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Abstract

We present a novel mechanism for resolving the mechanical rigidity of nanoscopic

circular polymers that flow in a complex environment. The emergence of a regime

of negative differential mobility induced by topological interactions between the rings

and the substrate is the key mechanism for selective sieving of circular polymers with

distinct flexibilities. A simple model accurately describes the sieving process observed

in molecular dynamics simulations and yields experimentally verifiable analytical pre-

dictions, which can be used as a reference guide for improving filtration procedures of

circular filaments. The topological sieving mechanism we propose ought to be relevant

also in probing the microscopic details of complex substrates.
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The sieving of fluctuating fibers or polymers according to some of their physical or topo-

logical properties is a key process in many research fields ranging from molecular biology1–3,

engineering4 and polymer physics5–7. Beyond its theoretical appeal, the achievement of

efficient separation techniques has far reaching industrial8 and medical9 applications and

potentially broad impact on next-generation polymer-based materials10. Most of the sieving

techniques exploit the competition between external forcing, surface interactions or entropic

trapping of the fibers due to obstacles7,11. This gives rise to unique transport properties that

mostly depend on either the contour length12, mass3 or charge4 of the filaments. Notably,

traditional sieving techniques such as gel electrophoresis can even be employed to detect

and separate biopolymers in different topological states13–15, e.g. linear, circular, knotted or

linked, and in turn provide the community with an irreplaceable tool to gain insight into a

wide range of problems, from the packaging of DNA bacteriophages16,17 to the topological

action of certain classes of proteins in vivo18–20. Automated separation of polymers can also

be obtained using microfluidic devices and a recent numerical study has shown that, due

to hydrodynamic effects, circular and linear polymers can be separated by a Poiseuille flow

within properly decorated micro-channels21.

Despite the abundance of biologically and medically important circular biomolecules that

may differ by their degree of rigidity, e.g., single and double stranded DNA plasmids12,

looped RNA and protein secondary structures22,23 or intasome-bound viral DNA24, there is

a notable lack of studies aimed at investigating the effect that polymer rigidity may have on

the transport properties of circular filaments within either structured fluids such as gels25 or

arrays of obstacles26,27.

Here we combine nonequilibrium analytical theories and large-scale Brownian dynamics

simulations to address this problem by focusing on a model of semiflexible rings forced to

move within a mesh of barriers with dangling ends (DE), i.e., fibers that are not part of a

closed loop of the gel network28,29.

We consider semiflexible rings made of beads of diameter σ connected by FENE springs30
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and interacting via a standard truncated and shifted Lennard-Jones potential. Besides fully

rigid circular rings, we explore two values of the chain persistence length lp = 20σ and 5σ,

see Supporting Information S1 and Figure S1. The model can then be related to various

types of circular biomolecules with different rigidity. Here we focus on rings with contour

length L = 100σ. To fix the ideas, for σ = 2.5nm, i.e. the typical double-stranded DNA

thickness31, this corresponds to plasmids of about L = 250nm ' 700 base pairs.

The structured medium through which the rings migrate is modeled as a sequence of

layers with constant gap lgel = 80σ larger than radius of gyration of the rings and orthogonal

to the direction x of the force (see Figure S1(b)). Each layer is a static square grid of beads

decorated by DE of size ` < lgel oriented opposite to the external field. The DE mimic

open strands that can be either naturally present in organic gels32–34 or artificially imprinted

in microfluidic arrays27. By assuming σ = 2.5nm, the size of the pores corresponds to

lgel = 200nm, comparable to those measured in a 5% agarose gel25. Finally, the size of the

beads forming the gel is set to σg = 10σ ' 25nm, close to the average width of both agarose

bundles (about 30nm)25 and nanowires in artificial arrays of obstacles (about 20nm)27.

