. A steady state formula and its reduction to the Kubo formula at equilibrium

Every thermal response formulation should reduce to the standard Kubo formula when

the system is under complete equilibrium conditions at temperature T . These conditions

are met if conservative forces Fi = −∂iU (with U(x) the system’s energy) are present, if

Ti = T ∀i and the perturbation is applied to a thermalised system, namely ρ0(x) is the

canonical distribution at temperature T . In equilibrium, the Kubo formula expresses

the response function as

RKubo
O,θ (t− t′) =

1

T 2

d

dt′
〈O(t)U(t′)〉, (46)

and the corresponding susceptibility is

χKubo
O,θ (t) =

1

T 2
〈O(t)[U(t)− U(0)]〉,

=
1

T 2
〈O(t)Q(t)〉, (47)

where Q(t) = U(t)−U(0) is the heat transferred to the system in the time interval [0, t].

This formula shows that the temperature response in equilibrium is totally determined

by the correlation between observable and the entropy Q(t)/T paid by the reservoir to

change the system energy.

When a global perturbation is applied to an isothermal steady state regime, say

with εi = 1 ∀i, eq. (40) may be recast in an alternative form, that correctly reduces to

the Kubo formula (46) in equilibrium, as we show in the following. In the derivation

we stay in a generic steady state condition until the very end, so that in turn we obtain

another quite general formula for the response function, eq. (51) below, in which the

genuine nonequilibrium contribution is well distinguished from the Kubo correlation. A
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possible practical issue of such elegant separation is that it can be computed explicitly

only if one knows the microscopic probability density of states.

We start noticing that the last term in (40) is in equilibrium half of the expected

result:
1

2T 2

∑
i

〈O(t)ẋi(t
′)∂iU(t′)〉 =

1

2T 2

d

dt′
〈O(t)U(t′)〉. (48)

The remaining frenetic terms yield an analogous contribution at equilibrium. To show

that, we first use that the system is in a stationary state. This implies that correlations

are functions of the time difference only, hence d
dt′

can be exchanged with − d
dt

. Moreover,

the backward generator can be expressed in terms of the generator of the time-reversed

dynamics, L∗, through the relation L = L∗ + 2
∑N

j=1 vj∂j, where vj ≡ Jsj /ρ
s is the

state velocity, that is the probability current Jsj associated to xj, over the steady state

density of the system ρs [54, 49]. We will ultimately exploit the time-reversal invariance

of equilibrium states, which formally manifests in the equality L = L∗, as the probability

currents vj are by definition absent at equilibrium.

The time derivatives in (40) can be manipulated as

1

2µi

d2

dt′2
〈
x2
i (t
′)O(t)

〉
= − 1

2µi

d

dt′
d

dt

〈
x2
i (t
′)O(t)

〉
= − 1

2µi

d

dt′
〈
x2
i (t
′)LO(t)

〉
= − 1

2µi

d

dt′

〈
x2
i (t
′)

(
L∗ + 2

∑
j

vj∂j

)
O(t)

〉

= − 1

2µi

d

dt′

[〈(
Lx2

i (t
′)
)
O(t)

〉
+ 2

∑
j

〈
x2
i (t
′)vj∂jO(t)

〉]

= − d

dt′

[
〈xi(t′)Fi(t′)O(t)〉+

1

µi

∑
j

〈
x2
i (t
′)vj∂jO(t)

〉]
(49)

Together with stationarity, we used that L∗ is the adjoint of L, and the equality

Lx2
i = 2µiFixi + const in the last passage. We then turn to the second and third

summand in (40), starting with the rewriting µiF
2
i = FiLxi:

〈O(t) (Fi(t
′)Lxi(t′)− xi(t′)LFi(t′))〉 = 〈O(t) (Fi(t

′)[L, xi](t′)− xi(t′)[L, Fi](t′))〉

= −
〈
O(t)

(
Fi(t

′)ẋi(t
′)− xi(t′)Ḟi(t′)

)〉
. (50)

Here we introduced the commutator acting as, e.g., [xi,L] ≡ xiL − Lxi, and exploit

the fact that in the operator formalism time derivatives within average values are

given by Ȯ = [O,L], for any state observable O (see Appendix D). Putting together

equations (48), (49) and (50) we obtain an expression of the thermal response valid

under stationary isothermal conditions,

RO,θ(t, t
′) = − 1

T 2

∑
i

[
〈O(t)ẋi(t

′)Fi(t
′)〉+

1

4µi

d

dt′

〈∑
j

vj(t)∂jO(t)x2
i (t
′)

〉]
. (51)
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Finally, at equilibrium the Kubo formula (46) is retrieved by setting vj = 0 ∀j and using

the rewriting (48) for potential forces. Equation (51) is a thermal response counterpart

of previous results for the steady-state force response based on the notion of state

velocity [27, 26].

