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We study the rotational dynamics of a flexible polymer initially wrapped around a rigid rod and
unwinding from it. This dynamics is of interest in several problems in biology and constitutes a
fundamental instance of polymer relaxation from a state of minimal entropy. We investigate the
dynamics of several quantities such as the total and local winding angles and metric quantities. The
results of simulations performed in two and three dimensions, with and without self-avoidance, are
explained by a theory based on scaling arguments and on a balance between frictional and entropic
forces. The early stage of the dynamics is particularly rich, being characterized by three coexisting
phases.

PACS numbers:

I. INTRODUCTION

The genetic information in eukaryotic cells (including
cells of animals and plants) is accessed through DNA un-
winding on two different length scales. On the larger scale
the DNA double helix has to unwind from proteins, on
the smaller scale the two strands of the double helix need
to be separated. In the first case a semiflexible polymer
(DNA double helix) is wound almost two turns around a
protein cylinder forming the so-called nucleosome [1, 2],
in the second case two flexible polymers (chains of nu-
cleotides) are twisted around each other leading to the
much stiffer double helix. The unwinding of the DNA
from the nucleosome or the separation of the DNA dou-
ble helix is achieved inside a cell in various ways, of-
ten involving molecular motors (chromatin remodellers,
polymerases...) that usually give access through a local
opening of the structures. Inside a test tube unwinding
can be induced, typically on a global scale, through a
change in temperature (DNA melting/helix-coil transi-
tion [2–5]), salt concentration (salt-induced DNA release
[6, 7]) or through application of an external force (nu-
cleosome unwrapping [2, 8–11], DNA unzipping [4, 12]).
Local unwinding can also occur spontaneously leading
to the breathing of nucleosomes and of DNA (usually
called site exposure in nucleosomes [2, 11, 13–15] and
denaturation bubbles in DNA [2, 5, 16]). Finally, dur-
ing transcription, where the elongating RNA polymerase
produces a RNA transcript, one faces again the situation
of a flexible chain, the transcript, being initially wound
around the much stiffer DNA double helix [17].

To gain insights into the unwinding process it is conve-
nient to start from simple setups. In this work we study
the unwinding process of an idealized flexible polymer
model that is initially wound around a stiff rod, in a con-
figuration of minimal entropy, which resembles some of
the features of the DNA or RNA unwinding. This model

was introduced and studied in ref. [18]. Here we extend
the results of that analysis focusing in particular on met-
ric properties. We present a scaling argument which fully
captures the early stages of the dynamics that is charac-
terized by power-law scaling. Despite the simplicity of
the model, there is a complex dynamical behavior.

It is the entropy gain that drives the polymer from the
initial configuration toward the full random coil config-
uration. A sketch of this process is given in Figure 1,
which shows different snapshots of the polymer config-
urations in the course of a simulation. The polymer is
initially fully wound in a helix around the rigid rod. One
end of the polymer is tethered to the rod whereas the
other end is free, hence the relaxation proceeds from the
free end. This process shares some similarities with the
simpler problem of the relaxation from one end of a com-
pletely stretched polymer [19, 20]. Consider a polymer
tethered at one end and fully stretched by a strong flow.
When the flow is turned off the polymer relaxes back to
its coiled equilibrium conformation. As one end is teth-
ered the relaxation starts from a free end, from where the
coil grows. The unwinding has a similar relaxation from
the free end which occurs through a rotational motion
instead of a translational recoiling. However, the phe-
nomenology in the case of unwinding is much richer, as
we will show.

This paper is organized as follows. In the section Mod-
els and Simulations, we review the models and the type
of Monte Carlo simulations used. In the section Results
and Discussion, we focus first on the early unwinding dy-
namics which is characterized by power-laws scaling in
time. It is shown that force balance equations and scal-
ing arguments yield exponents in very good agreement
with simulations. Second, we discuss the late stage of
the relaxation process. Here the theory of ref. [18] pre-
dicts a power-law scaling for the longest relaxation time
with logarithmic corrections. The analysis is extended to
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other lattice and off-lattice models and the results con-
firm the validity of the theory.

