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In many important systems exhibiting crackling noise — intermittent avalanche-like relaxation
response with power-law and, thus, self-similar distributed event sizes — the “laws” for the rate
of activity after large events are not consistent with the overall self-similar behavior expected on
theoretical grounds. This is in particular true for the case of seismicity and a satisfying solution to
this paradox has remained outstanding. Here, we propose a generalized description of the aftershock
rates which is both self-similar and consistent with all other known self-similar features. Comparing
our theoretical predictions with high resolution earthquake data from Southern California we find
excellent agreement, providing in particular clear evidence for a unified description of aftershocks
and foreshocks. This may offer an improved way of time-dependent seismic hazard assessment and
earthquake forecasting.

PACS numbers: 91.30.Dk,05.65.+b,91.30.Px,89.75.Da

I. INTRODUCTION

Many natural and man-made systems exhibit an in-
termittent avalanche-like response to changing external
conditions [1, 2]. Sequences of such sudden responses
or events often constitute the most crucial features of
the evolutionary dynamics of complex systems, both in
terms of their description, characterization and under-
standing. Prominent examples include earthquakes on
fault systems [3], frictional sliding [4], irreversible plas-
tic deformation in solids [5–7], fracture [8–13], materials
failure [14, 15], magnetization processes [16, 17], solar
flare emissions [18, 19], financial markets [20–23], inter-
net traffic [24], and media coverage [25]. The avalanche-
like response — often called crackling noise — is char-
acterized by discrete, impulsive events spanning a broad
range of energies E, with a power-law frequency distri-
bution P (E) ∝ E−ǫ [26–29]. The empirical Gutenberg-
Richter (GR) relation for earthquakes is one specific ex-
ample [30]: Energies released by earthquakes follow a
power-law distribution and are conveniently handled in
the logarithmic scale of the magnitude m with E ∝ 10

3

2
m

such that P (m) ∝ 10−bm, where b = 3
2 (ǫ − 1). There is

also a good degree of universality, as ǫ is close to 1.5 for
many systems exhibiting crackling noise [29]. The asso-
ciated absence of characteristic scales indicates scale free
or self-similar behavior.
Significant progress has been made in understanding

the self-similar distribution of event sizes and the as-
sociated universality of crackling noise by using mean-
field and renormalization approaches [17, 26–29, 31–34].
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These theoretical approaches elevate self-similar behav-
ior to a general principle as in the case of critical phe-
nomena in equilibrium systems. Thus, it is important to
establish whether other properties often associated with
crackling noise also exhibit self-similar behavior. This in-
cludes those spatio-temporal correlations between events
that reflect the intrinsic or endogenous dynamics of a
given system and are a consequence of event-event trig-
gering as for aftershocks [6, 35–39]. This is most clearly
reflected in the time-varying (local) event rates follow-
ing large events, which are empirically found to follow —
across a wide range of scales and systems from friction
and fracture to socio-economic systems [10, 12, 13, 19–
25, 37, 40–43] — the Omori-Utsu (OU) relation,

r(t) =
K

(t+ c)p
≡

1

τ(t/c+ 1)p
, (1)

first proposed for earthquakes [44]. Here, t measures
the time after the large event or trigger, p is typically
close to 1 (p & 1 if one only considers directly triggered
events [42]) and τ ≡ cp/K. K is found to increase with
the energy of the trigger, according to the productivity re-
lation K = K0E

2α/3. Its equivalent formulation in terms
of the magnitude of the trigger, M , isK = K010

αM . The
exponent α is less than b across many systems exhibiting
crackling noise [6, 10, 12, 13, 22, 37, 45]. The parame-
ter K0 naturally depends on the observational threshold
mth [31, 46], by lowering it one counts more triggered
events and it was reported K0 ∼ 10−βmth [42, 47–49].
In principle the exponents α, β, and the b-value for trig-
gered events or aftershocks [37, 50], bas, appearing in the
mentioned scalings may be different and indeed this is
often observed [37, 42, 45, 51–53].
A consequence of the difference between α and bas

across many systems exhibiting crackling noise is the
breakdown of self-similarity in the triggering process in
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those cases [54]. Specifically, the number of triggered
events of a given energy will explicitly depend on the
energy of the trigger and not just their energy ratio:
Since the magnitudes of the triggered events or after-
shocks are distributed according to P (mas) ∝ 10−basmas ,
the number of events with magnitude mas triggered by
an event of magnitude M scales as 10αM−basmas for con-
stant c in Eq. (1). This translates into a scaling with
10(α−bas)M+bas∆m with ∆m = M −mas that includes an
explicit dependence on M for α 6= bas, in disagreement
with the hypothesis of a self-similar triggering process
that only depends on ∆m [31, 46, 54–59]. An explicit
dependence on M would imply that the triggering pro-
cess inducing a number of events of, say, magnitude 6
due to an event of magnitude 8 is fundamentally different
from the triggering process inducing a number of events
of magnitude 3 due to an event of magnitude 5.
To reconcile different values of α and bas with self-

similar triggering, we build on the well-established be-
havior of equilibrium critical phenomena and propose a
natural generalization of the OU relation that is consis-
tent with a self-similar triggering process. Specifically, we
build on the fact that critical phenomena can be charac-
terized not only by critical exponents but also by uni-
versal scaling functions that describe the behavior near
equilibrium critical points [60]. A general way to cast
the event-event triggering rates into such a scaling form
under the condition that the rates should only depend on
the energy ratios between trigger and triggered event or,
equivalently, their magnitude difference ∆m = M −mas

is the following ansatz

r(mas, t|M, 0) =
1

τ∆m
f

(

t

c∆m

)

