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The virial theorem, and the equipartition theorem in the case of quadratic degrees of freedom, are handy
constraints on the statistics of equilibrium systems. Their violation is instrumental in determining how far from
equilibrium a driven system might be. We extend the virial theorem to nonequilibrium conditions for Langevin
dynamics with nonlinear friction and multiplicative noise. In particular, we generalize it for confined laser-
cooled atoms in the semi-classical regime. The resulting relation between the lowest moments of the atom
position and velocity allows to measure in experiments how dissipative the cooling mechanism is. Moreover, its
violation can reveal the departure from a strictly harmonic confinement or from the semi-classical regime.
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I. INTRODUCTION

A major challenge in the field of condensed matter is to
quantify how far from equilibrium a complex system is. In
both hard and soft matter experiments it is often unclear
how driving and dissipation—typically operating locally and
microscopically—manifest in the large scale dynamics. Such
complexity makes detailed measures of dissipation difficult to
perform.

Entropy production, which is proportional to the dissipated
heat for a system in contact with a single thermal bath [1, 2],
is the most used measure of nonequilibrium [3]. Neverthe-
less, it depends on all the nonequilibrated degrees of freedom
of a system, thus making it problematic to be directly mea-
sured [4]. Oftentimes, entropy production is estimated by ‘lo-
cal’ measurement. Indeed, recent advances in nonequilibrium
physics have showed that entropy production can be lower
bounded by the signal-to-noise ratio of a class of observables
[5–7]. Although these inequalities may be useful for station-
ary Markovian systems, they are loose for non-stationary and
non-Markovian dynamics [8]. Moreover, entropy production
becomes useless for systems exhibiting slow dynamics and
long-lived metastable states. Indeed, it can be evaluated diver-
gent on experimental timescales [9] because some backward
transitions cannot be observed.

The probability currents in some reduced phase space can
be considered instead of entropy production [10]. Even
though the method can be useful to detect broken detailed bal-
ance [11, 12]—revealed by the presence of any statistically
significant current—and may be applicable to slow systems, it
suffers from some of the aforementioned downsides. Namely,
a correct estimation of the dissipation cannot be achieved by
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monitoring only a portion of the global phase space of the sys-
tem.

Another common approach consists in comparing the spon-
taneous fluctuations of the systems with its linear response to
an external perturbation. Violation of the proportionality be-
tween the two—the tenet of the fluctuation-dissipation theo-
rem, valid in equilibrium [13]—is then taken as a measure of
nonequilibrium [14–18]. Clearly, this method is not free from
drawbacks either. In particular, the fact that the perturbation
may inadvertently force the system into the nonlinear regime
and the strong dependence on the choice of the observable
make the method of limited efficacy.

The virial theorem is a further result that can reveal signa-
tures of nonequilibrium. Recently, it was noted that it applies
to a large class of stationary states—not necessarily detailed
balanced—in a generalized form, and reduces to the com-
monly known formula under equilibrium conditions [19]. The
relevance of these results is twofold. On the one hand, the vi-
olation of the equilibrium virial theorem—or the equipartition
theorem for the case of quadratic degrees of freedom—can
be used as a measure of nonequilibrium. On the other hand,
the violation of its generalized expression (valid away from
equilibrium) can reveal the breakdown of the conditions un-
der which it holds true, namely stationary Langevin dynamics
with additive noise and linear friction.

Here, we further extend the result of [19] by deriving a
generalized virial theorem for Langevin dynamics with multi-
plicative noise and non-linear friction. We then specialize the
results to the semi-classical model of trapped atoms [20–24],
laser-cooled by the Sisyphus mechanism. The violation of the
classical energy equipartition theorem for this system was ex-
perimentally observed by Afek et al. [25], which is however
a combined effect of dissipative cooling and anharmonicity
of the confining lattice potential. Our generalized virial rela-
tions, (28) and (29), respectively, provide a concrete way to
disentangle these effects. Indeed, the presence of a nonhar-
monic external potentials makes (29) invalid, while (28) holds
true; the presence of dissipation makes the combination of
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the higher order moments non-vanishing in both expressions.
Besides that, the simultaneous breakdown of both formu-
las would signify a breakdown of the semi-classical Fokker-
Planck description, which might happen in experiments when
atoms are not trapped in a deep lattice.