FIG. 1: Snapshots of a SAW with L = 384 monomers during
unwinding from a rod. One end (blue) is attached to the rod
and the other end (red) is free. Snapshots are taken at times
t = 0, t = 7 × 104, t = 2 × 106, and t = 5 × 106 (from top to
bottom). The second configuration is in the early stage of the
unwinding, where one can recognize three different phases:
the part close to the fixed end is still a tightly wound helix,
the middle section shows a loose helix configuration, and the
part close to the free end forms a random coil.

II. MODELS AND SIMULATIONS

Figure 1 shows different snapshots of the polymer con-
figurations during the unwinding from an infinitely long
rod. Initially the polymer is fully wound and in the course
of time it unwraps. The polymer has L monomers la-
beled with indices 1 ≤ k ≤ L. One end (k = 1) is fixed

to the rod, while the other end (k = L) is free. We have
studied different cases to check the robustness and uni-
versality of the numerical results. For the ideal chain (the
case without excluded volume) we modeled the polymer
in three different ways. In a first model we considered a
random walk (RW) with unit steps on a face-centered cu-
bic (FCC) lattice. In the initial helical configuration, the
polymer performs one turn in six steps along the rod. An
update of the configuration consists of L attempts of so-
called corner flips, where the randomly selected monomer
is moved to a neighboring lattice site if the distances to
the neighboring monomers are conserved (this is a lattice
realization of Rouse dynamics [21]). The new configura-
tion is accepted if the monomer does not overlap with
the rod.

We also considered a random walk on a square lattice
(i.e., a bidimensional lattice). In this case the starting
configuration consists of a chain with a rescaled segment
length wound around the origin. In the initial configu-
ration on the square lattice one turn around the origin
is performed by 8 monomers. The corner flip method is
used here as well.

Finally, we used a freely jointed chain (FJC) to
model three-dimensional off-lattice polymers. Neighbor-
ing monomers have a fixed distance a from each other
and the rod has a diameter 1.5 a ensuring that monomers
cannot accidentally pass from one side to the other in the
course of unwinding. The initial helical configuration is
such that one turn is performed with 10 monomers. Also
in this case a time step of the dynamics consists in L at-
tempts of moves for randomly chosen monomers. When
a monomer is selected, a new configuration is constructed
via a rotation of that monomer around the axis defined
by the two neighboring monomers by an angle randomly
selected from [0, 2π]. The free end is updated with a
new random position preserving the bond length with
the second monomer. The new configuration is accepted
if it does not overlap with the rod.

For the case of a polymer with excluded volume we
use only the model of a self-avoiding walk (SAW) on the
FCC lattice. The procedure is the same as for the ideal
chain on the FCC lattice, with the added constraint of ex-
cluded volume between the monomers: one rejects moves
violating it.

III. RESULTS AND DISCUSSION

A. Short-Time Dynamics

1. Radial Distance

We consider first the “radial” distance Re which is de-
fined as the average distance of the free end monomer
from the rod. This quantity is shown in Figure 2 (RW’s)
and 3 (SAW). Starting from a minimal value for the fully
wrapped configuration at t = 0 the growth of Re follows
a power law. In the ideal chain cases we find a first,
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FIG. 2: Average squared distance R2
eRW of the free end from the rod versus time (ideal chain) for (a) a 2D polymer on a square

lattice, (b) a 3D polymer on a FCC lattice and (c) a FJC in 3D, for various chain lengths. For the three models the short time
regime follows the power law R2

eRW ∼ t0.25. This regime ends at times scaling as τ ′ ∼ L2, see insets (the values of τ ′ for the
shortest chains are indicated by vertical arrows). The plateaus indicate the completion of relaxation. The averages are made at
least (for the largest sizes) over (a) 2000 and (b) 3000 configurations. In (c), due to larger computational effort in continuous
space for a local move, the average is performed only over 150 configurations, which explains the larger noise.

short-time, regime:

R2
eRW(t) ∼ t0.25 . (1)

This scaling with time of a spatial length scale is re-
markably slow (|Re| ∼ t1/8) compared to the usual relax-
ation time scales encountered in polymer physics. The
exponent is robust and is found in the minimalistic 2D
polymer on a square lattice (Figure 2(a)), the RW on a
FCC lattice (Figure 2(b)) and the freely jointed chain off-
lattice (Figure 2(c)). We performed also simulations for
a 3D excluded volume chain on an FCC lattice, for which
we find a power law with a slightly larger exponent:

R2
e SAW(t) ∼ t0.27 , (2)

as it can be seen in Figure 3.
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FIG. 3: Squared distance R2
e SAW of the free end from the rod

versus time for a excluded volume chain on an FCC lattice.
The short time regime follows the power law R2

e SAW ∼ t0.27.
The inset shows the scaling of τ ′ with the polymer length.
Averages are made at least over 3000 configurations (for the
largest size).