, (2)

where τ∆m and c∆m are two time scales varying only with
∆m. In fact, an approach based on a limited scaling form
with a constant τ∆m = τ was previously introduced by
Lippiello et al. [58, 59]. In this paper, by analyzing high-
resolution earthquake data from Southern California, we
show that only the full self-similar generalization of the
OU relation, in a form following Eq. (2) with both c∆m

and τ∆m scaling with ∆m and with a specific functional
form of f , is consistent with all empirical relations. In
this generalized form of the OU relation, self-similarity is
present even in the case of a non-constant c and α 6= bas.

II. GENERALIZED OU RELATION

Self-similarity in the OU relation (1) is violated if the
number of the directly triggered events of magnitude mas

does explicitly depend on the main shock magnitude M ,
and not only on the magnitude difference. To ensure self-
similarity and consistency with empirical observations,
we propose the following generalization of the OU rela-
tion for conditional event-event triggering rates:

r(mas, t|M, 0) =
1

τ∆m

(

t

c∆m
+ 1

)−p

, (3)

with time scales

c∆m = c010
g∆m and τ∆m = τ010

−z∆m (4)

scaling with ∆m (g ≥ 0 and z ≥ 0 are supposedly univer-
sal scaling exponents while c0 and τ0 are constant prefac-
tors). Specifically, r(mas, t|M, 0) is the rate of events or
aftershocks of magnitude mas at time t triggered directly
by an event of magnitude M at time 0. This generalized
OU relation corresponds to Eq. (2) with f(x) = (1+x)−p,
hence it is a natural generalization in the sense that f is
consistent with the standard OU form and all parame-
ters now depend explicitly and exclusively on ∆m. Note
also that Eq. (3) does not require M > mas but it is
applicable to all magnitude or energy combinations such
that it encompasses what is often considered main shock-
aftershock pairs as well as foreshock-main shock pairs.
Here, a foreshock is an event that triggers another event
with a larger magnitude.
With a simple mathematical derivation (see [55] for a

somewhat similar derivation in a context in which the
magnitude of the largest aftershock is assumed to play
a significant role), we may show that Eq. (3) ensures
self-similarity, as the total number of triggered events of
magnitude mas,

N(mas|M) ≡

∫ ∞

0

r(mas, t|M, 0) dt =
c∆m

τ∆m(p− 1)
, (5)

depends only on ∆m. Such self-similar generalization of
the OU relation is consistent with the GR relation since

N>(mth|M) ≡

∫ ∞

mth

N(mas|M) dmas (6)

=
c0

τ0(p− 1) ln 10(g + z)
10(g+z)(M−mth).

Thus, we have the scaling relation

bas = g + z, (7)

indicating that only two out of these three scaling ex-
ponents are independent. Hence, the generalized OU
relation does not introduce an additional independent
parameter compared to the standard OU relation with
its associated productivity relation. In particular, for
K∆m ≡ cp∆m/τ∆m we also have a generalized productiv-
ity relation

K∆m = K010
α∆m (8)

with K0 = cpo/τ0 and

α = z + pg = bas + g(p− 1). (9)

Note that this implies that K∆m and N(mas|M) do not

scale the same way with ∆m if g 6= 0, which explicitly
allows bas 6= α in our self-similar framework.
A related consequence of the generalized OU relation

given by Eqs. (3) and (4) is that the GR relation for
triggered events needs to be modified if only triggered



3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

time after triggering event (hours)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ra
te

 (
1

/h
o

u
rs

)
(a)

3<M<3.5, -1<M-m
as

<-0.5
3<M<3.5, -0.5<M-m

as
<0

3.5<M<4, -0.5<M-m
as

<0
3<M<3.5, 0<M-m

as
<0.5

3.5<M<4, 0<M-m
as

<0.5
4<M<4.5, 0<M-m

as
<0.5

3<M<3.5, 0.5<M-m
as

<1
3.5<M<4, 0.5<M-m

as
<1

4<M<4.5, 0.5<M-m
as

<1
4.5<M<5, 0.5<M-m

as
<1

3.5<M<4, 1<M-m
as

<1.5
4<M<4.5, 1<M-m

as
<1.5

4.5<M<5, 1<M-m
as

<1.5
4<M<4.5, 1.5<M-m

as
<2

4.5<M<5, 1.5<M-m
as

<2
5<M<5.5, 1.5<M-m

as
<2

4.5<M<5, 2<M-m
as

<2.5
5<M<5.5, 2<M-m

as
<2.5

5.5<M<6, 2<M-m
as

<2.5
5<M<5.5, 2.5<M-m

as
<3

5.5<M<6, 2.5<M-m
as

<3
6<M<6.5, 2.5<M-m

as
<3

7<M<7.5, 2.5<M-m
as

<3
5.5<M<6, 3<M-m

as
<3.5

6<M<6.5, 3<M-m
as

<3.5
6.5<M<7, 3<M-m

as
<3.5

7<M<7.5, 3<M-m
as

<3.5
6<M<6.5, 3.5<M-m

as
<4

6.5<M<7, 3.5<M-m
as

<4
7<M<7.5, 3.5<M-m

as
<4

6.5<M<7, 4<M-m
as

<4.5
7<M<7.5, 4<M-m

as
<4.5

7<M<7.5, 4.5<M-m
as

<5

10 100 1000 10000

t

10

100

1000

t1
.1

5
 r

 

