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Abstract – The linear response to temperature changes is derived for systems with overdamped
stochastic dynamics. Holding both in transient and steady state conditions, the results allow to
compute nonequilibrium thermal susceptibilities from unperturbed correlation functions. These
correlations contain a novel form of entropy flow due to temperature unbalances, next to the
standard entropy flow of stochastic energetics and to complementary time-symmetric dynamical
aspects. Our derivation hinges on a time rescaling, which is a key procedure for comparing
apparently incommensurable path weights. An interesting notion of thermal time emerges from
this approach.

In thermodynamic equilibrium, the linear response co-
efficients for perturbing forces (e.g conductivity as a re-
sponse to an electric potential) and perturbed tempera-
tures (e.g. thermal expansion coefficients or specific heats)
may be computed with the fluctuation-dissipation theo-
rem. So-called Kubo formulas relate the response to the
unperturbed correlation between the observable and the
entropy produced by the perturbation [1]. Out of equilib-
rium such a clear picture is lacking yet.

For nonequilibrium systems the standard linear re-
sponse to deterministic forcing has been developed via
many approaches (see e.g. [2–14]). In comparison, there
is a small number of results obtained for the response to
temperature changes [15–20]. For example there is no for-
mula to express, as a function of steady state unperturbed
correlations, the thermal expansion coefficient for a solid
kept in a temperature gradient (e.g. as in experimental
setups [21,22] or in models of coupled oscillators [23,24]).
The construction of a general steady state thermodynam-
ics [25–32] needs at its heart the understanding of temper-
ature responses, for example in defining nonequilibrium
specific heats [16]. A nonequilibrium thermal response
should as well be the subject of study in related fields,
such as climatology [33–35].

This paper introduces a theory for the linear response
to a change of the reservoirs’ temperature, valid also in
transient conditions. We consider nonequilibrium over-
damped systems. Mesoscopic systems of this kind, in-

cluding driven colloids [36, 37] and active matter [38], are
used as paradigms in the attempt to generalize equilibrium
concepts, such as free energies, within the framework of a
steady state thermodynamics [25–32]. Moreover, they of-
fer the possibility to observe experimentally the statistical
fluctuations of energy fluxes [39,40].

Our approach is inspired by a scheme based on path
weighs and developed for the response to forces [13, 14].
For that theory the response turns out to be the sum of
two terms, as in previous studies [3,11,12]). The first one
is half of the unperturbed correlation 〈OS〉 between ob-
servable O and entropy S produced by the perturbation,
i.e. half of a Kubo formula. The second is the correla-
tion −〈OK/2〉, where the term −K/2, of which we still
have a less intuitive grasp, is the time-symmetric part of
the action weighting the system’s trajectories. In order
to avoid singularities emerging in a related temperature
response [17] based on a time-discretization, we introduce
a time rescaling that significantly changes the derivation.
As a result, the susceptibility is written as sum of unper-
turbed correlations containing well-defined (stochastic) in-
tegrals. Moreover, an intriguing and unexpected picture
emerges: in S, the heat fluxes as described in the context
of stochastic energetics [25,42,43] appear accompanied by
a second form of entropy production (not present in [17]),
which is relevant when the system is coupled to reservoirs
at different temperatures.

The overdamped diffusive system we consider is de-
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scribed by i = 1, . . . , N degrees of freedom x = {xi},
evolving in the unperturbed state as

ẋi(t) = Fi(x(t)) +
√
Ti(t) ξi(t), (1)

where every Gaussian white noise ξi is uncorrelated with
the others, 〈ξi(t)ξj(t′)〉 = 2δijδ(t− t′). For t > 0, the con-
stant bath temperatures Ti’s are modulated by the time-
dependent parameter h(t)� 1, so that (1) becomes

ẋi(t) = Fi(x(t)) +
√

Θi(t) ξi(t), (2)

where Θi(t) = Ti[1 + εih(t)] stands for the perturbed tem-
perature of reservoir i. For simplicity, in particular, we
choose a subset T so that Ti = T if i ∈ T , which is then
considered as a single heat bath to be perturbed. An indi-
cator function, εi = 1 only if i ∈ T and εi = 0 otherwise, is
useful to keep track of the perturbed degrees of freedom 1.
We seek the linear response of a generic state observable
O(x) to the described change in T , namely,