To understand the origin of this exponent we model
the unwinding starting from a two phase picture. We as-
sume that during the early stage of the dynamics the

polymer starting from the fixed end has n monomers
tightly wrapped around the rod, which are frozen as in
their initial t = 0 configuration, while L − n monomers
are loose (we indicate these as phase 1 and phase 2, re-
spectively, see Figure 4(a)). We assume that the loose
monomers form a homogeneous helix with a constant
pace, but which is loosely wrapped around the rod. Ob-
viously, if the loose helix would extend until the free end
of the polymer, the radial distance Re would not grow
in time. The two phase model is the starting point of
our analysis and we will focus on the configuration of the
polymer close to the free end later. We assume that the
dynamics is governed by the following equation:

γ2
dn

dt
= −∂F

∂n
, (3)

which is a balance between frictional and “entropic”
forces during the growth of the helical domain. Here
F(n) = f1n+f2(L−n) is the total free energy of the con-
figuration, with f1 and f2 the free energies per monomer
of the two phases (with f2 < f1 as the loose helix has
a higher entropy than the tight helix). γ2 is the friction
coefficient. The total winding angle of the last monomer
is equal to 2π times the number of times the polymer is
wrapped around the rod. For the two helices model such
a quantity is then given by:

Θ = n∆θ1 + (L− n)∆θ2 , (4)

where ∆θ1 and ∆θ2 are the densities of winding for the
two phases (with ∆θ1 > ∆θ2, as phase 2 is more loosely
wrapped compared to phase 1). A decrease in n leads to
a decrease in the total winding angle and the whole loose
helix rotates in a corkscrew motion. The friction coeffi-
cient is then proportional to the length of the rotating
domain γ2 ∼ (L − n). Using this input and the form of
F(n) we get from the integration of eq. (3):

L− n ∼
√
t . (5)
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FIG. 4: (a-b) Configurations of the polymer during unwind-
ing. (a) Two phase model consists of a tight helix (phase 1),
which is the initial conformation, and a loose helix with con-
stant pace (phase 2). (b) Extension of the two phase model
accounting for the growth of an unwound coil of length l at
the polymer end. (c-d) View of a polymer anchored to the
rod (which is perpendicular to the plane) and rotating with
angular velocity Ω. If Ω is small the polymer rotates while
maintaining its equilibrium shape (case (c)). For high Ω the
polymer gets partially wrapped around the rod, while a part
of length l maintains its equilibrium shape. Equation (9) gives
an estimate of the length l.

The angular velocity is given by eq. (4):

Ω =
dΘ

dt
∼ dn

dt
∼ 1√

t
, (6)

which decreases in time as there is an increasing friction
when the loose helix grows.

The assumption that phase 2 is a helix of constant
pace and radius is an approximation. However, as we
will show, the numerical data are in good agreement
with a square root growth (eq. (5)), which is a conse-
quence of that assumption. Note that the assumption
can be relaxed, allowing phase 2 to have fluctuations; the
only essential requirement is that the friction γ2 should
scale linearly with the length of the domain. Our ap-
proximation is similar in spirit to the monoblock approx-
imation where an inhomogeneously stretched polymer is
modeled by a homogeneously stretched one, an approxi-
mation that does not change the scaling of the large scale
geometry of the deformed chain [23, 24].