II. VIRIAL FOR LANGEVIN DYNAMICS

In this section we derive a nonequilibrium relation between
average kinetic energy and force-dependent terms. It builds
upon the mesoscopic virial equation [19], here with a special
focus on nonlinear frictions. We limit our discussion to cases
where position-dependent forces are conservative and derived
from a confining potential U , while all nonequilibrium effects
are explicitly appearing only in the velocity-dependent forces,
which we associate to the notion of nonlinear frictions. A
generalization to nonconservative position-dependent forces
would be straightforward and was already exposed [19]. Its
derivation used (backward) generators of the dynamics while
here we use the complementary approach: we start from den-
sities and use the velocity dependent Fokker-Planck equation,
also known as Kramers equation.

Let us first briefly consider a Langevin motion for a mo-
mentum p = mdq/dt, where m is the mass of the system.
When particles are in an external potential field U(q), a de-
terministic space-dependent force −U ′ ≡ −∂qU enters in the
Langevin equations

ṗ(t) = −U ′(q) + F (p) +
√

2D(p) · ξ(t)
q̇(t) = p(t)/m (1)

where ξ(t) is a standard white noise and D(p) = D0 +D1(p)
is a diffusion coefficient that in general may have a term
D1(p) depending on the momentum. We choose to interpret
this equation in the Ito convention for stochastic calculus and
to denote this choice by the dot in

√
2D(p) · ξ(t). The term

F (p(t)) represents a momentum-dependent force. It contains
a friction force Ff (p), in general different from the linear
damping ∼ −p of the original Langevin equation, yet we as-
sume that it is odd under velocity reversal Ff (−p) = −Ff (p).

Considering the joint probability density function ρ(q, p, t)
of density of particles in phase space, we have the Kramers
equation,

∂ρ

∂t
+

p

m

∂ρ

∂q
− U ′(q)∂ρ

∂p
=

∂2

∂p2
[D(p)ρ]− ∂

∂p
[F (p)ρ] (2)

where the right-hand side contains the Newtonian streaming
terms. A typical example of deterministic force comes from a
harmonic potential, U(q) = m

2 (ωq)2. This potential is con-
fining (limq→±∞ U(q) = +∞), which is a necessary condi-
tion for the existence of a steady state regime with distribution
ρs(q, p) that fulfills ∂tρs = 0. We consider a generic confin-
ing U(q) and we assume the distribution ρs(q, p) to exist and
to be normalizable. In the following we will only consider sta-
tionary conditions (unless otherwise stated) and averages with
respect to ρs will be denoted by 〈. . .〉. Moreover, for simplic-
ity and in analogy with the harmonic case, we will also assume
that the potential is even, U(q) = U(−q).

We now multiply (2) by qp and integrate by parts over q
and p. The term including ∂2p [D(p)ρ(p)] provides a null con-
tribution because the associated boundary terms are assumed
to vanish. Hence, we get〈

p2

m

〉
− 〈qU ′(q)〉 = −〈qF (p)〉 . (3)

This expression represents a generalized virial relation be-
tween kinetic energy, a virial term−〈qU ′(q)〉, and a nonlinear
dissipative term−〈qF (p)〉. For example, assuming that F (p)
reduces to a linear friction force Ff (p) = −γp/m we get〈

p2

m

〉
− 〈qU ′(q)〉 =

γ

m
〈qp〉 (4)

but here also 〈qp〉 = m
2
d
dt

〈
q2
〉

= 0 in a steady state. Hence
we recover the virial theorem〈

p2

m

〉
= 〈qU ′(q)〉 . (5)

For example, for the harmonic potential it gives〈
p2

m

〉
=
〈
mω2q2

〉
, (6)

namely, the equipartition on the average of kinetic and poten-
tial energies.

