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1t will be noticed that this is the same time as would be required for the ball to fall

straight down from rest: the horizontal motion has no effect on the yertical motion.

The value of x att = t,1s therefore
oty = 6.0M 51 %208 = 12 m,

this is the distance from the bottom of the wall at which the ball lands.

Q . .
MWSBEo 2. A projectile has a range of 50 m and reaches 2 maximum height of

10 m. What is the elevation of the wﬁounQ:aQ
Solution. 1f we divide Eq. (4.9) by (4.10) we get
H v? sin?0/28

.\\\\\\\\Hw»mza.

R 5 2sin 0 cos 0lg

Therefore
tan 6 = 4H/R = 4 x 10 m/50m = 0.8,

hich yields
i o = 38° 40"
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Fig. 4.19. The trajectory of a golf-ball. Curve A shows the path if only gravity acts on

the ball; curve B the path if air resistance is also considered; and curve C the path
when the effects of backspin are taken into account.

9.8 m s~2 downwards is not compatible with the observed facts, for it leads to
predicted times of flight that are very much shorter than those actually observed
and to a terminal speed that is equal to the speed on leaving the tee. This would
make a golf-ball a lethal weapon indeed. Changing the physical assumptions to
include the effect of air resistance modifies these results considerably. As shown
in Fig.4.19, the trajectory is no longer symmetrical, which is in agreement with
observed trajectories, and the calculated terminal speed,comes out to be much more
reasonable. But the times of flight for angles of o_n«m:o: comparable to those
observed (< 15°) all turn out to be much too shott; only two or three seconds.
No amount of juggling with the parameters of the problem can give a satisfactory
fit with the observed facts. In particular, it is not unknown for good drives to
bend upwards for a good part of their total carry, and this implies, as we have
seen, an upward acceleration toward the concave side of the curve. Hence, the
conclusion is forced on the physicist that there is another influence at work, and
this can be none other than the spin of the ball. When this is taken into account,
good agreement can be obtained with observation. The lift on a ball with back-
spin is quite analogous to the lift on an aerofoil. The importance of backspin
in the golf drive was first realised by P. G. Tait in 1896. His approach, briefly
indicated above, was that of the true physicist, and his sequence of assumption,
mathematical deduction of consequences, checking with observation, reformula-
tion of assumption, . . . » and so on, was a perfect example of scientific method,
even if the application was to what heretics might regard as only a game. As a
moral tailpiece, it might be added that, although he knew more about the physics

of golf than any man of his day, Tait himself was only a mediocre player of the
game.

4.8 UNIFORM CIRCULAR MOTION

Consider a particle traveling round a circular path with constant speed v. The
time to go once round is called the period of the motion and is written 7. Since

the circumference of a circle is 2, the relation between speed, radius, and period
is

T = 2mr|o. (4.12)
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The reciprocal of the period is called the frequency and will be written in this book
as f. Other common symbols for the frequency are n and ». The angular velocity
or angular frequency of the particle is defined as the rate at which the radius from
the center of the circle to the particle sweeps out angle. Since by definition it
sweeps out 2w radians in time 7, the angular velocity is simply

2w
Wiy = 2nf. (4.13)
Since the period is a time, it has units s, therefore both fand w have units s=*. It
is conventional to write the units of w as rad s™%, and the units of f as simply s=1,
or ¢fs, standing for *“cycles per second”. The cycle per second is also known as the
hertz (Hz). The radian unit of angleis discussed in Appendix A. It has no dimensions.
Substituting the value of T from Eq. (4.12) into (4.13) gives

w = vfr, or v = wr. (4.14)

Consider the position vectors r; and r, for two successive instants of time,
as shown in Fig. 4.20. These vectors are, of course, both of length r, equal to the
radius of the circle, and so there is no change in the magnitude of r with time. But
there is a change of direction, and this means that the vector is changing with time.
The displacement of the particle between the two instants is the difference

Ar =1, — 1y = Py Ps.