6. Examples

6.1. Specific heat for a quenched toy system

In this first example we want to highlight that this framework is valid not only for steady

states but also for transient regimes. There is to recall an understood dependence of

the statistical averages 〈. . .〉 on the initial density of states ρ0.

Let us consider a paradigmatic model of nonequilibrium overdamped systems,

namely a single particle in a periodic potential U(x) = cos x and subject to an additional

constant force f , for simplicity with mobility µ = 1. Thus F (x) = sin x + f , in the

evolution equation (1) of the unperturbed system. The backward operator acts on the

force as LF (x) = sinx cosx− T sinx.

To generate a transient condition we choose to thermalise the particle at T0 6= T

and to switch to T only at t = 0, when the perturbation is also applied. In this way,

even for f = 0 one cannot apply the Kubo formula for equilibrium systems, as the

initial state in not in equilibrium at temperature T . Due to the periodic potential, as

an arbitrary procedure for obtaining a well defined ρ0(x), we shift to the interval [0, 2π]

any x obtained from a long simulation run. However, averages such as 〈x2(t′)O(t)〉 need

to be computed with x interpreted as a non-periodic coordinate. We adopted a Heun

scheme [41] to integrate the stochastic equation, because it yields trajectories that are

consistent with the Stratonovich path-weights used in our theory.

In figure 1 we show examples of susceptibilities of the internal energy (O = U) to

a change of T for T0 = 5 and T = 0.3, both for f = 0 and f = 0.7. We compare the

susceptibility χU,θ(t) from (43) with that computed directly as

χhU,θ(t) =
〈U(t)〉θ=h − 〈U(t)〉θ=0

h
(52)

with h = T/100 active from t = 0 on. We note that, for f = 0, the force F is

potential and thus the heat exchanged with the bath reduces to an energy difference,

Q = −
∫ t

0
dt′∂xU(t′)ẋ(t′) = U(0)−U(t). Therefore, the susceptibility of the energy gives

in the long-time limit the specific heat C of the system:

C ≡ − lim
t→∞

∫ t

0

dt′
δ〈Q(t)〉θ
δθ(t′)

∣∣∣∣∣
θ=0

= lim
t→∞

χU,θ(t) (53)

If a Kubo formula (46) were valid, twice the entropic term (44a) would yield the response.

One can note that this is not the case, rather all terms in the response formula are

relevant for determining the correct form of the susceptibility. In these examples, in
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Figure 1. Temperature susceptibility of the energy U(x) = cosx of a single particle,

computed with the formula (χ) and by actually perturbing the system (χh). Also the

single terms of the formula are shown. The system is out of equilibrium because of a

quench at time t = 0 from an initial T0 = 5 to T = 0.3. Consistently, the response

is not given by twice the correlation S1 between entropy produced and observable.

In (a) there is no additional constant force (f = 0), while f = 0.7 in (b) generates

a nonequilibrium steady state previous to the quench. Averages are over 4 × 107

trajectories, integrated with finite time step dt = 2.5× 10−3.

particular, the term (44d) is especially important. Being the derivative of a correlation

function, it is however the noisiest one. One could resort to some high-frequency filtering

for better results. In the example of the following subsection we will show that (44e) is

a good alternative to (44d) in case one is dealing with steady states.

6.2. Thermal expansion in a temperature gradient

In equilibrium at a given temperature T , the correlation function between the heat

absorbed by a system and its length may be used to predict the thermal expansion

response. In this example we show how this picture breaks down out of equilibrium,

where, as exposed in the previous sections, one needs to know also correlations between

length and time-symmetric observables, given by (44c) and (44d) or (44e), as well as the

new entropic form (44b) due to temperature unbalances. This example specialises to

steady state conditions but, with respect to the previous examples, it includes the more

general setup of multiple heat baths, in which one can exploit the general formulation

with perturbation amplitudes εi.