An additional relation can be obtained multiplying (2) by
p2 and integrating by parts over q and p.

0 = 〈D(p)〉+ 〈pF (p)〉 (7)

Here we have used the fact that 〈pU ′(q)〉 = m d
dt 〈U(q)〉 van-

ishes in the stationary state. Note that for systems in contact
with a thermal bath, i.e. such that F (p) = Ff (p) = −γp/m
and D(p) = γkBT (with kB the Boltzmann constant), (7)
relates the mean kinetic energy to the bath temperature T
as 1

m

〈
p2
〉

eq = kBT . Here 〈. . .〉eq denotes an average with
respect to the equilibrium Gibbs-Boltzmann probability dis-

tribution ρeq(p, q) = 1
Z e
− 1

kBT [ p2

2m+U(q)], with Z a normal-
ization factor. Therefore, in thermal equilibrium the energy
equipartition (6) is not only between the particle velocity and
position, but also between the particle and the thermal bath
degrees of freedom, in the form〈

p2

m

〉
eq

= kBT=
〈
mω2q2

〉
eq. (8)

However, if F (p) is nonlinear, while (3) remains valid, we
may also evaluate other approaches for obtaining simpler rela-
tions. If the dissipative force is polynomial in the momentum,
it seems reasonable to plug it directly to (3). For example, for
the case of Rayleigh-Helmholtz friction used to describe ac-
tive Brownian particles [26] and molecular motors [27], there
is a velocity-dependent force

F (p) = αp− p3, α > 0. (9)
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This force corresponds in our notation to a nonlinear fric-
tion, which correctly dampens the motion for large velocities
(p > p0 ≡

√
α) while F (p) is in the same direction of the

velocity for p < p0 and hence it effectively propels the slow
particles. By expanding the last term in the mesoscopic virial
equation (3) and collecting also mixed position-velocity terms
from 〈qF (p)〉, we get (recalling that 〈qp〉 = 0)〈

p2

m

〉
− 〈qU ′(q)〉 =

〈
qp3
〉
. (10)

This is simple enough to not need alternative approaches. In
the following sections we show that a better option exists for
systems displaying non-polynomial forces, such as trapped
atoms with Sisyphus cooling, which we now briefly introduce.

III. LASERS AND SISYPHUS COOLING

Cold atoms with a Sisyphus cooling mechanism are perfect
for illustrating the basic steps of the strategy introduced in the
next section. In the semi-classical approximation, we consider
a stochastic motion induced by a laser field on cold atoms
[22, 23]:

ṗ(t) = −U ′(q) +
∂D(p)

∂p
− γp

1 + (p/pc)2︸ ︷︷ ︸
F (p)

+
√

2D(p) · ξ(t)

q̇(t) = p(t)/m (11)

Note that, with respect to the anti-Ito Langevin equation in
[22, 23], the equivalent Ito form (11) acquires an extra term
∂pD(p) in the dissipative force F (p). Here, the momentum-
dependent diffusion constant has the form

D(p) = D0 +D1(p)

= D0 +
D1

1 + (p/pc)2
(12)

where pc is the capture momentum above which cooling be-
comes ineffective, D0 is the constant part of the diffusion co-
efficient, and with a slight abuse of notation byD1(p) we term
the momentum-dependent part of the diffusion coefficient and
by D1 its amplitude. Indeed, in the semi-classical approxima-
tion, the friction for Sisyphus cooling is

Ff (p) = − γp

1 + (p/pc)2
(13)

This friction has two distinct regimes:

Ff (p) ∼ −p for p� pc

Ff (p) ∼ −1

p
for p� pc (14)

Note in particular that the friction tends to zero for p → ∞,
while it retains a linear character for small momenta.