It will be apparent that as the interval of time is shrunk to zero in the usual way,
then this vector displacement will tend to become perpendicular to the radius.
Since the velocity vector is defined by the relation
§ ol Ar
v=i=lim —
Ato A’
the conclusion is that, for circular motion, the velocity vector is perpendicular to
the position vector. The velocity vector is always along the tangent line to the path,
but it is only perpendicular to the position vector for a circular path, since this is a
unique geometrical property of a circle. This is true whether the speed is constant
or not. The rule for obtaining the velocity from the position vector may be formu-
lated as follows.

a) The magnitude of the rate of change of position in uniform circular motion is
obtained by multiplying the magnitude of the position vector by the angular
velocity w (Eq.4.14).

b) The direction of the rate of change of position is perpendicular to the position
vector, the sense being given by a rotation of the position vector in the direction
of motion.

This rule is illustrated in Fig. 4.21. The velocity vector and the position vector
have been drawn from a common point, which may be taken as the center of the
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Em.. A.NA... The &mm_moaana of a particle Fig. 4.21. The relation of the positiot
Er_ms is undergoing uniform circular vector and the velocity vector in uniforn
motion. circular motion.

circle. Vectors may always be slid about parallel to’' themselves on the page: al
that matters is that the magnitude and the direction be right.

.>w \mro particle moves with constant speed round the circle, the position vector
(which is simply the directed line from the center to the particle) rotates with
constant angular velocity w, and the velocity vector also rotates with constant
angular velocity w but is 90° ahead of the position vector by the rule above. In
Fig. 4.22 the position vectors at two instants of time have been drawn, as in Fig,
4.20, and the velocity vectors v, and v, for the same two instants have also been
drawn from the center of the circle. The angles P,OP; and P,OP} are both 90°.

m.,..m. 4.22. The displacement and the change of velocity of a particle undergoing uniform
circular motion.
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The change in velocity is Av = P,P}, = V3 — V3, and so the average acceleration
over the interval is Av/At = (Vo — vy)/(tz — t1). As the interval At is shrunk to
zero, Av becomes perpendicular to v in exactly the same way as Ar becomes per-
pendicular to r. Note that the magnitude of the velocity does not change with
time, only its direction. It follows that the instantaneous acceleration defined by
A

a=v=fi=lm —

Ao Dt

is perpendicular to the velocity, just as the instantaneous velocity is perpendicular
to the position vector. Study of Fig. 4.22 will show that the triangles OP,P; and
OP!P; are similar, and therefore, by the properties of similar triangles, the ratios

of corresponding sides are equal. Thatis,
Arjr = Do/v,

since ry="ro =1 and v, = Vg = V. Dividing both sides of this equation by
At gives

1Ar 140
rop T bl
Proceeding to the limit by shrinking the interval At to zero leads directly to
o[r = afv.

This gives the following alternative expressions for the magnitude of the accelera-
tion, by the use of Eq. (4.14):

a = v¥r = 0’ = v (4.15)

The direction of the acceleration is perpendicular to the velocity just as the velocity
is perpendicular to the position vector, and study of Fig.4.22 shows that the accel-
eration leads the velocity by 90° just as the velocity leads the position vector by
90°. Thus the rule for obtaining the acceleration from the velocity is the same as
the rule for obtaining the velocity from the position vector. The magnitude of the
acceleration is the angular velocity times the magnitude of the velocity; the direc-
tion is 90° ahead of the velocity. Figure 4.23 shows the three vectors 1, , and a
for the same instant, all drawn from the center of the circle. The acceleration is
180° ahead of the position vector, which is another way of saying that it acts
toward the center of the circle. It is called the centripetal acceleration. The magni-
tudes of the three vectors are constant in time, but the vectors themselves are not,
since their directions are constantly changing. The general rule for finding the
rate of change of any vector in uniform circular motion should now be clear from
the above discussion; and if, for example, one wanted to find the rate of change of
the acceleration, then, clearly, one would find the magnitude by the product

wa, and the direction by rotating once again through 90° in the sense of the rotation

of the particle. This would give the vector shown dotted in Fig. 4.23.
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