(d)

10
-4

10
-2

10
0

10
2

10
4

10
-0.66 ∆m

  t

10
-6

10
-4

10
-2

10
0

1
0

-0
.2

4
 ∆

m
  
r

(b)

10
-2

10
0

10
2

10
4

time after triggering event (hours)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

1
0

-∆
m

ra
te

  
  

(1
/h

o
u

rs
)

(c)

FIG. 1. (a) Averaged conditional aftershock rates for different ranges of main shock and aftershock magnitudes. Note that all
curves with the same magnitude difference collapse. The solid lines correspond to OU fits over the full range of t, while the
dashed lines correspond to fits up to t = 104 hours only. See Fig. 2 for all the estimated OU parameters. (b) All curves collapse
onto a unique scaling function under appropriately chosen rescaling with the magnitude difference as predicted by the scaling
ansatz (3). Data with t > 104 hour are not considered here due to the natural detection problem discussed in the main text.
(c) Conditional rates rescaled by 10−α∆m with α = 1. (d) Some conditional rates rescaled by tp with p = 1.15.

events over short time intervals are considered. For ex-
ample, the number of triggered events or aftershocks of

magnitude mas up to time t∗,

N(mas, t
∗|M) ≡

∫ t∗

0

r(mas, t|M, 0) dt, (10)

only follows the GR relation (5) for t∗ → ∞. For finite
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t∗, N(mas, t
∗|M) has two power-law regimes: For small

mas, it decays with exponent z while it decays with ex-
ponent bas = g + z for large mas. The transition point
is around a magnitude m∗ for which cM−m∗ ≈ t∗. Thus,
the transition point moves to lower magnitudes for in-
creasing t∗, recovering the full GR relation for t∗ → ∞.
Note that only for g = 0 — corresponding to a constant
c∆m — the GR relation holds for all t∗.

In contrast to the conditional rates in Eqs. (2) and (3),
the classic OU relation (1) considers the integrated rates
r>(mth, t|M, 0) ≡

∫∞

mth

r(mas, t|M, 0) dmas. For the pro-

posed self-similar OU conditional rates in Eq. (3), one
easily verifies that such integrated rates inherit the scale
invariance with respect to M − mth. Moreover, these
integrated rates have a functional form very similar to
the classic OU relation for realistic situations. See the
Appendix for more details.
To summarize, the proposed self-similar form of the

conditional event-event triggering rates can indeed be
considered a realistic generalization of the classic OU re-
lation as it is consistent with the GR relation, the pro-
ductivity relation as well as the classic form of the OU
relation for integrated rates.

III. COMPARISON WITH DATA

To test the validity of the self-similar OU relation,
we analyze the event-event triggering for earthquakes in
Southern California. Specifically, we analyze the relo-
cated high-resolution Southern California catalog [61].
We consider all local earthquakes with magnitude m ≥ 2
from 1982 to 2011 (101991 events).
The triggering relations between earthquakes are iden-

tified using the established methodology described in
Refs. [37, 41, 53, 62, 63]. The method quantifies the
correlation between an event i and a following event j
via the expression

n(i, j) = C|ti − tj ||~ri − ~rj |
Df 10−bmi , (11)

which estimates the expected number of events in the
space-time window spanned by i and j with magnitude
larger or equal to mi. Here ti denotes the time of occur-
rence of event i, and mi its magnitude. b = 1.05 is the
estimated b-value for the full catalog. As in [37], we use
hypocenters ~ri and the parameterDf = 2.3 for the fractal
dimension and set C = 1 without loss of generality. This
leads to a threshold value log n∗ = 10.0 for the identifica-
tion of triggered events, i.e., only events with n(i, j) < n∗

are considered as plausible main shock-aftershock pairs.
Among all events i preceding j, the identification of the
(most likely) trigger of j results from selecting that with
the lowest n(i, j). Further details on the methodology
can be found in Ref. [37].
For our analysis of triggering rates, we focus only on

directly triggered events, namely we do not consider af-
tershocks of aftershocks. To obtain sufficient statistics,

rates for all events in a given small magnitude range are
stacked and averaged. In particular, triggered events
with magnitude M − mas ∈ [∆m,∆m + 0.5) are se-
lected for each trigger having a magnitudeM in the range
[M,M + 0.5).

A. Self-similarity of conditional rates

In Fig. 1(a) we show the conditional triggering rates
for different combinations of magnitudes. The striking
feature is that all rates with a given ∆m are quite indis-
tinguishable from each other, regardless of the magnitude
of the trigger. This strongly suggests that ∆m is the rele-
vant quantity determining the triggering rates and, thus,
supports the hypothesis of self-similarity as formulated
in Eq.(2). Since this behavior is independent on whether
∆m is positive or negative (see Fig. 1(a)), it also provides
a unified description of aftershocks and foreshocks.
To further establish that the dependence on ∆m is

correctly captured by Eq. (4), we recall that Eq. (3) is an
example of the general scaling form (2). This implies that
all curves should collapse onto a single master curve, the
scaling function f(x), under appropriate rescaling with
c∆m and τ∆m. This is indeed what we observe in Fig. 1(b)
for g ≈ 0.66 and z ≈ 0.24 providing direct support for
the scaling proposed in Eq. (4).