We will focus on a typical experimental condition in which
the confining potential is harmonic,

U(q) =
m

2
ω2q2, (15)

quantity dimensionless

time t t← γt

momentum p v =
p

pc

position q x =
mω

pc
q

angular frequency ω Ω =
ω

γ

diffusion constants D0 D0 =
D0

γp2c

D1 D1 =
D1

γp2c

D1(p) D1(v) =
D1

1 + v2

D(p) = D0 +D1(p) D(v) = D0 +D1(v)

friction force Ff (p) Ff (v) = − v

1 + v2

harmonic force −U ′(q) = −ω2q −U ′(x) = −Ωx

Table I. With a slight abuse of notation, we use the same letter t
both for the physical time and for the dimensionless time. Note that
Ff (v) and D(v) would be proportional to each other and satisfying
a fluctuation-dissipation relation if D0 = 0.

expressed in terms of a typical frequency ω/2π and of the
“mass” m. Given the typical timescale 1/ω and the reference
momentum pc, it is convenient to convert the above equations
in terms of the dimensionless quantities defined in Table I. We
obtain

v̇(t) = −U ′(x) +
∂D(v)

∂v
+ Ff (v) +

√
2D(v) · ξ(t)

ẋ(t) = Ωv(t) (16)

In dimensionless units, the harmonic potential becomes
U(x) = 1

2Ωx2. Any Langevin dynamics with generic con-
fining potential U(x) can be converted in its dimensionless
version (16), as long as a typical timescale 1/ω is defined.
Hence, the force −U ′(x) remains written in a generic nota-
tion as long as we are not specializing the harmonic case.

IV. GENERALIZED VIRIAL RELATION

For systems with a peculiar friction term, we show that
there is an alternative approach to the straightforward equa-
tion (3), which may lead to a simple and elegant generalized
relation involving sums of polynomial terms of the momen-
tum and position, in addition to the usual mean squared mo-
mentum and mean squared position. We saw already that the
standard virial theorem is found technically by multiplying
the Kramers equation (2) by qp and integrating by parts, then
exploiting the fact that the time derivative of 〈q2〉 is zero. We
now aim to use a similar strategy, but due to the non-linearities
we cannot simply consider the product qp.
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In the dimensionless units of Table I, with Kramers equa-
tion

∂ρ

∂t
+ Ωv

∂ρ

∂x
− U ′(x)

∂ρ

∂v
=

∂2

∂v2
[D(v)ρ]− ∂

∂v
[F (v)ρ] ,

(17)

the basic idea is to get back a null term of the form 〈xv〉 = 0
after integration over x, v of (17) multiplied by xg(v), where
g(v) is a function suitable to transform favorably the term
− ∂
∂v [Ff (v)ρ].
To determine which g(v) makes the trick, consider the in-

tegration by parts

−
∫ ∞
−∞

dx

∫ ∞
−∞

dv x g(v)
∂

∂v
[Ff (v)ρ] =

=

∫ ∞
−∞

dx

∫ ∞
−∞

dv x
∂g(v)

∂v
Ff (v)ρ (18)

It is convenient to choose g(v) such that its derivative g′(v) ≡
∂vg(v) satisfies

g′(v)Ff (v) = v ⇒ g′(v) =
v

Ff (v)
, (19)

which leads to

g(v) =

∫
dv

v

Ff (v)
+ const. (20)

Again, with the usual linear friction Ff = −v this would lead
to g(v) = −v + const. The additive constant is not relevant
because it does not enter in (19), thus we could simply choose
g = −v, as above, to simplify the equations and get to the
virial theorem.

In the case of driven cold atoms, by embedding the friction
(13) in (20) we get

g(v) =

∫
dv(1 + v2) + const =

(
v +

v3

3

)
+ const. (21)

In general, multiplying the Kramers equation (2) by xg(v)
with g(v) obtained through (20), after the usual averaging one
gets

−Ω 〈vg(v)〉+

〈
g′(v)x

[
U ′(x)− ∂D

∂v

]〉
=

= 〈D0xg
′′(v)〉+ 〈D1(v)xg′′(v)〉+ 〈g′(v)xFf (v)〉 .