To investigate the effect of the substrate geometry, we consider two spatial organizations

of the layers: aligned and staggered by lgel/2 in the directions orthogonal to the driving force

(see Figure S1(c)). Since the staggered organization displays trapping of rings at lower forces,

we choose this arrangement as our default substrate, unless otherwise stated. Each monomer

composing the rings is subject to a constant force f in the x direction and its motion through

the medium is simulated by evolving the corresponding Langevin equation at fixed volume

and constant temperature T = 1 (NVT ensemble with Boltzmann constant kB = 1) using

a molecular dynamics engine (LAMMPS)35. The results are reported as a function of the

adimensional force F = fσ/T , while time is expressed in units of the characteristic time

τ = 36ns (see Supporting Information S2 for details).

We first discuss the effect of chain rigidity on the transport properties of the rings. In

Figure 1(a,b) we report typical trajectories of the center of mass along the field direction,
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Figure 1: (a,b) Time dependence of the center of mass position of a ring along the force
direction for F = 0.002 (a) F = 0.012 (b). Curves refer to a fully rigid ring (black) and
to a ring with persistence length lp = 20σ (red) and lp = 5σ (blue). The DE length is
` = 16σ. Panel (c) and (d) are, respectively for case (a) and (b), the resulting late time
spatial distributions of a sample of 100 rings.

respectively for F = 0.002 and F = 0.012, and for ` = 2σg = 16σ ' 40nm. In each

panel the three curves correspond to different rigidities. In Figure 1(a) the force is very low

and no trappings are visible; conversely, in Figure 1(b) trajectories are markedly separated.

While most of flexible rings still migrate virtually undisturbed through the medium, those

with lp = 20σ display a more complex behavior, alternating runs (velocity v > 0) with

trappings (v ' 0). By visual inspection of Brownian dynamics trajectories, we associate

trapping events with impalements in which rings are threaded by DE (see also the movie in

Supporting Information)36. These topologically trapped rings can only re-establish their mo-

tion by means of thermal fluctuations that transiently push them against the external field.

The strong dependence of trapping and running typical times on rings rigidity gives rise to

spatially separated classes of molecules which could be readily detected in electrophoretic ex-

periments (see Figure 1(c,d)). This topological trapping cannot be seen for open filaments36

but only for looped molecules. In other words, while we expect topologically trivial polymers

to display a rigidity-dependent mobility via classic Ogston sieving11, these should not display

trapping-driven topological sieving. Below we argue that this separation pathway may be

important for polymers whose size is smaller than the gel pores, as they cannot be clearly
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separated via classic sieving11.

The polymer flow can be quantified by tracking the rings and by measuring their av-

erage speed. As shown in Figure (2), all systems display a non-monotonic response with

a differential mobility µdiff ≡ ∂〈v〉
∂F

< 0 above a critical force Fc, i.e. a regime of negative

differential mobility (NDM). Additionally, the mobility of the rings markedly decreases with

ring stiffness at large forces, yet this distinction is weaker or absent for small applied forces.

We argue that in the latter regime, rings that become impaled by DE can easily escape by

thermal fluctuations; conversely, for very large forces, the escape probability of a trapped

ring vanishes. Intriguingly, the most pronounced mobility difference is found at intermediate

forces, thus suggesting that this regime may be the best candidate to achieve efficient and

fast polymer separation. Finally, in Figure 2(a) we highlight that both the critical force Fc

and the response amplitude strongly depend on the ring flexibility; as we discuss below, this

novel finding may be employed to refine current gel electrophoresis techniques. As expected,

no NDM emerges for linear polymers of the same length, see an example in Figure 2(a).

A minimal two-state model can account for the NDM and provide a simple description

of the stationary state36. We assume that in the presence of a force F the rings can either

be trapped due to topological interactions (impalements) or running. In the running regime,

the rings have an average non-zero velocity vR = µRF , where µR is the (positive) absolute

mobility in the running state. Simulations with no DE (` = 0) show that µR is weakly

dependent on F and always lower than the value µfree
R = σ/τ of a polymer in solvent.