ROT (t, t′) ≡ 1

T

δ〈O(t)〉h

δh(t′)

∣∣∣∣
h=0

. (3)

Note that temperatures do not depend on the coordinates,
hence there is no ambiguity in the interpretation of the
stochastic equation. Throughout this paper we will always
consider the Stratonovich convention (hence, the midpoint
rule is used for discretizing (1) and (2)), implying stan-
dard rules of functional calculus [41]. The system may be
brought far from equilibrium (a) by generic nonconserva-
tive forces Fi, (b) by different Ti’s, and (c) by a relaxation
from an initial transient condition. Indeed, given that the
perturbation is turned on at times t > 0, the initial den-
sity of states ρ0(x) at t = 0 may coincide or not with a
steady state density. For economy of notation we do not
recall this explicitly in the statistical averages, denoted by
〈. . .〉h and 〈. . .〉 for the perturbed (h 6= 0) and unperturbed
(h = 0) case, respectively.

The backward generator associated to the Markovian
dynamics (1) is

L =

N∑
j=1

Lj with Lj = Fj(x)∂xj
+ Tj∂

2
xj
, (4)

written in a notation that will be useful later. Next to this
standard operator we define a new modified generator that
is useful to describe the temperature response, when the
temperature T of a reservoir is altered:

L(T ) ≡
N∑
j=1

T

Tj
Lj =

N∑
j=1

(
T

Tj
Fj(x)∂xj

+ T∂2
xj

)
, (5)

which acts on the observables as if all temperatures were
equal to T and all forces Fj were rescaled by T/Tj . While

1Note that more general conditions on ε and T may be imposed
with the same formalism.

L gives the derivative of a state observable O with respect
to the kinematic time t, i.e. 〈LO〉 = ∂t〈O〉, L(T ) gives the
variation of each degree of freedom with respect to its own
thermal time τj ≡ tTj/T , namely,〈

L(T )O
〉

=

〈∑
j

dxj
dτj

∂xj
O

〉
≡ d

dt

(T )

〈O〉, (6)

such that a generalized time derivative results defined.
Before spelling out the derivation of our results, some

physical insights on the meaning of a temperature change
can be gained by performing the time transformation
Tdτ = Θ(t)dt in (2) (here, with a slight abuse of notation,
we are using the same symbol τ both for the perturbed and
unperturbed thermal time). Taking N = 1 for simplicity,
upon perturbation (1) becomes to first order in h

ẋ(τ) ' [1− h(τ)]F (x(τ)) +
√
T ξ(τ), (7)

which clearly shows that, in such time coordinate, a tem-
perature perturbation is equivalent to a force perturba-
tion. The response to a small decrease in F is given by a
theory of nonequilibrium linear response [14] as

ROF (τ, τ ′) = − 1

2T

〈
O(τ)[ẋ(τ ′)F (τ ′)− K̇(τ ′)]

〉
, (8)

where K̇(x(τ ′)) = F 2(x(τ ′))+T∂xF (x(τ ′)). If the system
were in equilibrium, so as that F = −∂xH with H the
system’s Hamiltonian, one would expect the correlation
functions to be invariant under a time reparametrization.
Therefore, from (8) the response to a temperature change
in equilibrium is obtained as

ROT (t− t′) =
1

2T 2

〈
O(t)[Ḣ(t′)− LH(t′)]

〉
,

which is recognized as a Kubo formula, since in equilib-
rium 〈O(t)LH(t′)〉 = −〈O(t)Ḣ(t′)〉 [13]. Out of equilib-
rium instead R(τ, τ ′) depends implicitly on h through the
time variables and no further simplification of (8) appears
possible.