B. Scaling function

Further support for the proposed self-similar OU rela-
tion comes from fitting the conditional triggering rates in
Fig. 1 to Eq. (3) using a standard maximum likelihood
estimator (MLE) for p, c and K [42], with τ ≡ cp/K as
in Eq. (1). Specifically, this allows us to estimate c∆m

and K∆m (and consequently τ∆m) and their behavior in
more quantitative way as well as to establish whether the
form of the scaling function (3) with a constant p is ap-
propriate. The corresponding results for p are shown in
Fig. 2(b). There are no significant differences in the esti-
mates for fixed ∆m, though there is an increasing trend
in p with ∆m for large ∆m. This can be attributed to
the fact that the MLE slightly overestimates p for large
∆m due to a detection issue of triggered events at late
times [64]. Indeed, an inspection of the rescaled rates
(Fig. 1(d)) confirms that for large ∆m the decay t−p is
well-described by p ≈ 1.15. This is also compatible with
the values of p reported in Fig. 2(b) for smaller values
of ∆m, which suffer much less from the detection issue
due to the more extended range of their power-law decay
and follow the proposed functional form (3) very well (see
Fig. 1(a) for an example).
Moreover, the direct estimates for c andK show a clear

scaling with ∆m, see Fig. 2(c) and (d). Not only are
the estimates statistically indistinguishable in almost all
cases for fixed ∆m but the scaling exponent g is also con-
sistent with the value obtained from the rescaling analysis
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above: Best fits give g = 0.66±0.04 and α = 1.10±0.03,
respectively. Here, the error bars correspond to 95% con-
fidence intervals (however, the systematic uncertainties
mentioned above lead to higher error bars). The behav-
ior of K shows in particular that the generalized pro-
ductivity relation (8) holds. This is further supported
by Fig. 1(c): The triggering rates collapse for sufficiently
large values of t under appropriate rescaling with α ≈ 1.

C. Scaling relations

The self-similar OU relation provides a consistent pic-
ture where several direct MLE estimates of scaling expo-
nents (g, z, p, bas and α) match estimates from scaling
relations (7) and (9) between the different exponents.
Having estimated the values of g, z and α fully deter-
mines p and bas. This gives bas ≈ 0.90 and p ≈ 1.15.
Thus, the value of p is consistent with the directly ob-
served one. This is also true for bas. Fig. 2(a) shows MLE
estimates of bas [65] as a function of the lower magnitude
threshold mth for different main shock ranges: they yield
bas ≈ 0.90, which is clearly consistent with the value
of bas obtained from the scaling arguments. This value
emerges independently of mth ≥ 2.5.
Deviations from bas ≈ 0.90, for main shocks with

M < 3.5, are consistent with the established presence of
earthquake swarms in Southern California [66]. Swarms
are typically associated with very specific geological set-
tings and triggering mechanisms and are phenomena
dominated by small magnitude events and characterized
by larger bas-values. Importantly, these higher bas for
small main shocks do not significantly affect the quality
of the scaling collapse in Fig. 1(b), where only four curves
have M < 3.5. Yet, we expect that swarm activity will
lead to deviations from the self-similar OU relation for
smaller magnitudes if not excluded from the triggering
analysis.

IV. PHYSICAL ORIGINS VS OBSERVATIONAL

LIMITATIONS

Short-term aftershock incompleteness (STAI) is intrin-
sic to many earthquake catalogs. STAI arises from over-
lapping wave forms and/or detector saturation, in partic-
ular after large shocks, such that events are missed in the
coda of preceding ones [67–69]. This detection problem
is not specific to earthquakes but a general problem re-
lated to crackling noise and the identification of “events”
from recordings. One important consequence of STAI is
an increase in the local magnitude of completeness [70]
and, hence, an overestimation of the c-value in Eq. (1)
for large events [69, 71]. Thus, variations in c with ∆m
for large ∆m are typically expected due to STAI [67, 68].
Let us discuss several points that exclude STAI as a

source of the self-similarity in the underlying triggering
process observed for the data from SC. First, STAI is
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FIG. 2. (a) Estimates of bas as a function of the lower mag-
nitude threshold mth for different main shock ranges. (b-d)
Estimated parameters of the Omori-Utsu relation (1) for the
conditional rates shown in Fig. 1(a).

not relevant for foreshocks (∆m < 0) and it has only
minor effects for large aftershocks. Yet, the same scaling
emerges over the whole range, namely for −1 ≤ ∆m ≤ 5,
see Fig. 1. Moreover, the scaling collapse shown in
Fig. 1(b) does even improve if we exclude rates with
large ∆m: The rates at small times for large ∆m are
systematically smaller than what the scaling collapse of
the other rates suggests. Similarly, the estimated c-values
are also systematically higher for the largest ∆m’s (see
Fig. 2(d)). Both effects are consistent with STAI. Thus,
STAI is present, it leads to minor deviations from the
proposed self-similar OU, but it cannot explain the ob-
served self-similar behavior itself.
Second, the direct estimates of α, p and bas are not