(22)

where for convenience we have already split the term with
D0 from the one with fluctuating diffusion coefficient D1(v).
The last average on the right, by construction, transforms to
the null term 〈xv〉 = 1

2
d
dt

〈
x2
〉

= 0 at steady state. Moreover,
if we assume that the velocity-dependent part of the noise in-
tensity satisfies the (non-linear) Einstein relation [28]

D1(v) = α
Ff (v)

v
= α

1

g′(v)
, (23)

(with some constant α), we obtain that

−D′1g′ = D1g
′′ (24)

This is indeed the case for Sisyphus cooling, and generally
applies to any system in which the friction Ff and the part of
the noise with intensity D1 are originated in the same bath.
With the definition (20) and the assumption (23), due to (24)
we have that two terms cancel each other in (22) and hence it
reduces to the main general equation of this work,

−Ω 〈vg(v)〉+ 〈g′(v)xU ′(x)〉 = D0 〈xg′′(v)〉 (25)

or

−〈vg(v)〉+

〈
v

Ff (v)
xU ′(x)

〉
= D0

〈
x
∂

∂v

(
v

Ff (v)

)〉
(26)

Note that the constant in (20) remains irrelevant as long as
〈v〉 = 0. One can check that (26) turns into the standard
equipartition (6) when Ff = −v.

A. Generalized virial relation for Sisyphus cooling

With Sisyphus friction (13) with g(v) = v + v3/3 we may
simplify (26) to

−Ω

〈
v

(
v +

v3

3

)〉
+
〈
(1 + v2)xU ′(x)

〉
= D0 〈x · 2v〉 = 0

(27)

in which again we have used 〈xv〉 = 0. Therefore, for cold
atoms driven by a laser one should observe

Ω
〈
v2
〉

+
Ω

3

〈
v4
〉

= 〈xU ′(x)〉+
〈
v2xU ′(x)

〉
. (28)

With the harmonic potential U(x) = 1
2Ωx2 this relation be-

comes an equation involving simple even moments of velocity
and position, 〈

v2
〉

+
1

3

〈
v4
〉

=
〈
x2
〉

+
〈
v2x2

〉
. (29)

In comparison to the equipartition 1
2

〈
v2
〉

eq = 1
2

〈
x2
〉

eq be-
tween kinetic and potential degrees of freedom, one notes the
additional presence of two other moments of velocity and po-
sition. Arguably, it is more elegant and straightforward than
the form one would obtain by applying directly the general
equation (3), which would contain a term averaging a ratio〈
vx/(1 + v2)

〉
.

Note that (29) remains valid even for pc → ∞, when
the friction is linear and the dynamics is thus in equilib-
rium. Indeed, we can check that 1

3

〈
v4
〉

eq =
〈
v2
〉2

eq thanks
to the Gaussian statistics of the velocity distribution, and
Ω
〈
v2x2

〉
eq =

〈
v2
〉

eq

〈
x2
〉

eq =
〈
v2
〉2

eq, because x and v are
independent and the equilibrium equipartition (6) (in the di-
mensionless form) holds.

Finally, we mention that other choices for g(v) are possi-
ble. Each would yield a different generalized virial relation
involving higher moments of x and v. We provide an example
in Appendix A.
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Figure 1. Example of time series of velocity, minus friction force,
and position, for a harmonic potential with Ω = 0.1, D1 = 0 and (a)
D0 = 0.05, (b) D0 = 0.2, (c) D0 = 1. Numerical integrations of
(16) follow the scheme (30) with dt ≤ 10−4.