Let us consider now the growth of a coiled domain at
the end of the chain (the stretch AB of length l shown
in Figure 4(b)). This domain grows from a polymer ro-
tating with angular velocity Ω. Let us assume that the
friction originating from the coiled part is negligible com-
pared to that of the loose helix, so the calculations lead-
ing to eqs. (5) and (6) remain valid. To understand the
coil growth we consider a polymer attached to a rod and
rotating with angular velocity Ω. If the polymer is suf-
ficiently short and Ω small, its equilibrium conformation
is not perturbed by the rotation and in particular it will
have no winding (Figure 4(c)). If the polymer length ex-

ceeds a given threshold value, then part of the polymer
close to the attachment point gets wound while the final
part rotates maintaining its equilibrium shape (length
of the part AB in Figure 4(d)). We estimate now the
length of the end coil for a rotating polymer. To under-
stand the calculation it is useful to consider the analogous
problem of a polymer pulled by one end by a constant
force [22, 23, 25–27]. The polymer maintains its equilib-
rium conformation if the applied force, f , or the polymer
length, l, do not exceed the values fixed by the equation:

fRF ∼ kBT , (7)

where RF ∼ lν is the Flory radius, kB the Boltzmann’s
constant and T the temperature. For a polymer rotating
with an angular velocity Ω the force which distorts its
shape is due to friction. The expression analogous to
eq. (7) is then given by

γvRF ∼ kBT . (8)

Using v = ΩRF and γ ∼ l for a Rouse polymer we obtain
the following relation for the length of the coiled unwound
end of the rotating polymer:

l1+2ν ∼ kBT

Ω
. (9)

Using the law (6) for the angular velocity we finally ob-
tain for the growth of l:

l ∼ t1/(4ν+2) , (10)

and, from the equilibrium relation R2
e ∼ l2ν we find that

the squared distance from the rod grows as:

R2
e ∼ tz , (11)

with z = ν/(2ν + 1). Note that z = 1/4 for a Gaussian
polymer (ν = 1/2) and z ' 0.27 for a self-avoiding poly-
mer (ν ' 0.59) which is in excellent agreement with the
numerical results (Figures 2 and 3).

We expect that the above description remains valid un-
til the loose helix has grown to reach the first monomer.
This corresponds to n = 0, i.e. when the tight helix has
disappeared. According to eq. (5) this happens at a char-
acteristic time τ ′ scaling as τ ′ ∼ L2. We estimated τ ′ for
polymers of different lengths from the simulation data of
the radial distance of Figures 2 and 3. This is the time at
which the growth law starts deviating from eq. (11). The
vertical arrows in Figure 2 mark the estimated τ ′ for the
polymer of shortest length. The insets of Figures 2(a)
and (b) show plots of τ ′ vs. L as obtained from the data
of the main plots. There is an excellent agreement with
the predicted scaling τ ′ ∼ L2. An equally good agree-
ment was found for all the other cases studied. Note
that the scaling τ ′ ∼ L2 does not depend on the pres-
ence of self-avoidance, as demonstrated by the data in
the inset of Figure 3.

We consider next the distance d(s) between the free
end monomer at position L and a monomer L − s pro-
jected onto a plane perpendicular to the rod. In two
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dimensional models this is equal to the total distance

d(s) ≡ |~RL− ~RL−s| where ~Ri is the position of monomer
i. In three dimensions, for a rod parallel to the z-axis we
have:

d(s) =

√
(xL − xL−s)2 + (yL − yL−s)2 , (12)

where xi and yi are the coordinates of the monomer i.
In all cases analyzed (see Figure 5) we find for small s a
scaling d2(s) ∼ s2ν which demonstrates that the end part
of the polymer is an equilibrated coil. The plots show
that d2(s) saturates at a constant value for sufficiently
large value of s. This point identifies the end of the
coil and the beginning of the loose helical region. From
scaling arguments we expect:

d2(s) = s2νg
( s

t1/(4ν+2)

)
, (13)

where for small values of x = s/t1/(4ν+2) the function
g(x) converges to a constant. For large x we expect
g(x) ∼ 1/x2ν as d2(s) is independent of s, as the pro-
jected distance from the end monomer to the monomers
in the helical domain cannot increase. The inset of Fig-
ure 5 shows a scaling plot of d2(s)s−2ν vs. s/t1/(4ν+2) in
full agreement with the scaling ansatz (13). This result

supports the prediction that the coil growths according
to eq. (10). Note that the scaling function has a maxi-
mum at the crossover between the two scaling regimes.
The maximum is not very pronounced but indicates that
the polymer, compared to an equilibrated coil, is slightly
more stretched in the vicinity of the rod.