Let us consider the N degrees of freedom arranged in a one-dimensional chain. The

system has an energy

U(x) =
x2

1

2
+

N−1∑
i=1

u(xi+1 − xi), with u(r) =
(r − 1)4

4
+ r − 1

4
(54)

which determines the forces, Fi(x) = −∂iU(x), and again mobilities µi are set equal

to 1 for simplicity. The x2
1/2 term is a pinning potential on the first site, and xi’s
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Figure 2. Temperature steady-state susceptibility of the length X of the overdamped

chain (N = 11), computed with the formula (χs) and by actually perturbing the system

(χh). Also here the single terms of the formula are displayed. In these examples, Ti
varies linearly from T1 = 1 to TN = 2. In (a) the response is to a global temperature

rise, while in (b) it is to an increase of the gradient TN − T1 preserving the average

bath temperature (the inset shows the interaction potential). Averages are over 107

trajectories, integrated with finite time step dt = 10−3.

represent the displacements from the average positions. The length of the system in

excess with respect to the length at zero temperature, X ≡ xN − x1, increases on

average for increasing Ti’s due to the asymmetric two-body potential u(r) (see the inset

of figure 2(b)). As a paradigm of nonequilibrium conditions, the system is driven by a

set of temperatures varying linearly from T1 to TN > T1.

We study the response of the length X to temperature variations, in the form of

(a) a global constant increase of the temperatures given by a constant εi = 1, and (b) an

increment of the gradient TN − T1, chosen so that the average temperature is unaltered

by varying εi linearly from ε1 = −1 to εN = 1. For both cases, in figure 2 we see that

the susceptibility χsX,θ computed with the steady state term (44e) agrees fairly well with

the direct estimate of the response,

χhX,θ(t) =
〈X(t)〉θ=h − 〈X(t)〉θ=0

h
, (55)

obtained with a constant h = 0.005 turned on at t = 0. From figure 2 one also sees

that the entropic and frenetic terms have opposite trends, between each other and with

switched roles in the two cases, complementing each other to sum up to the correct

response level. In figure 2(b) we also show the response χX,θ obtained by an evaluation

of the time-derivative in (44d) (the local variation in time of the correlation function is

obtained through a linear fit of data relative to four nearby time steps). It results more

noisy than the estimate via χsX,θ.
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6.3. Free diffusion of one degree of freedom

Let us consider the equations of motion (1) for free diffusion of a single degree of freedom,

ẋ(t) = ξ̂(t) with ξ̂ =
√

2µTξ. The noise prefactor
√

2µT comes from assuming the bath

to be in equilibrium. In this way the mean square displacement of a free particle in a

time t is simply 〈x2(t)〉 = 2µTt ≡ 2Dt, the response of the mean velocity to a small

force is the free-particle mobility µ, and the Einstein relation µ = D/T between diffusion

constant D and mobility is found. One can note that the susceptibility of the observable

O(t) = x2(t) to a change of T is expected to be 2µt, hence the corresponding response

function is 2µ. We show how our formalism reduces to this result.

For free diffusion all terms in (30) drop but the one involving the second derivative.

In this case, the response function can be calculated directly from its definition (6) and

one can thus prove analytically that both sides of (30) are equal to the same quantity.

As we argued above, the response of the mean square displacement to the perturbation

T → Θ(t) = T + θ(t) is

δ〈x2(t)〉h
δθ(t′)

=
δ

δθ(t′)

〈
x2

0 + 2x0

∫ t

0

dsξ̂(s) +

∫ t

0

ds

∫ t

0

duξ̂(s)ξ̂(u)
〉
θ

= 2µ
δ

δθ(t′)

∫ t

0

ds

∫ t

0

duδ(s− u)Θ(s)

= 2µ. (56)

where we used that the initial condition is independent of the perturbation and noise,

thus only the noise autocorrelation contributes. On the other hand, the response

formula (30) becomes

Rx2T (t, t′) =
1

8µT 2

d2

dt′2
〈
x2(t′)x2(t)

〉
(57)

=
1

8µT 2

d2

dt′2

(〈
x2(t′)

〉〈
x2(t)

〉
+ 2〈x(t′)x(t)〉2

)
,

making use of Wick’s theorem to split the 4-point correlation into products of 2-point

correlations. The latter read

〈x(t′)x(t)〉 =
〈
x2

0

〉
+

∫ t′

0

ds

∫ t

0

du〈ξ(s)ξ(u)〉 =
〈
x2

0

〉
+ 2µT min(t′, t), (58)

leading to a result in agreement with the previous calculation:

Rx2T (t, t′) =
1

8µT 2

d2

dt′2

[ (〈
x2

0

〉
+ 2µTt′

) (〈
x2

0

〉
+ 2µTt

)
+ 2

(〈
x2

0

〉
+ 2µTt′

)2
]

=
1

8µT 2

d2

dt′2

[
3
〈
x2

0

〉2
+ 2µT

〈
x2

0

〉
(t′ + t) + (2µT )2tt′ + 8µTt′

〈
x2

0

〉
+ 2(2µT )2t′

2
]

= 2µ. (59)

As expected, interchanging d
dt′2

with d
dt2

would give an incorrect result as the system is

not in a steady state. It is also trivial to verify (16), namely that this result coincides
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with the second order response to a state-independent force, giving rise to the dynamics

ẋ(t) = µf(t) + ξ̂(t). Indeed, using again the conditions of independency of the initial

condition, one finds

1

µ

δ2〈x2(t)〉f
δf 2(t′)

=
1

µ

δ2

δf 2(t′)

〈(∫ t

0

ds
(
µf(s)− ξ̂(s)

))2
〉

= µ
δ2

δf 2(t′)

∫ t

0

ds

∫ t

0

duf(s)f(u)

= 2µ. (60)

7. Conclusions

For overdamped stochastic systems far from equilibrium we have obtained the linear

response function of generic state observables to a change in the temperature of the

Langevin heat baths. Improving a previous result [38], we need not express the

response in terms of a finite time mesh, being all the divergencies appearing in the

continuous limit removed, and being all terms in the susceptibility standard integrals or

derivatives. This was achieved by deriving a sort of Dyson-Schwinger equation [42], i.e.,

a relation between unperturbed correlation functions involving an arbitrary observable.

This method complements and expands our recent results [40] obtained via a different

approach, in which the additional noise stemming from the perturbation was turned

into mechanical forces by means of a space rescaling.

As in many previous examples, in order to describe a nonequilibrium systems, one

needs to know more than just the entropy production. The additional information

concerns the knowledge of dynamical quantities that are even under the reversal of the

arrow of time (squares of forces, etc.). Among them we have recognized the change of

the time-integral of the effective potential (i.e., the total escape rate integrated along

trajectories) upon variation of the perturbed degree of freedom, δK
δxi

. This quantity

emerges from the regularization procedure we set up, along with the change of the

total bath entropy flow δS
δxi

, which complements, perhaps surprisingly, the usual entropy

production entering Kubo formula.

For the common scenario of isothermal systems in a steady state, we have also

shown how to convert the results in a formula that separates the Kubo term from a

nonequilibrium additional correlation that includes the state velocity, see (51). Such

version is complementary to the others in the sense that it requires the knowledge of

the density of states rather than that of dynamical details.

Future developments of this framework should include multiplicative noise, i.e.

those cases where the temperature experienced by the particle depends on their

positions.
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Appendix A. Stochastic convention for path weights

In this context of temperature response, even if equations have a noise prefactor

that does not depend on the system’s state x, it turns out that the choice of

using Stratonovich path-weights rather than Ito ones is not trivial. As discussed

previously [39], by differentiating with respect to temperature one proves a response

formula that depends on the choice of the path-weight. One can check that the formulas

in this paper are indeed different from those found adopting the Ito convention [38].

The adoption of the Stratonovich convention in the path weight (8) is reflected in the

Stratonovich product ẋF in (20). If we used an Ito convention in (8), then ẋF in (20)

would also be of the Ito type and the same equation would not match the result obtained

in the Stratonovich convention.

Ultimately, the path-weight, and thus the corresponding discretization of (1), have

to be chosen consistently with the process that generates the sampled trajectory via (1).

By sampled trajectory we mean for example a sequence {x(0),x(∆t),x(2∆t), . . . ,x(t−
∆t),x(t)} of configurations sampled stroboscopically every time step ∆t. The Ito

convention is by construction suitable for numerical data generated by integration of (1)

with Euler scheme with step ∆t [38]. On the other hand, the Wong-Zakai theorem [55]

ensures the Stratonovich convention to be adequate to experimental data, for which the

white noise is an idealized limit of the short correlation times of the microscopic degrees

of freedom.