significantly affected by STAI, since they either reflect
the behavior at later times (α, p) or do not vary with
magnitude threshold mth (bas ≈ 0.9, see Fig. 2(a)). With
these values and the scaling relations (7) and (9), the
other two exponents g and z are fully determined. Hence,
the scaling of c∆m with ∆m is needed for consistency
of the empirical picture where the complete set of five
exponents is redundantly determined by direct estimates
and scaling relations. One should thus understand the
physical mechanisms generating non-trivial c∆m [48, 72,
73].
Third, the limited effect of STAI is also evident from

the number of triggered events over finite time intervals,
defined in Eq. (10). Fig. 3(a) shows two examples. For
main shocks with 5.5 ≤ M ≤ 6.0 and considering only af-
tershocks up to time t∗ = 1h, we observe the two regimes
predicted by the proposed self-similar generalization of
the OU relation: One at low m consistent with the value
of z ≃ 0.24 determined above, and a second regime at
larger m with an exponent consistent with bas ≃ 0.9.
The typical effect of STAI of a temporary increase in the
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FIG. 3. (a) Stacked time-limited frequency-magnitude dis-
tributions for aftershocks. Different regimes are visible con-
sistent with STAI and the proposed self-similar generaliza-
tion of the OU relation. (b) Indicator of departure from self-
similarity as a function of time, for the observed catalog and
for four synthetic model catalogs. Only the self-similar model
is compatible with the null indicator observed within one day
from main shocks for the observed data.

local magnitude of completeness is visible at the lowest
magnitudes, where it leads to missing events and strong
deviations from the proposed scaling behavior for after-
shocks with mas ≤ 2.5. This effect is not visible for
smaller main shocks as the second example in Fig. 3(a)
shows: For 3.5 ≤ M ≤ 4.0, no deviations from the behav-
ior predicted by the self-similar OU relation are visible
on time scales longer than about 70sec.

The prediction by the self-similar OU relation of two
power-laws in the time-limited frequency-magnitude dis-
tribution plus a third regime due to STAI as shown in
Fig. 3(a) also allows us to revisit previously published
work from a new perspective. In fact, it might be pos-
sible to partially connect documented temporal varia-
tions of the b-value [70] with (previously unnoticed) be-
havior in the time-limited frequency-magnitude distribu-
tion. Ref. [74] provides a specific example using a high-
resolution catalog that has very carefully addressed the
issue of STAI: The time-limited frequency-magnitude dis-
tribution of aftershocks in Japan shown in their Fig. 8b
provides evidence for two different regimes above the
magnitude of completeness. This supports the proposed
self-similar OU relation beyond the catalog studied here,
while fully taking STAI into account.

V. MODEL SIMULATION OF THE

SELF-SIMILAR OU RELATION

As a final step to confirm that our analysis is able to
distinguish the proposed self-similar OU relation from
non-self-similar versions for the conditional rates, we re-
peat it on synthetic catalogs generated by (a) the stan-
dard epidemic-type aftershock sequence (ETAS) model
(which is not self-similar if the unconditional rates fol-
low the classic OU relation with constant c and α 6=
bas) [41, 54, 75], and (b) our own variant built on the

self-similar structure of Eq. (3) (see the Supplemental
Material for more details). If the conditional rates are
not self-similar, there remains a dependence on the main
shock magnitude M that should be detectable in plots
like that shown in Fig. 1. By looking at groups of
ETAS conditional rates with the same ∆m and increas-
ing M ’s, we observe systematic decreases (see the Sup-
plemental Material). The following estimator quanti-
fies the trend with M : for each time t and each ∆m
we have performed a linear fit of the log-log trend of
r(M −∆m, t|M, 0) vs M . This yields a slope h∆m(t) ≡
Cov(log r, logM)/Var(logM), which is supposed to be
the same for all ∆m’s and all t’s. Hence the average
slope h(t) ≡

∑

∆m h∆m(t)/
∑

∆m 1 is an indicator of the
departure from self-similarity in the data. In Fig. 3(b)
we can see that, both for the data from Southern Cali-
fornia and for the self-similar model, the indicator h ≈ 0
in the range t . 1 day, while at later times the statistics
is not sufficient to perform its reliable estimate. For the
ETAS models, the expected value h = α − b ≈ −0.2 is
fairly well detected as well. We also find that self-similar
behavior in the ETAS model cannot typically be induced
by STAI: if STAI is introduced via one of the typical rela-
tions [68], our procedure continues to detect the absence
of self-similarity h 6= 0 (Fig. 3(b)). See also the addi-
tional analysis in the Supplemental Material. Thus, the
comparison with synthetic data shows that our analysis
scheme is sensible enough to detect self-similar behavior
in the conditional OU rates, corroborating that the con-
ditional triggering rates in Southern California are indeed
self-similar.

VI. CONCLUSIONS

In summary, we have described a natural generaliza-
tion of the OU relation that embodies self-similarity for
event-event triggering in crackling noise. From a con-
ceptual point of view, this provides some closure and an
important piece in our understanding of event-event trig-
gering where energy, distance and time appear in several
scale-free empirical relations, either singularly (e.g. the
GR relation) or combined together. It has also profound
consequences for probabilistic forecasting of aftershocks
as well as modeling, as it implies that synthetic catalogs
of relevant examples of crackling noise, including earth-
quakes, should be generated with algorithms reproducing
the observed self-similarity. An important challenge for
the future is to understand its physical origin, possibly
with the help of lab experiments [10, 12, 76].
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Appendix A: Conditional vs. integrated self-similar Omori-Utsu rates