2. Dynamics of the Total Winding Angle

The theory developed in the previous section can be
tested also on the dynamics of the total winding angle.
Taking into account the presence of the coil of length l
at the polymer end we need to modify eq. (4) with:

Θ = n∆θ1 + (L− l − n)∆θ2 , (14)

as the coil, which is of length l, does not contribute to
the winding. We define with Θ0 = L∆θ1 the initial total
winding angle. Combining eqs. (5), (10) and (14), we
then get:

Θ0 −Θ = (L− n)(∆θ1 −∆θ2) + l∆θ2 ,

= At1/2 +Bt1/(4ν+2) ,

= At1/2
(

1 +
B

A

1

tν/(2ν+1)

)
, (15)
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with A and B being some positive constants. The pre-
diction is that Θ0 −Θ scales as ∼

√
t, with a slowly de-

caying correction term originating from the equilibrated
end coil. The correction is predicted to scale as ∼ t−1/4

for a RW and ∼ t−0.27 for a SAW. In order to test the va-
lidity of eq. (15) we plot in Figure 6 the quantity Θ0−Θ
as a function of t in a log-log scale for three ideal-chain
models in two and three dimensions, and the same for
SAW’s in Figure 7. In all cases the data approach for
sufficiently long times the expected ∼

√
t law.

To investigate the nature of the corrections to the lead-
ing scaling behavior we plot in the insets of Figure 6 the
quantity (Θ0−Θ)/

√
t vs. t−ν/(2ν+1). The data for short

times and for different polymer lengths follow a straight
line in good agreement with the prediction of eq. (15).
The slope of the lines are positive and imply B > 0, as
expected. Some stronger nonmonotonic behavior is ob-
served in the 3D off-lattice model which does not have
a counterpart in the other cases studied. The behavior
of the winding angle was also investigated in a previous
publication [18] and estimated to scale in the early time
dynamics as Θ0 − Θ ∼ tρ where ρ ≈ 0.43 − 0.44. This
seemed to match the short time dynamics rather well, al-
though a closer inspection of the data shows that eq. (15)
fits the data better. The analysis of the local winding,
which follows, gives further support of a

√
t growth of

the unwound domain.

3. Local winding angle

Further insight of the polymer dynamics can be ob-
tained from the analysis of the local winding angle θ(k),
which is the winding angle of the k-th momomer. As the
winding angle is counted from the monomer attached to
the rod (k = 1) one has θ(1) = 0, whereas the total wind-
ing angle defined above is Θ = θ(L). Figure 8 shows the
time evolution of θ(k) vs. k for different times and for
a polymer of length L = 512 for a planar RW. At t = 0
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FIG. 8: Time evolution of the local winding angle θ(k) vs.
monomer index k for the 2D RW of size L = 512. The
dashed tilted line corresponds to the fully wrapped confor-
mation θ(k) = ∆θ1k. The data are obtained for increasing
times t1 = 10 000, t2 = 20 000, t3 = 40 000, t4 = 80 000,
t5 = 160 000 and t6 = 320 000. The vertical dashed-dotted
line denotes the boundary between the tight helix of length n
and the loose part of length L− n at the time t1. Inset: The
growth of the loose domain follows the square root behavior
predicted by eq. (5).

the configuration is fully wrapped around the rod which
corresponds to a linear increase θ(k) = ∆θ1k. As the
time evolves θ(k) decreases in a more pronounced man-
ner starting from the free end of the polymer; at short
times there is a domain of length n which is still fully
wrapped as at time t = 0, followed by a loose part of
length L−n. The inset of Figure 8 shows a plot of L−n
vs. t. The data are in very good agreement with the
square root growth predicted by eq. (5). Differently from
the data for the total winding angle of eq. (15), in this
case there are no corrections to scaling expected.

B. Late Stage Relaxation

In the previous section we have fully characterized the
early time relaxation dynamics. We found that the first
regime in which the typical polymer configuration looks
like in Figure 4(b) ends at a time scaling as τ ′ ∼ L2.
At very long times the dynamics was studied in ref. [18]
using a force balance equation for the total winding angle
Θ. This equation reads:

γτ
dΘ

dt
= −∂F

∂Θ
, (16)

where F is the free energy of a polymer in equilibrium
with a total winding angle Θ and where γτ ∼ L1+2ν is the
friction coefficient. The free energy is a function of a scal-
ing variable Θ/(logL)α, where α is an exponent govern-
ing the fluctuations of the winding angle at equilibrium.
For RW’s it is known rigorously [28] that α = 1 while
numerical simulations of 3D SAW’s yield α ' 0.75 [29].
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FIG. 9: Effective exponent defined by eq. (18) for models without self-avoidance in two and three dimensions. Asymptotically
in L this quantity is expected to converge to 2ν + 1 = 2. The solid line is given by eq. (18) with a single adjustable parameter,
the scale factor a.