Appendix B. Derivation of the second order response function

The derivation of (16) starts with a Hubbard-Stratonovich transformation of the path

weight, which is a functional generalization of the integral identity
∫
dye−Dy

2−izy =

e−
z2

4D

√
π
D

(below the
√
π/D is adsorbed in the path measure Dy) valid for real y and

D > 0. When applied to (7) and (8) it renders the response (6) in the form (16) through
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the following manipulations:

δ〈O(t)〉θ
δθ(t′)

∣∣∣∣∣
θ=0

=
δ

δθ(t′)

∫
Dxdx0Dyρ0(x0)O(t)×

N∏
j=1

exp

{
−
∫ t

0

ds

[
µjΘjy

2
j − iyj(ẋj − µjFj) +

1

2
µj∂jFj

]}∣∣∣∣∣
θ=0

=

∫
Dxdx0Dyρ0(x0)O(t)

[
−
∑
i

εiµiy
2
i (t
′)

]
×

N∏
j=1

exp

{
−
∫ t

0

ds

[
µjTjy

2
j − iyj(ẋj − µjFj) +

1

2
µj∂jFj

]}
(B.1)

=
∑
i

εi
µi

δ2

δf 2
i (t′)

∫
Dxdx0Dyρ0(x0)O(t)× (B.2)

N∏
j=1

exp

{
−
∫ t

0

ds

[
µjTjy

2
j − iyj(ẋj − µjFj − µjfj) +

1

2
µj∂jFj

]}∣∣∣∣∣
f=0

=
∑
i

εi
µi
R

(2)
O,fi(t, t

′, t′),

where we rewrote (B.1) introducing the derivatives of a state-independent force fi, and

recognised in (B.2) the Martin-Siggia-Rose path-weight [56] associated to the perturbed

dynamics (18).

Appendix C. Variation of the action functional

Here we detail the calculation of the functional variation of the path-weight action A[x]

that was used in Section 5. For the sake of clarity we distinguish the single-particle from

the many-particle case.

Appendix C.1. One degree of freedom

For N = 1, the action is given by (26) and its variation is

δA
δx(t′)

=
1

2

δS
δx(t′)

− δK
δx(t′)

+
ẍ(t′)

2µT
. (C.1)

The variation of the bath entropy is identically zero, unless F is an explicit function of

time F (t′) = F (x(t′), t′):

δS
δx(t′)

=
1

T

(
∂xF (t′)ẋ(t′) +

∫ t

0

dsδ̇(s− t′)F (s)

)
=

1

T
(∂xF (t′)ẋ(t′)− ∂t′F (t′)− ∂xF (t′)ẋ(t′)) = − 1

T
∂t′F (t′) .
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Since the dynamical activity is independent of ẋ, its variation is simply the derivative

of the escape rate from x(t′):

δK
δx(t′)

= ∂xλ(t′) =
1

2T

(
µF (t′)∂xF (t′)− µT∂2

xF (t′)
)
. (C.2)

Therefore, introducing in (C.2) the backward generator L, (C.1) becomes

δA
δx(t′)

=
1

2µT

[
ẍ(t′)− µLF (t′)− µ∂t′F (t′)

]
. (C.3)

As a side note, plugging this result into (25) with B = 1 one obtains (if F deepens on

x only)

〈ẍ〉 = µ〈LF 〉, (C.4)

i.e., the mean trajectory satisfies Newton’s equation with an effective force µLF . In

the weak-noise limit T � 1, such trajectory becomes the most probable one, being the

minimiser of the action. This expression could be obtained directly by applying the

backward generator L to the Langevin equation (1), and using that ξ does not depend

on x.

Appendix C.2. Many degrees of freedom

For N > 1, thanks to the independency of the different thermal noises, the action (32) is

simply the sum of “single-coordinate” actions: A[x] =
∑N

j=1A(j)[x] with A(j) following

the structure (26). Nevertheless, its variation is not just equal to (C.3) but in general

it will contain additional terms owing to the interactions between different degrees of

freedom. One indeed finds modified expressions for the variation of the total entropy

flux into the (unperturbed) reservoirs,

δS[x]

δxi(t′)
=

N∑
j=1

ẋj(t
′)

(
∂iFj(t

′)

Tj
− ∂jFi(t

′)

Ti

)
− 1

Ti
∂t′Fi(t

′) , (C.5)

and for the variation of the total dynamical activity

δK
δx(t′)

=
N∑
j=1

∂iλj(t
′) =

N∑
j=1

1

2Tj
(µjFj(t

′)∂iFj(t
′) + µjTj∂i∂jFj(t

′)) , (C.6)

which in general cannot be cast in terms of the total backward generator L. The

variation of the action is thus given by

δA
δxi(t′)