If the conditional aftershock decay rate r(m, t|M, 0) given by (3) is assumed, the integrated rate r>(mth, t|M, 0) ≡
∫∞

mth

r(m, t|M, 0) dm that arises,

r>(mth, t|M, 0) =
1

τ0 ln 10

[
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(
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FIG. 4. (Color online) Comparison between the conditional
and the integrated self-similar Omori-Utsu relation for M =
7, mth = 2, and several values of the aftershock magnitudes.
In this example we set c0 = τ0 = 1, g = 0.66, z = 0.24, and
p = 1.15.

includes hypergeometric functions

2F1(a, b, c, x) ≡

∞
∑

k=0

(a)k(b)k
(c)k

xk

k!
(A2)

where (a)k ≡ a(a+ 1)(a+ 2) · · · (a+ k).
Despite the complicated form, the integrated rates de-

scribed by (A1) have a a functional form very similar to
the classical Omori-Utsu relation for realistic parameters
as shown in Fig. 4, the only difference being that the
transition region between the constant regime at short
times and the power-law decay at longer times is a little
bit broader than in the classic Omori-Utsu relation. This
difference vanishes for g = 0. Most importantly, the in-
tegrated rates inherit the self-similarity with respect to
M − mth: Magnitudes enter in (A1) only through the
combination M − mth. A consequence is that, for ex-
ample, the rate of aftershocks with magnitude ≥ 4 of a
main shock with M = 7 is the same of aftershock with
magnitude ≥ 2 of a main shock with M = 5, because
M −mth = 3 in both cases.

[1] P. Bak, How nature works (Copernicus, New York, 1996).
[2] D. L. Turcotte, Reports on Progress in Physics 62, 1377

(1999).
[3] Y. Ben-Zion, Review of Geophysics 46, RG4006 (2008).
[4] T. H. W. Goebel, D. Schorlemmer, T. W. Becker,

G. Dresen, and C. G. Sammis, Geophysical Research
Letters 40, 2049 (2013).

[5] M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and
J.-R. Grasso, Nature (London) 410, 667 (2001).

[6] J. Weiss and M. C. Miguel, Materials Science and Engi-
neering A 387–389, 292 (2004).

[7] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and
S. Zapperi, Science 318, 251 (2007).

[8] D. Bonamy and E. Bouchaud, Physics Reports 498, 1
(2011).

[9] A. Tantot, S. Santucci, O. Ramos, S. Deschanel, M.-A.
Verdier, E. Mony, Y. Wei, S. Ciliberto, L. Vanel, and
P. C. F. Di Stefano, Physical Review Letters 111, 154301

(2013).
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We present a brief summary on how the synthetic catalogs analyzed in the main paper were
generated and discuss their different statistical properties. Enlarged views of some of the figures in
the main text are also presented for better readability.

I. STANDARD “EPIDEMIC TYPE AFTERSHOCK SEQUENCE” (ETAS) MODELS

In the ETAS model any event can trigger other events (event-event triggering) and the total rate of event occurrence
with magnitudes m, at time t and at location ~r is defined as [1–4]:

λ(t, ~r) = µb(~r) +
∑

ti<t

φmi
(~r − ~ri, t− ti). (S1)

µb(~r) corresponds to the rate of occurrence of background events, which can vary in space. Each of the background
events j can be a main shock and trigger events (aftershocks) with a rate given by φmj

(~r − ~rj , t− tj), corresponding
to a spatially non-homogeneous and time-varying marked Poisson process. These aftershocks can also trigger other
events and then we can have a cascade of events as described by Eq. (S1). Here, the magnitude distribution of both
background events and triggered events is assumed to have the same functional form and to be independent of the
past activity. Specifically, the magnitude of events are chosen according to the normalized GR probability distribution

Pm(m) = b ln 10 10−b(m−mc), (S2)

where mc is the lower magnitude threshold of events, selected in the model used to generate the surrogate catalog.
As follows from the second term of Eq. (S1), the model assumes that the triggering processes lead to a simple

linear superposition in terms of the rates. These rates, φmi
(~r− ~ri, t− ti), quantify the spatiotemporal distribution of

triggered events at spatial distance ~r − ~ri and temporal distance t− ti from a trigger (main shock) with main shock
magnitude mi. Typically, the functional form is assumed to factorize into three terms:

φmi
(~r, t) = ρ(mi) ψ(t) ζmi

(~r). (S3)

Here, ρ(mi) is the number of events triggered by the event i, which is assumed to follow a Poissonian distribution
with an average of 〈ρ(mi)〉. The latter follows the standard productivity relation:

〈ρ(mi)〉 = K 10αETAS(mi−mc), (S4)

where mc is again the lower magnitude threshold.
ψ(t) in Eq. (S3) is the normalized temporal distribution of triggered events at time t after the main shock. It is

assumed to follow the standard Omori-Utsu relation:

ψ(t) =
(p− 1) cp−1

(t+ c)p
. (S5)

∗ davidsen@phas.ucalgary.ca † baiesi@pd.infn.it
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ζmi
(~r) in Eq. (S3) is the normalized spatial distribution of triggered events with distance ~r from the main shock.

The direction of this distance vector is typically chosen at random. The distribution of its length, r, corresponds to

Pmi
(r) ≡

∫ 2π

0
ζmi

(~r)rdφ and for earthquakes it is given by [4, 5]

Pmi
(r) =








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
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mi
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if r < 10km,

A1
d rγ

Lγ+1
mi

(
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Lγ+1
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+ 1

)−(1+ d
γ+1

)

if r > 10km.