B. Numerical results

To obtain trajectories for Sisyphus cooling trapped by a
harmonic potential, in the simplified setup with D1 = 0,
we have integrated numerically (16) by adapting a standard
scheme [29] to the case of nonlinear friction force. Within
each time step dt, the following algorithm generates the new
values of (dimensionless) velocity and position (vt+dt, xt+dt)
from (vt, xt) and harmonic force ft = −Ωxt:

ct = e−
1
2dt/(1+v

2
t ) (30a)

vt+dt/2 = ctvt +
dt

2
ft +BN (30b)

xt+dt = xt + Ω dt vt+dt/2 (30c)

ft+dt = −Ωxt+dt (30d)

ct+dt/2 = e−
1
2dt/(1+v

2
t+dt/2) (30e)

vt+dt = ct+dt/2vt+dt/2 +
dt

2
ft+dt +BN ′ (30f)

where B =
√

(1− e−dt)D0 is the prefactor of normally
distributed random numbers N ,N ′, and where friction terms
ct, ct+dt/2 depend on the velocities vt and vt+dt/2, respec-
tively.

We use a time step dt = 10−4 for D0 < 0.5 and dt =
0.5× 10−4 for D0 > 0.5. For each set of parameters we col-
lect N = 106 samples, with a sampling time step ∆t = 1 ≥
104dt. The autocorrelation Cx(i) = 〈xjxj+i〉 of the collected
data series {xi}, i ≤ N , is used to compute the autocorrela-
tion “time” i∗, as the smallest i∗ such that Cx(i∗)/Cx(0) <
e−1. The corresponding number of independent samples
N ′ = N/i∗ is used to compute errors for each average quan-
tity 〈q〉 =

∑
i≤N qi/N as [(

〈
q2
〉
− 〈q〉2)/N ′]1/2.

Figure 2. For a harmonic potential with Ω = 0.1,
〈
v2
〉
/D0 and〈

x2
〉
/D0 as a function of D0 (D1 = 0). For D0 → 0 equipartition

is approximately valid while it is violated for 0.1 . D0. Dotted lines
are guides to the eye.

Some parts of time series generated with this method are
shown in Fig. 1 for three values of D0. The friction force
essentially equals (minus) the velocity when the system is
affected by a weak noise (small D0, as in Fig. 1(a), yields
−Ff ' v). Fig. 1(b) shows longer periods of |Ff | < |v| for
larger D0’s, which are induced by broader variations of the
velocity v. Finally, Fig. 1(c) displays the broad fluctuations of
x and v in the large D0 regime, where their density function
acquires fat tails [22, 23].

In Fig. 2 we plot
〈
v2
〉
/D0 and

〈
x2
〉
/D0 as a function of

D0, with Ω = 0.1. At small values of D0 they both tend
to 1, showing that normal equipartition (8) at “temperature”
kBT 7→ D0 is approximately valid in that range. This is
because the friction force becomes linear in v in the limit
D0 → 0. Conversely, standard equipartition breaks down for
increasing values of D0. Fig. 3 better visualizes the deviation
from equipartition by plotting the ratio

χ ≡
〈
x2
〉

〈v2〉
, (31)

while the ratio

χgen ≡
〈
x2
〉

+
〈
v2x2

〉
〈v2〉+ 1

3 〈v4〉
(32)

remains equal to 1 (within statistical uncertainty) for all values
ofD0, confirming that our new generalized virial relation (29)
is valid.

Analytical results valid in the regime of strong confinement
(Ω� 1) and constant diffusion function (D1 = 0), show that
no stationary probability density exists for D0 > 1, and some
moments, such as the average energy, are time-dependent for
D0 ≥ 1/2 [23]. Notwithstanding, we decide to plot the em-
pirical averages of v2 and x2 up to D0 = 1. Interestingly,
data for χ suggests that standard yet nonthermal equipartition〈
x2
〉

=
〈
v2
〉
6= D0 may be also satisfied at large values ofD0.
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Figure 3. Ratio of equipartition terms vs D0 (D1 = 0, Ω = 0.1),
highlighting the departure from normal equipartition, the validity of
the new generalized virial (29), and the violation of the latter in a
nonharmonic system perturbed by a quartic potential energy term.
The gray curve is the analytical expansion of χ up to third order
in D0, Eq. 26 in Ref. [23]. Dotted lines are guides to the eye and
the gray area refers to the regime D0 > 1/2 where sampling is not
stationary due to fat tails in the phase space probability density.