Nevertheless, the diffusive character of the system sug-
gests to replace the above time change with the space coor-
dinate change yi(t)/

√
Ti = xi(t)/

√
Θi(t) [44], so that (2)

reads

ẏi(t) =

√
Ti
Θi
Fi (x(y))− 1

2
yi(t)

Θ̇i

Θi
+
√
Ti ξi. (9)

Perturbed averages are now calculated with the path
weights for the process y, i.e the statistical weight Ph[y]
of the trajectory {y(s) : 0 6 s 6 t}. In particular, for all
times 0 < t′ < t and any state observable O, the linear
response is evaluated as 2

ROT (t, t′) =

∫
DyO(y(t))

δPh[y]

δh(t′)

∣∣∣∣
h=0

. (10)

2If O is a functional of the trajectory, i.e. it is extensive in
time like, e.g., heat flows, the response contains the additional term〈

δO
δh(t′)

∣∣
h=0

〉
.
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Here, only terms of order O(h) are needed, hence we can
directly linearize the Langevin equation (9) obtaining

ẏi ' Fi (y) +
h

2
fi (y)− εi

2
ḣyi +

√
Ti ξi, (11)

where we recognize a standard perturbing force,

fi =

N∑
j=1

εjyj∂yjFi − εiFi, (12)

and a second one, −ḣεiyi/2, which is atypical in that it is
modulated by ḣ(t). Note that in expanding the force Fi
it is implicitly required that the values of yi are bounded.

The path weight Ph[y] is obtained with a standard pro-
cedure from the Gaussian path weight for ξ, regarding ξ
as a functional of y via (11) [45]:

Ph[y] ∝
N∏
i=1

exp

{
− 1

4Ti

∫ t

0

ds
[
ẏi − Fi −

1

2

(
hfi − εiḣyi

)]2
− 1

2

∫ t

0

ds
[
∂yiFi +

1

2

(
h∂yifi − εiḣ

)]}
(13)

(the dependence of all terms on the time s is under-
stood). Plugging (13) in (10) we encounter the mod-
ulation ḣ, which wraps in a time derivative the stan-
dard result valid for deterministic perturbations, namely
δ

δh(t′)

∫ t
0
dsḣ[yi(ẏi − Fi)] = −∂t′ [yi(ẏi − Fi)]. Next we as-

sume ∂yjFi = ∂yiFj , which covers the most common phys-
ical conditions of irrotational forces and two-body poten-
tial interactions, leaving the more general case for a future
work. By massaging the formulas and using yi|h=0 = xi
we finally derive

δPh[y]

δh(t′)

∣∣∣∣
h=0

=
∑
i

εi
4

{
− 2Fiẋi

Ti
+
F 2
i

Ti
− xi

∑
j

LjFi
Tj

+ xi
∑
j

(
1

Tj
− 1

Ti

)
ẋj∂xj

Fi +
1

2Ti

d2x2
i

dt′2

}
(t′)P [x]. (14)

Given our choice εi = 1 for i ∈ T , the response function
of O(t) to the variation of T is thus written as

ROT (t, t′) =
∑
i∈T

1

4T 2

{
− 2〈O(t)Fi(t

′)ẋi(t
′)〉 (15a)

+

〈
O(t)

∑
j /∈T

(
T

Tj
− 1

)
[xiẋj∂xj

Fi](t
′)

〉
(15b)

+
〈
O(t)F 2

i (t′)
〉
−
〈
O(t)xi(t

′)L(T )Fi(t
′)
〉

(15c)

+
1

2

d2

dt′2
〈
O(t)x2

i (t
′)
〉}
. (15d)

In (15a) Ji = −Fiẋi is the heat flux from the i-th bath
[42]. In addition, in (15b) there appears a novel kind of

heat flux,

J int
i (t′) = xi

∑
j

(
T

Tj
− 1

)
ẋj∂xj

Fi (16)

=

(
d

dt′

(T )

− d

dt′

)
(xiFi) = −

∑
j

(
dxj
dτ ′
− dxj
dt′

)
∂xj

Vi ,

which vanishes when kinematic and thermal times coin-
cide, i.e. when the system is isothermal previous to the
perturbation. The virial Vi ≡ −xiFi of the i-th degree
of freedom (whose average value equals Ti = T even in a
nonequilibrium steady state [46]) is seen to act as a poten-
tial energy for xj . The meaning of J int

i is thus understood
as the difference between the heat absorption rate in the
kinematic time and that in the thermal time, generated by
forces ∂xjVi on xj ’s. One could also prove [47] the relation

1

T
J int
i (t′) = −xi(t′)

δS
δxi(t′)