(S6)

In this equation A0 and A1 are normalization factors and γ, q and d are constants describing the functional behavior
over different ranges. Lmi

= LR/2, where the rupture length, LR, scales with the magnitude of the event, mi,
according to [6–9] as:

LR = l0 × 10σmi , (S7)

where l0 and σ are constants with typical values of l0 in the range of 10 – 20m and 0.4 ≤ σ ≤ 0.5. It is important
to realize that ~r in Eq. (S3) or equivalently ~ri in Eq. (S1) can correspond to different quantities [4]. For example, ~r
can be the epicenter-to-epicenter distance or it can be the epicenter-to-source distance. In the latter case, ~ri is the
location of a randomly chosen point along the main shock rupture corresponding to the source. It is typically assumed
that the main shock rupture is centered at the epicenter of the main shock and has a random orientation. For a given
main shock, the main shock rupture is kept fixed and the source varies for each aftershock.

The first ETAS catalog we analyze here (“ETAS-1”) corresponds to such an anisotropic case and mimics the
seismic activity in Southern California (including a spatially varying background rate) as closely as possible. It was
first discussed in Ref. [4], where it was labeled model VII. There is also a version that includes the effects of short-term
aftershock incompleteness (STAI, model I in Ref. [4]) which we call “ETAS-1 with STAI” and consider here as well —
the specific details on how STAI is modeled are described below in the section “Short-term aftershock incompleteness”.
The most relevant specific parameter values of the ETAS model are: b = 1.09, αETAS = 0.88, p = 1.1, K = 0.1735,
c = 0.0001days, mc = 2.5. For all other parameters, see Tables I and II in Ref. [4]. Note that model VII has 51447
events while model I has 37092 events. As in Ref. [4], we use Df = 1.6 as well as b = 1.01, log n∗ = 7.0 and b = 1.09,
log n∗ = 6.0 for model I and model VII, respectively, for identifying triggered events.
A further, somewhat simpler ETAS catalog (“ETAS-2”), generated in a 600 × 600 km area, is also analyzed for

a direct comparison with the self-similar model and to test whether some features such as the boundary conditions
yield spurious effects or not. It is generated with open boundary conditions (events outside of the square area are
forgotten), with a homogeneous background rate (background events have epicenters that are at a distance of at least
60 km from the border of the seismic area) and isotropic spatial kernel (epicenter-epicenter distances) with parameters
σ = 0.45, q = d = 0.6, γ = 1, l0 = 20m. Other parameters are b = 1.08, αETAS = 0.88, p = 1.1, K = 0.18, c = 10sec,
mc = 2. The catalog is composed of 121370 events generated over 30 years starting from the background activity of
two events per day. To identify triggering relations and aftershocks using the same methodology as in the other cases,
we choose Df = 2.0, b = 1.08, log n∗ = 9.5.

With the same procedure described for ETAS-2, we also generated a catalog ETAS-3 with STAI using Eq. (S13).
In this case, we have a constant c = 16sec and αETAS = b = 1, i.e., it is the a special case of an ETAS model with
self-similarity if STAI were not present. Besides K = 0.16, the other parameters coincide with those of ETAS-2. The
final catalog consists of 83700 events. To identify triggering relations and aftershocks using the same methodology as
in all other cases, we choose Df = 2.0, b = 1.0, log n∗ = 9.5.
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II. SELF-SIMILAR AFTERSHOCK MODEL

For the self-similar aftershock model, Eq. (S3) is replaced by the following factorization

φmi,m(~r, t) = ρ(mi) ψmi,m(t) ζmi
(~r), (S8)

such that there is now an explicit dependence on m. While ζmi
(~r) is as in the ETAS model, this is not true for the

other two terms. Specifically, 〈ρ(mi)〉 is assumed to follow the generalized productivity relation:

〈ρ(mi)〉 = K 10bas(mi−mc), (S9)

with K = c0
basτ0(p−1) ln 10 , c0 and τ0 constants to be defined precisely below and mc is again the lower magnitude

threshold.
Moreover, ψmi,m(t) in Eq. (S8) is assumed to follow the proposed self-similar generalization of the Omori-Utsu

relation:

ψmi,m(t) =
(p− 1) cp−1

∆m

(t+ c∆m)p
. (S10)

The self-similarity is captured by the fact that c is now a function of the magnitude of the triggered event, m, and
of the magnitude of the trigger, mi, such that c = c010

g(mi−m) ≡ c∆m only depends on the magnitude difference
∆m = mi −m. Note that combining Eqs. (S9) and (S10), we recover the proposed self-similar generalization of the
Omori-Utsu relation:

r(m, t|mi, 0) =
1

τ∆m(t/c∆m + 1)p
, (S11)

with τ∆m = τ010
−z∆m and z = bas − g for consistency.