Hereafter we use µR = 0.9σ/τ as a good approximation of the mobility of non-trapped

rings. Given µR, the time to drift from one layer to the next is tdrift = lgel/(µRF ), while

the time scale to diffuse over a span lgel is tD = l2g/(2µRT ). Diffusion thus is expected to

dominate when tdrift > tD, i.e. (here using T = 1) for F < F̃ = 2/lgel = 0.025. Most of

our simulations fall in this regime. Hence, the probability per unit time that a ring hits a

DE and is impaled, namely the trapping rate ktrap, is hereafter assumed to be independent

on F . We checked that an additional parameter introducing a linear F -dependence of ktrap
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Figure 2: Examples of average ring velocity as a function of the driving F : (a) Data for rings
with three rigidities (see legend), with DE length ` = 16σ. The vertical line indicates a region
with good sieving properties. Dashed lines are guides to the eye. Data for linear polymers
with lp = 20σ and contour length L = 99σ (orange triangles) show normal mobility, as short
open polymers cannot be impaled by DE. In (b) and (c) we compare data for lp = 20σ and
` = 16σ (magenta squares) with runs with (b) shorter DE length ` = 8σ (orange circles)
and (c) same parameters but in the cubic version of the gel (green triangles) rather than the
staggered layers (default) version. In (b) and (c), continuous curves are fits according to (2).

would not lead to visible improvements.

The transition rate from the trapped to the running state (or escape rate, kesc) takes

into account an effective local energy barrier ∆E/T = αF which must be overcome by the

ring when leaving the trapped state. By crudely approximating a ring as a point particle

driven by F , the energy barrier would assume the simple form ∆E/T = F`/σ and the

related escape rate kesc would essentially depend on the product F` only. However, due to

the conformational entropy of the polymers, additional degrees of freedom, such as the ring

persistence length lp, can effectively enter into ∆E and produce more complicated responses.

To account for these effects, we write the escape rate in the more general form

kesc = ψ exp(−αF ) (1)

where the parameters ψ and α may depend on the ring rigidity and on `. By introducing

the adimensional parameter C = ktrap/ψ, we first derive the stationary probability of the
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running state pR = exp(−αF )/[C + exp(−αF )]. In turn, the average ring velocity reads

〈v〉 = vRpR = µRF
exp (−αF )

C + exp (−αF )
. (2)

The curve 〈v(F )〉 displays a region with NDM. More precisely, one finds µdiff < 0 for F > Fc,

where Fc solves the equation C + e−αFc −αCFc = 0. Taking the limit of vanishing trapping,

C → 0 (or α→ 0), this equation has no physical solution and the function 〈v(F )〉 becomes

linear in F , with a constant positive µdiff. This clarifies that the origin of NDM has to be

found in the topological interactions between rings and DE.

In order to compare the analytical predictions with numerical simulations, we probe the

nonequilibrium stationary states of the systems. In Figure 2(b) we compare the average

velocity obtained from simulations with lp = 20σ and for two DE lengths, and we fit the

data with (2). The fits give excellent results (curves in Figure 2(b)) also in the NDM regime.

Note that the onset value Fc of NDM drastically increases when ` is halved. This behavior

is clearly related to the exponential dependence of kesc on the energy barrier ∆E ≈ `.

Intriguingly, the trapping mechanism is also affected by spatial arrangement of DE in

the substrate. As shown in Figure 2(c), systems differing only in the spatial position of the

gel layers (aligned or staggered) display distinct responses to F . The staggered substrate

reduces more quickly the velocity of the probes by increasing F , as the rings are more easily

trapped by its exposed DE. In order words, we discover that ktrap can be tuned through

the spatial organization of the gel, and it assumes larger values when layers are staggered,

although the change in behavior is not as strong as the one consequent to a variation in `.

By tracking single-molecule trajectories, we can also explore the behavior of the trapping

and escape rates for different NDM regimes and test whether they follow, respectively, ktrap '

constant and (1). To this end, we first compute the average velocity v̄(t) of a ring over small

temporal windows of 10τ , as shown in inset of Figure 3. This quantity displays reduced

fluctuations with respect to the instantaneous ring velocity as well as a clear pattern of
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Figure 3: Rates kesc (blue circles) and ktrap (red squares) versus force F for an ensemble of
rings with lp = 20σ in a gel with ` = 8σ. Lines are guides to the eye. Upper inset: typical
evolution of the velocity v̄(t) of a ring for F = 0.055. Lower inset: integrated probability
distributions of trapped and running periods.

alternating running and trapped states, whose typical duration times can then be readily

recorded.