=
1

2

δS
δxi(t′)

− δK
δxi(t′)

+
ẍi(t

′)

2µiTi

=
1

2µiTi

[
ẍi(t

′)− µiTi
N∑
j=1

∂iλj(t
′)− µi∂t′Fi(t′)

+ µiTi

N∑
j=1

ẋj(t
′)

(
∂iFj(t

′)

Tj
− ∂jFi(t

′)

Ti

)]
. (C.7)
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Equation (C.7) is completely general, and thus, when combined with (33), provides

a regularised expression for the thermal response of overdamped systems under any

nonequilibrium conditions:

RO,θ(t, t
′) =

∑
i

εi
4T 2

i

[
1

µi

d2

dt′2
〈
O(t)x2

i (t
′)
〉
− 〈O(t)xi(t

′)∂t′Fi(t
′)〉

+

〈
O(t)

(
µiF

2
i (t′)− 2ẋi(t

′)Fi(t
′)− xi(t′)Ti

N∑
j=1

∂iλj(t
′)

)〉

+ Ti

N∑
j=1

〈
O(t)xi(t

′)ẋj(t
′)

(
∂iFj(t

′)

Tj
− ∂jFi(t

′)

Ti

)〉]
. (C.8)

Nevertheless, the cross-terms ∂iFj with i 6= j appearing in (C.7) simplify

considerably if we assume that the degrees of freedom interact with each others via

a two-body potential U({xi − xj}). Hence we can exploit the relation

∂iFj = −∂i∂jU = −∂j∂iU = ∂jFi, (C.9)

which is nothing but the action-reaction principle. Equation (C.7) then becomes

δA
δxi(t′)

=
1

2µiTi

[
ẍi(t

′)− µiL(Ti)Fi(t
′)− µi∂t′Fi(t′)

]
+

N∑
j=1

ẋj(t
′)∂jFi(t

′)

(
1

2Tj
− 1

2Ti

)
.

(C.10)

We remark that for systems in d = 1 (C.9) does not impose any limitation on the

driving, that is, one-body non-conservative forces can be present as well, they simply

do not enter in (C.7), which concerns only the interactions between different particles.

Instead, in d > 1, different indexes i and j in (C.7) may refer to the coordinates of

the same particle, thus (C.7) cannot be simplified to (C.10) in the presence of generic

non-conservative forces.

It is worth noting that when the equality ∂jFi = ∂iFj holds, the choice B = 1 in

the identity (25) yields the effective Newton’s equation for the mean trajectory

〈ẍi〉 = µi
〈
L(T )Fi

〉
− µiTi

〈
δS
δxi

〉
. (C.11)

On the other hand, direct application of the operator L to the Langevin equation (1)

gives 〈ẍi〉 = µi〈LFi〉. By comparison, one concludes that there exists a natural splitting

of the effective force, namely

〈LFi〉 = µi
〈
L(T )Fi

〉
− µiTi

〈
δS
δxi

〉
, (C.12)

where the first component originates from variations of the force Fi in thermal time,

while the second is a gradient-like force in which the entropy flux into the bath acts a

free-energy.



Nonequilibrium temperature response for stochastic overdamped systems 23

Appendix D. Time derivative in operator formalism

Consider the state observables Oα, that are arbitrary functions of x. In the operator

formalism, their (steady-state) evolution over a time-span t − t′ is given by the action

of the operator eL(t−t′). Therefore, the typical correlation functions we are interested in

are expressed by (with t > t′)

〈O3(t)O2(t′)O1(t′)〉 =

∫
dx0ρ0(x0)eLt

′O1O2e
L(t−t′)O3, (D.1)

where the dependence of Oα on x0 is omitted for brevity [49]. In analogy to the

Heisenberg picture in quantum mechanics, one may include the dependency on time

in the observables by the definition Oα(t′) ≡ eLt
′Oαe−Lt

′
. Hence, a time derivative

applied to one of the operators in (D.1) gives, e.g.,〈
O3(t)Ȯ2(t′)O1(t′)

〉
=
〈
O3(t)(LeLt′O2e

−Lt′ − eLt′O2e
−Lt′L)O1(t′)

〉
= 〈O3(t)(LO2(t′)−O2(t′)L)O1(t′)〉
= 〈O3(t)[L,O2(t′)]O1(t′)〉. (D.2)
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