To obtain synthetic catalogs based on this model, we first generate a list of background events and spread aftershocks
around them following the ζmi

(~r) distribution. Since the rate of events with magnitude m after each event with
magnitude mi depends on ∆m = mi −m, in order to generate the list of aftershocks we discretize magnitudes with
a small resolution ǫ = 0.01, and for each interval [m,m+ ǫ) in the range 2 ≤ m < 9 we compute the average number
of expected aftershocks

nǫ(m|mi, 0) = ǫ

∫ ∞

0

r(m, t|mi, 0)dt (S12)

with conditional rates r given in Eq. (S11). The actual number of aftershocks in this magnitude interval is then drawn
from a Poissonian distribution with this average, and for each of these aftershocks the time from the main shock is
drawn from the distribution specified by Eq. (S10). All events generated in this way may then give rise to their own
aftershocks, and the iteration of this procedure ends when no event within the time span of the catalog remains to be
processed. A final time-ranking yields the catalog. Note that the aftershocks GR relation with bas = z+g is implicitly
generated through the previous procedure.
For generating synthetic catalogs with the self-similar aftershock model, we use the estimated values for Southern

California (see main paper) to fix the parameters: p = 1.15, g = 0.66, z = 0.24, c0 = 210 sec, τ0 = 104 sec. All other
parameters of the model as well as the parameters for the aftershock detection method are the same as for ETAS-2.
The specific catalog we consider in the main text contains 112176 events. Background events are drawn from a GR
relation with b = 1.08 > bas = 0.9. Due to upper magnitude cut-off and the choice of the parameters, the branching
ratio is less than one, making the process sub-critical [10]. Yet, the catalog turns out to be composed mostly of
aftershocks (≈ 82%).
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III. COMPARISON OF ETAS AND SELF-SIMILAR MODEL

Catalogs without self-similarity (from ETAS models with αETAS 6= b) display a trend in each group of conditional
triggering rates with the same M − m. For our specific choice of parameters, the rates decrease with increasing
main shock magnitude, see an example in Fig. S1(a). In the figure one can also see that the detection procedure is
precise within about 10–24 hours from the main shock, then it does not display a clear scaling anymore, partly due
to poorer statistics in the tails of the decay. This feature is to some degree also present in the catalog generated with
the self-similar model, as shown in Fig. S1(b). More importantly, this figure clearly indicates that the self-similar
behavior is detected, as there is no significant trend in the curves for increasing M .
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FIG. S1. (Color online) Examples of conditional rates rescaled with time according to t
1.1 of some aftershocks in a group with

the same ∆m and different M ’s, generated in (a) the ETAS-2 catalog and (b) the catalog of the self-similar model, based on
the scaling discussed in the main text.

IV. SHORT-TERM AFTERSHOCK INCOMPLETENESS

As in many other studies (e.g., Refs [4, 9]), the formula we adopt to mimic short-term aftershock incompleteness
(STAI) in the ETAS catalogs follows the trend of STAI reported by Helmstetter et al. [11]. Events after each event
i of magnitude mi = M are removed from the catalog if their magnitude is below a threshold value mdet(t,M) that
depends both on M and on the time lag t after event i. This threshold is given by

mdet(t,M) =M − 4.5− 0.75 log10 t . (S13)

The visual inspection of the conditional Omori rates for the ETAS-1 catalog with STAI (Fig. S2) shows that they
do not match the global form of scaling for Southern California visible in Fig. 1(a) of the main text: for increasing
∆m, the maximum rate first increases and then decreases such that no scaling collapse is possible. This is also true
for the ETAS-3 catalog (Fig. S3) generated with the special condition b = α = 1 which yields self-similarity before
including STAI. The absence of a scaling collapse is not surprising since STAI as described by Eq. (S13) should
not affect foreshock-main shock pairs and it should only minimally affect main shock-aftershock pairs with small
magnitude differences. In principle the above equation for STAI might entail also a form of self-similarity (as t scales
as 104/3(M−mdet)) that could generate c values artificially depending on M −m, similar to what we observe in South
California. This is, however, not the case: Not only are there still significant variations independent of ∆m as follows
from Fig. 3 of the main text but also Figs. S2 and S3 show that there is no scaling behavior in τ∆m. In contrast, the
overall scaling in Fig. 1(a) is well reproduced by our self-similar model (Fig. S4).

V. ENLARGED VIEW

For a better visualization, we enlarge Fig. 1(a) and Fig. 1(b) of the main text, see respectively Fig. S5 and Fig. S6.
Also for the sake of a clearer visual understanding, in these figures we use a more contrasted graphics and we (mostly)
plot only the first and the eventual third set of data for each ∆m. Fig. S6 helps appreciating the data collapse on a
single scaling form.
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FIG. S2. (Color online) Averaged
conditional aftershock rates for dif-
ferent ranges of main shock and af-
tershock magnitudes for the ETAS-
1 catalog with STAI as described by
Eq. (S13).
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FIG. S3. (Color online) Averaged
conditional aftershock rates for dif-
ferent ranges of main shock and af-
tershock magnitudes for the ETAS-
3 catalog with STAI as described by
Eq. (S13).
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FIG. S4. (Color online) Averaged
conditional aftershock rates for dif-
ferent ranges of main shock and af-
tershock magnitudes for the catalog
generated by the self-similar model.
Contrary to the rates in Figs. S2
and S3, these conditional rates ex-
hibit the same scaling as the data
from Southern California reported
in Fig. 1(a) of the main text.
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FIG. S5. (Color online) Enlargement of Fig. 1(a) of the main text, with less data sets. Here m denotes the aftershock magnitude
and as usual M the mains shock magnitude.
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FIG. S6. (Color online) Enlargement of Fig. 1(b) of the main text, with less data sets. Data collapse and no appreciable trend
with ∆m is visible.
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