Within the two-state model, both the probability distribution Ptrap(t) of residence times

in the trapped state and Prun(t) of periods in the running state should follow an exponential

decay with time. Hence, their integrated versions are P>
trap(t) ≡

∫∞
t
Ptrap(t′)dt′ = exp(−kesc t)

and P>
run(t) ≡

∫∞
t
Prun(t′)dt′ = exp(−ktrap t), and we can directly calculate the rates kesc and

ktrap by fitting their exponential scaling (see Figure 3). By repeating the same analysis for

systems with different rigidities and DE lengths, we are able to characterize precisely the

parameters α, ψ and ktrap, see Figure 4(a,b,c). In turn, we use the direct evaluation of these

parameters from single-molecule trajectories to predict the mobility of the bulk for a given

`, lp and F , with remarkably good results (Figure 4(d)-(f)). The sensitivity of the kinetic

parameters to the ring rigidity observed for various `’s suggests the robustness of the sieving

process also for more realistic environments with heterogeneous dangling ends.

In summary, we have shown that a minimal model for ring polymers traveling through a

complex environment with key features of a realistic gel, as the presence of DE, can capture

the poorly explained empirical evidence of NDM for circular plasmids32,34,36,37. We thus ar-

gue that electrostatic interactions, albeit present in real situations, may not be crucial here.

8



8 16 24
/σ

0

500

1000

1500

α

rigid

20σ
5σ

8 16 24
/σ

-10

-5

0

lo
g
(ψ

 τ
)

8 16 24
/σ

0

2

4

6

8

k
tr

ap
 [

1
0

-6
/τ

]

0 0.02 0.04 0.06
F

0

0.01

0.02

0.03

0.04

=8σ

=16σ

=24σ

0 0.02 0.04 0.06
F

0 0.02 0.04 0.06
F

(a)

(b) (c)

(d)
rigid

(e)
l
p
=20σ

(f)
l
p
=5σ

<
v
>

 [
σ

/τ
]

PSfrag replacements

ℓ

ℓ

ℓ

ℓℓℓ

Figure 4: The parameters α (a), ψ (b) and ktrap (c) for three plasmid rigidities, plotted vs `.
(d) For rigid rings, curves of average plasmid velocity as obtained from numerical simulations
for different `’s (symbols, see caption) and from the two-states model with parameters shown
in (a)-(c) (lines), and (e) the same for semiflexible polymers with lp = 20σ and (f) lp = 5σ.

It is important to notice that in this study we have neglected hydrodynamic interactions.

These can certainly affect the nonequilibrium dynamics and shape of confined polymers21,38

but they would not hinder the occurrence of NDM, which is mainly based on the topo-

logical interactions between the rings and the dangling ends. Preliminary simulations with

hydrodynamic interactions confirm this expectation, see Supporting Information S4.

The onset of NDM may occur at distinct applied forces, depending on the flexibility of

the rings, the typical size of dangling ends, and their position. Suitable protocols optimally

exploiting NDM can therefore be designed to efficiently separate circular biomolecules with

different rigidity, such as RNA and DNA. Importantly, topological sieving can separate

molecules that are smaller than the size of the gel pores, a goal impossible to achieve with

normal Ogston sieving.

A fascinating consequence of these results is the possibility to use circular polymers drift-

ing through a medium as probes for its microstructure. To this end, a predictive theoretical

tool is necessary. Here we have shown that a simple two-state nonequilibrium theory cap-

tures remarkably well the sieving process. The trapping and escaping rates can be directly
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measured by tracking single molecules drifting through a medium of unknown structure and

may be used to directly characterize its complexity.
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S1 Model and numerical procedure

Rings are modeled as closed polymer chains each made of M = 100 beads of diameter

σ = 2.5nm that move in a static cubic gel with total linear dimension 640σ = 8lg and

periodic boundary conditions in all three directions. Figure S1 shows a typical configuration

of the whole system (panel (a)) and the details of the gel structure (panels b and c).