This finding can be heuristically explained by the fact that for
largeD0, large noise kicks accelerate the particle into a regime
of essentially vanishing friction force (see (14)). The resulting
motion is characterized by long periods of quasi-periodic os-
cillations, with minimal dissipation only at the turning points,
see Fig. 1(c). Having this picture in mind, we conclude that
the standard equipartition may approximately hold even far
from equilibrium, as we can guess from (3) (still assuming
that d

dt 〈qp〉 ' 0) by setting F (p) ' 0.
Finally, we recall that (29) is valid for quadratic degrees of

freedom and can be used to detect departures from a purely
harmonic potential. By adding a term Uε = Ωεx4/4 to the
confining potential (ε = 10−3), we see in Fig. 3 that indeed
χgen departs from 1 at sufficiently high values of D0, where
the system can explore the nonharmonic region of the poten-
tial. The trend of χgen toward small values is reasonable: with
respect to the harmonic case, the more confined motion seems
to reduce more the position dependent term

〈
x2
〉

+
〈
x2v2

〉
than the term

〈
v2
〉

+
〈
v4/3

〉
depending purely on the veloc-

ity.

V. CONCLUSIONS

For the single-particle Langevin equations with nonlinear
friction and multiplicative noise we have shown a general
method to derive extensions of the virial law to nonequilib-
rium stationary states. In particular, for trapped atoms cooled
by the Sisyphus mechanism we have obtained simple explicit

expressions that involve only the lowest moment of the atom
position and velocity. For the case of harmonic confinement
and additive noise, we have numerically verified that our gen-
eralized virial relation holds for all relevant values of the
noise strength, while equilibrium equipartition is broken at
intermediate noise strengths. These results can be tested in
experiments [25], and the method introduced here may be ex-
tended to other systems displaying non-polynomial friction
forces (see e.g. [30]).
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Appendix A: Alternate version of generalized virial

Let us reconsider the more general case D(v) = D0 +
D1/(1 + v2) in which D1 is not null. The aim remains to
find equations involving polynomial terms of x and v. Thus,
a suitable g(v) now should remove both the ∼ (1 + v2)−1 in
D(v) and a ∼ (1 + v2)−2 arising from the gradient of D(v)
in the drift of the stochastic equations. It turns out that an
interesting choice is

g(v) = v +
2

3
v3 +

1

5
v5, (A1)

g′(v) = 1 + 2v2 + v4 = (1 + v2)2, (A2)

g′′(v) = 4v(1 + v2). (A3)

Indeed, by using it in (22) together with U ′ = Ωx, we get

0 =Ω

[〈
v2
〉

+
2

3

〈
v4
〉

+
1

5

〈
v6
〉]

(A4)

+ (4D0 − 1)
〈
xv3
〉
− Ω

[〈
x2
〉

+ 2
〈
x2v2

〉
+
〈
x2v4

〉]
,

where we set again 〈xv〉 = 0 thanks to the condition of sta-
tionary state. This is another generalized virial relation in
which standard deviations of the position and velocity terms
are joined by mixed higher order moments. In (A5) there is
no explicit dependence on the constant D1, which enters only
implicitly in shaping the steady state averages. Compared to
the relation (29), this equation is slightly more complex and
includes an explicit dependence on the other constant D0 en-
tering in the form of the noise strength D(v). Note that plug-
ging (29) into (A5) we can eliminate some higher moments,
arriving at

〈
x2
〉
−
〈
v2
〉

+
1

5

〈
v6
〉
−
〈
x2v4

〉
=

1− 4D0

Ω

〈
xv3
〉
. (A5)

However, these equations involve high moments of velocity
and position, hence in practice their precise evaluation re-
quires a better amount of sampling than that needed for (29).
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