, (17)

which expresses the heat flux J int
i in terms of the varia-

tion of the integrated entropy flux into the reservoirs, i.e.
S ≡

∫ t
0
ds
∑N
j=1 Jj(s)/Tj , upon displacement of xi. Thus,

the total entropy flux from the selected heat bath to the
system,

∑
i∈T Ji/T , is side by side with the entropy flux∑

i∈T J
int
i /T due to the heat currents installed within the

system by the presence of different coupled temperature
reservoirs. These two terms are time-antisymmetric, that
is, they change sign by going through the trajectory back-
ward in time. The remaining terms, namely (15c) and
(15d) contain the correlation between the observable and
time symmetric quantities.

During the last decade there was an increase of interest
in time-symmetric fluctuating quantities (see e.g. [13, 48–
52]), as it is becoming clearer that they must complement
entropy fluxes for a deeper understanding of statistical
mechanics. For example, the dynamical activity of a jump
process (counting the number of jumps) is a key aspect
for characterizing glassy dynamics [48,49,51,52]. In linear
response it was found that the time-symmetric sector of
path weights is often related to the mean tendency of the
system to change the perturbing potential, e.g. for jump
processes it becomes a shift in escape rates [13, 14]. The
adjective “frenetic” was used to label this property [13,14,
53].

In (15c) we find frenetic contributions that do depend
explicitly on forces of the system while the last term
(15d) does not. The presence of such term is necessary
for having a possibly non-zero response also for free dif-
fusion. For example, for a free particle starting from
x(0) = 0 the theory yields a response of the mean square
displacement

〈
x2(t)

〉
to an increase of T which is correctly

Rx2T (t, t′) = 1
8T 2

d2

dt′2

〈
x2(t)x2(t′)

〉
= 2 (or more in general

twice the mobility, if we had put such constant in front of
the forces 3; the calculation considers the Gaussian statis-
tics and uses Wick’s theorem).

3Our results can be easily generalized if a mobility µi (the inverse
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Upon integration of (15) we get the susceptibility

χOT (t) ≡
∫ t

0

dt′ROT (t, t′) =
1

2T
[〈O(t)S〉 − 〈O(t)K〉]

(18)

where S, the entropy change of reservoir T , contains
the Stratonovich integrals of (15a) and (15b), while the
“frenesy” K contains the remaining integrals of (15c)
and (15d). In −K in particular there appears a pair

of boundary terms 1
4T

d
dt′

〈∑
i∈T x

2
i (t
′)O(t)

〉∣∣t′=t
t′=0

in which
left derivatives are performed to keep t′ ≤ t.

As an example, we show the susceptibility of the energy
(O = H) to a change of T in a model of elastic slab be-
tween two thermostats. Due to the conservative nature of
the internal forces, the total heat absorbed from the envi-
ronment by the system, Q(t) =

∑N
i=1

∫ t
0
dt′ Ji(t

′), equals
the change in internal energy. Hence

δ

δh(t′)
〈Q(t)〉h

∣∣∣∣
h=0

=
δ

δh(t′)
〈H(t)〉h

∣∣∣∣
h=0

(19)

and the susceptibility χHT (t) associated to such response
function is a form of nonequilibrium heat capacity.

The system is simulated using a Heun scheme [42] so
that the points of the trajectory can be used in discretized
Stratonovich integrals. A scalar xi is defined for i labeling
a site in a portion L × L × 2 of a cubic lattice. Each xi
in the lower L×L layer is thermalized at T while the xi’s
in the upper sites are maintained at T2 6= T , so that the
system is out of equilibrium due to a constant heat flux.
The total energy is H =

∑
i u(xi) +

∑
i÷j u(xi − xj) with

u(x) = x2

2 + x4

4 (i÷ j indicates the nearest neighbor pairs,
with periodic boundary conditions within each layer). We
compute χHT (t) both by direct application of a constant
perturbation ∆T = T · 10−2 turned on at time t = 0,

χHT (t) =
〈H(t)〉(T+∆T,T2) − 〈H(t)〉(T,T2)