In the following, we denote by ~ri the position of the i-th bead and by di,j = |~di,j| = |~ri − ~rj|

the distance between two beads. The steric interaction between beads belonging to polymer

rings and the interaction between a polymer bead and a gel bead is modeled by a truncated
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Figure S1: (a) Snapshot of a part of the gel structure, made of stacked and staggered square
grids (alternated dark and light gray) displaying dangling ends (DE, some highlighted in
cyan) of length ` = 24σ, the longest used in this work. Ring polymers (yellow) of three kinds
(fully rigid circles, lp = 20σ and lp = 5σ) are forced through the gel and their position tracked
in time. (b) Zoom in the gel showing only one layer of the gel structure where some of the
rings are trapped by the DE. (c) Zoom in the gel highlighting the staggered arrangement of
two consecutive grids.

and shifted Lennard-Jones potential

ULJ(i, j) = 4ε

( σc
di,j

)12

−
(
σc
di,j

)6

− 1

4

Θ
(
2

1
6σc − di,j

)
, (S1)

where ε is the typical energy scale of the interaction potential and Θ(x) is the Heaviside

function. The parameter σc plays the role of a minimum distance between beads and depends

on the bead type. If i and j are both polymer indexes, we set σc = σ, otherwise, for the

interaction between a polymer bead and a gel bead, we define σc = (σ + σg)/2 = 5.5σ.

The beads forming the polymer mesh do not evolve in time and they are excluded from

the computation of mutual interaction terms. The connectivity of each polymer chain is

reinforced by a Finitely Extensible Nonlinear Elastic (FENE) potential acting between two

consecutive polymer beads i and i+ 1

UFENE(i, i+ 1) = −AF
2
R2

0 log

1−
(
di,i+1

R0

)2
 (S2)
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for di,i+1 < R0 and UFENE = +∞ otherwise. Here we choose AF = 30ε/σ2 and R0 = 1.6σ.

Finally, the bending rigidity of the polymer rings is described by a Kratky-Porod potential

Ub(i− 1, i, i+ 1) =
kBT lp

2σ

1−
~di−1,i · ~di,i+1

di−1,idi,i+1

 (S3)

where the persistence length lp is set to 20σ or 5σ for the two finitely flexible classes of rings

considered in this Letter. Rigid rings would correspond to lp →∞ and they are modeled by

adding explicitly a rigidity constraint to their bead configurations. This implies that only

Lennard-Jones potential terms are considered for the dynamics of rigid rings.

Introducing the total potential energy U = ULJ + UFENE + Ub, the dynamics of the ring

beads is described within a Langevin equation

m
d2 ~ri
dt2

= −~∇U + fx̂− γ d~ri
dt

+ ~ξi(t) (S4)

where m is the mass of one polymer bead, γ is a (constant) friction coefficient and fx̂

is the external constant force oriented along the positive x direction. The last term ~ξi(t)

is a Gaussian noise with zero mean and delta-correlated in time. Denoting by ξ
(α)
i with

α = 1, 2, 3 the Cartesian component of ~ξi in the α direction, the noise satisfies a standard

fluctuation-dissipation relation in the form

〈
ξ
(α)
i (t)ξ

(β)
j (t′)

〉
= 2γkBTδi,jδα,βδ(t− t′) (S5)

The system is evolved starting from an initial condition composed by M planar circular

rings randomly placed in the gel structure. Their position and orientation are chosen in

order to avoid any initial impalement by a gel dangling end or any irreversible link with the

gel structure. The system is first thermalized for a time t0 at temperature T with f = 0

(no external driving) and later evolved for a time tf in the presence of the external force.

Averages are performed at least over 20 trajectories of different rings within the same system,
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in a diluted phase in which they do not interact significantly with each other. Simulations

are long enough to allow the rings to explore the trapped and running states on timescales

much shorter than the total observation time.