For small winding angles the free energy is quadratic in
the scaling variable, so that the relaxation to equilibrium
becomes exponential [18]: Θ(t) ∼ e−t/τ where τ is the
longest relaxation time:

τ ∼ L2ν+1(logL)2α . (17)

Since the initial configuration is fully wound with Θ0 ∼
L, the total unwinding time is given by τ∗ ∼ τ logL
[18]. The data are best analyzed using the definition of
a running exponent, which probes the local slope of the
data in a log-log plot. From eq. (17) we get:

δ(L) ≡ d log τ∗

d logL
= 1 + 2ν +

2α+ 1

log(aL)
, (18)

where we have included a scale term a, in order to ac-
count for further corrections to scaling. Figure 9 shows
a plot of the numerical value of δ(L) in two and three
dimensions obtained from simulations of RW’s. These
data extend those of ref. [18] by including the three di-
mensional case for both FCC lattice (b) and off-lattice
(c) models. The data are compared with eq. (18) where
there is only a single adjustable parameter a used in the
fit. The agreement is very good confirming the validity
of the analytical approach of force balancing in eq. (16),
which describes the process using the total winding angle
as a single reaction coordinate.

IV. CONCLUSION

In this paper we have investigated the problem of the
unwinding dynamics of a flexible polymer from a rigid
rod. Scaling arguments and force balance equations al-
lowed us to fully characterize the early stages of the un-
winding and the late stages of the relaxation dynamics.
These arguments are supported by extensive numerical
simulations in two and three dimensions, with and with-
out self-avoidance. The early dynamics can be under-
stood by a three phase picture, where the polymer con-
figuration starting from the fixed end can be described by

a tight helix, a looser helix and a free random coil. The
latter two phases grow in time following two different dy-
namical laws as predicted by eqs. (5) and (10). The anal-
ysis of various quantities from numerical simulations as
metric distances or winding angles are all consistent with
the analytical theory. Interestingly, the first growth law
(5) does not contain the exponent ν and hence is supe-
runiversal, being the same for random and self-avoiding
walks. In the late stage dynamics we have extended the
results of ref. [18] to different models and confirmed the
scaling form of the longest relaxation time which involves
logarithmic corrections.

The emerging picture is that of a relatively quick loos-
ening of the polymer, which remains very close to the rod
in the early stages of the dynamics. This is followed by
an intermediate regime where the distance from the rod
grows in a faster way and leads to the final relaxation.
Differently from the early and late time behaviors the in-
termediate regime does not appear to display a clear cut
scaling. This can be seen, for instance, in the behavior
of R2

e depicted in Figure 2. During early dynamics, until
a characteristic time τ ′, R2

e follows a power-law scaling.
In the late time dynamics R2

e reaches a plateau. The
intermediate time regime links the two regimes showing
no clear evidence of a power law behavior. A typical
snapshot of the intermediate regime is shown in Figure 1
(third configuration from the top). Its characterization
remains a challenge for future work.

The two phase model description of polymer dynam-
ics has recently gained some popularity: as examples we
mention here the case of the translocation of a polymer
through a nanopore [30–32], the pulling of a polymer by
a constant force from one end [26, 27] and the folding of a
DNA hairpin [33]. In these problems the polymer is sub-
ject to some local forcing and set into motion through
the propagation of tension along its backbone. As the
tension does not propagate instantaneously, the polymer
is not set into motion at once. To describe the motion it
is usually assumed that one can divide the polymer into
different phases, which leads to some analytical predic-
tions of the exponents governing the dynamics [30–33].
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In this paper a similar approach was adopted to study a
complementary case, namely that of the relaxation dy-
namics of an initially stretched (helically wrapped) poly-
mer. The excellent agreement between simulations and
model results shown in this paper, corroborates the va-
lidity of a two phase model approach in the description
of nonequilibrium polymer dynamics.
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