∆T
, (20)

and by (18). We find that the two estimates of the suscep-
tibility are in good agreement. For instance, starting from
the system in the steady state at t = 0, Fig. 1(a) shows
the results for a slab with L = 5, when T = 2, T2 = 3.
Since here a positive ∆T brings T closer to T2, in response
the mean heat current 〈J〉 from the reservoir T is lowered,
as captured by the asymptotic anticorrelation between J
and energy [integral of (15a) in Fig. 1(a)]. Hence, unlike
in equilibrium, the entropy flux J/T is by itself not suffi-
cient even for determining the global trend of the response.
Fig. 1 shows that all terms in (15) are relevant. To remind
that the theory is applicable also to transient conditions,
in Fig. 1(b) we show results obtained by starting at t = 0
from a given configuration with xi = 1/2 in the lower layer

of a damping constant) is associated with each degree of freedom:
one just needs the replacements Fi → µiFi and Ti → µiTi in the
formulas, besides for the 1/T prefactor in the definition of the re-
sponse.

-6

-4

-2

0

2

4

6

8

χ
HT

(t), eq. (18)

χ
HT

(t) from ∆T

0 0.05 0.1 0.15 0.2 0.25
t

-60

-40

-20

0

20

40

integral of (15c)

integral of (15d)

0 0.05 0.1 0.15 0.2 0.25
t

-6

-4

-2

0

2

4

6

8

integral of (15a)

integral of (15b)

(a) (b)

Fig. 1: (Color online) Susceptibility of the internal energy to
a change of T in the elastic slab with fixed T2 6= T , computed
both by the direct perturbation (20) and through (18): (a)
steady state at t = 0, and (b) transient from a configuration
given at t = 0. Terms of (18) specified in (15) are also shown.

and xi = −1/2 in the upper one. In a similar way, one
might analyze data from a temperature quench as usually
done for models of spins or glasses [3, 11,12,49,51].

The response formula (15) simplifies when all the reser-
voirs are at the same temperature previous to the pertur-
bation, because J int = 0 and L(T ) = L:

ROT (t, t′) =
∑
i∈T

1

4T 2

{
2〈O(t)Ji(t

′)〉+
1

2

d2

dt′2
〈
O(t)x2

i (t
′)
〉

+
〈
O(t)F 2

i (t′)
〉
− 〈O(t)xi(t

′)LFi(t′)〉
}
. (21)

Moreover, if the system is in a nonequilibrium steady
state, L can be conveniently expressed in terms of the
generator of the dynamics reversed in time, L∗, as L =
L∗+2v ·∇x, with v = J/ρ the state velocity, i.e. the prob-
ability current over the probability density [6]. Taking for
simplicity only one degree of freedom x, it is possible 4 to
recast the temperature response in the form

ROT (t− t′) = − 1

T 2

[
〈O(t)ẋ(t′)F (t′)〉

+ 2〈∂xO(t)v(t)ẋ(t′)x(t′)〉
]
. (22)

In equilibrium v = 0 and F = −∂xH, hence only the
entropic term − 1

T 2 〈O(t)ẋ(t′)F (t′)〉 = 1
T 2

d
dt′ 〈O(t)H(t′)〉

survives, and (22) correctly reduces to a Kubo formula.
The nonequilibrium corrections include the correlations
between the observable and the state velocity.

In conclusion, for state observables, a fluctuation-
response relation to temperature changes has been derived
for overdamped systems out of equilibrium, both for tran-
sient conditions and for steady states generated by non-

4We exploit the relations 1
2
d2

dt′2
〈
x2(t′)O(t)

〉
= 〈J(t′)O(t)〉 −〈

[xḞ ](t′)O(t)
〉
− 2〈[ẋx](t′)[v∂xO](t)〉,

〈
O(t)[F 2 − xLF ](t′)

〉
=〈

O(t)[J + xḞ ](t′)
〉

.
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conservative forces or by temperature gradients. The un-
derstanding of the response to temperature changes com-
plements the previous approach based on path-weights,
where the response to forces was derived [13, 14]. We can
thus say that the picture of the linear response for nonequi-
librium overdamped systems is almost complete. To fully
close the circle, one needs the temperature response for
systems with space-dependent noise prefactors, occurring
for instance with hydrodynamic interactions or with in-
homogeneous temperature fields. Investigations of these
issues should consider a time rescaling, a key procedure in
our approach, which leads to the concept of thermal time.
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