S2 Parameters and physical units

In our simulations, the system temperature T is measured in units of ε/kB, with kB = ε = 1.

We set the monomer mass m = 1 and we measure distances in units of σ. With this choice,

the characteristic time scale of the system τ = σ
√
mε is unitary. As customaryS1 , we

set m/γ = τ . In order to estimate the time τ in physical units, we proceed as follows.

From the Stokes formula of the friction coefficient for spherical beads with radius σ/2, we

have γ = 3πηsolσ, where ηsol is the viscosity of the solvent. By using the nominal water

viscosity at room temperature, ηsol = 1cP , and setting T = 300K and σ = 2.5nm, we get

τ = 3πηsolσ
3/(kBT ) = 36ns.

The numerical integration of Eq.(S4) is performed by employing a Verlet algorithm with

time step δt = 0.01τ ' 0.4ns. For our simulations we choose the thermalization time

t0 = 2 × 105τ ' 7ms, while the time tf ranges from a minimum of 5 × 106τ ' 0.18 s

to a maximum of 2 × 107τ ' 0.72 s depending on the typical time necessary to reach the

nonequilibrium stationary state.

We conclude this section by observing that from the relation F = fσ/(kBT ), the force

acting on a single polymer bead amounts to f = 1.7F pN . Since the size of each monomer

is σ = 2.5nm = 7 pb and each base pair contains two phosphate groups, we approximate

the charge of each bead to Q = 14e, where e is the electron charge. Hence, we find for

characteristic strength of the dragging electric field E = f/Q ' 8 × 103F V cm−1. Our

results show that topological sieving typically occurs in the interval from F ' 10−3 to

F ' 10−2, i.e. between 8V cm−1 and 80V cm−1.
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S3 Movie of the system evolution

The video file named movie fig2.avi shows the evolution of an ensemble of 20 polymer

rings flowing in the gel structure. The video shows the trajectory corresponding to the red

curve of Figure 1b (F = 0.012, lp = 20σ). The evolution is shown from t = 1.1 × 106 τ to

1.4× 106 τ .

S4 Hydrodynamic interactions

We have performed preliminary simulations in which hydrodynamic modes are introduced

with the Stochastic Rotation Dynamics (SRD) methodS2,S3 .

Figure S2: The SRD setup: a polymer ring moves through a gel structure composed of one
dangling end in the presence of explicit solvent.

Figure S2 shows the simulation setup and a snapshot of the system dynamics. We consider

a minimalist cubic gel structure (grey beads) with one dangling end with ` = 16σ and one

polymer ring (small orange beads) with persistence length lp = 20σ and L = 100σ. The

system is contained in a box with linear length L = 80σ with periodic boundary conditions.
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Explicit solvent and SRD dynamics are included according to the parametrization inS4 . In

particular, we set the number of solvent particles (not shown in Figure S2) equal to 106 ,

which produces a ring mobility µ = 〈v〉/F order 1 (in model units) in the running state.

This mobility regime is comparable with the case of implicit Langevin simulations, where

µ = 1. Solvent particles interact both with the gel and with the polymer ring.
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Figure S3: Center of mass position of the ring as a function of time for two values of external
force F with explicit SRD solvent.

Figure S3 shows some ring trajectories (center of mass position along the force direction

x vs time) in which impalement events are visible (flat parts) for two values of force F .

The two red (solid and dashed) curves refer to two independent realizations of the SRD for

F = 0.02. Consistently with the Langevin description, we observe a dramatic increase of the

impalement time (see black and red dashed curves) upon increasing the force. This supports

the existence of ring negative differential mobility even in the presence of hydrodynamic

interactions. The relatively short number of impalement events should not surprise on the

time scales reached in these preliminary simulations (order 105 τ). Indeed, from the analysis

reported in Figure 4(c), the typical trapping rate is order 10−6 τ−1 . Therefore, much longer

trajectories would be needed to perform a statistical analysis of trapping and escape events.
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We leave this numerically challenging task to future work.
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