Esercizi di statica e dinamica dei fluidi; termodinamica

Esercizio 1.

Una sfera metallica vuota, di diametro esterno d_1 e interno d_2 , galleggia sulla superficie di un liquido. La densita` del metallo e` ρ , quella del liquido ρ_0 . Determinare la massa m che deve essere messa all'interno della sfera affinche` essa si porti al di sotto della superficie del liquido.

Esercizio 2.

Un tubo orizzontale di raggio R=0.5 mm e lungo d=20 cm e` percorso da acqua (densita` 10^3 kg m³, viscosita` 10^{-3} kg/(ms)). La differenza di pressione e` p_1 - p_2 =1 atm. Determinare la portata del condotto (si assuma regime laminare).

R: 1.23 10⁻³ litri/s.

Esercizio 3.

In un elevatore idraulico (essenzialmente due cilindri, ognuno provvisto di pistone mobile, collegati da un tubo orizzontale, e contenenti del liquido), i diametri del pistone grande e piccolo sono, rispettivamente, 15 e 4 cm. Si calcoli la forza che deve essere applicata al pistone piccolo per sollevare un autocarro di 1 ton sostenuto dal pistone grande.

Esercizio 4.

Esercizio 33, pag. 330 del libro.

Esercizio 5.

3 moli di un gas ideale monoatomico compiono una trasformazione a volume costante dallo stato A (p_A = 3 atm; V_A =1 litro) allo stato B (p_B = 3 p_A) seguita da una isoterma che porta il gas allo stato C, dove la pressione e` uguale al valore iniziale ed il volume del gas e` aumentato. Si disegni la trasformazione nel piano di Clapeyron e si calcoli:

- i) T_B
- ii) Il lavoro L_{BC} del gas

Si supponga ci sia una ulteriore trasformazione a pressione costante riporta il sistema allo stato iniziale. Si calcoli

- i) il lavoro L_{CA} del gas.
- ii) il calore totale scambiato dal gas con l'ambiente esterno durante l'intero ciclo.

Esercizio 6.

Un cilindro contiene 0.5 moli di un gas ideale alla temperatura di 310K. Il gas si espande in modo isotermo (ovvero a temperatura costante) da V_i =0.31 m³ a V_i =0.45 m³.

Qual e`il calore che deve essere fornito al gas perche`avvenga quetsa trasformazione isoterma? R: 480 I.

Esercizio 7.

Una bombola contiene 3.5 litri di ossigeno alla temperatura di 24° C e alla pressione di 2.1×10^7 Pa. Aggiungendo dell'altro ossigeno nella bombola alla stessa temperatura la pressione cresce di 4.1×10^7 Pa. Quante moli di ossigeno avete aggiunto?

R: 29.76 moli

Esercizio 8.

Una mole di elio e` inizialmente alla temperatura di 323 K. Trovare la temperatura finale del gas se 2250J di calore sono trasferiti al gas e questo compie 834J di lavoro. Si calcoli qual e` la energia cinetica media delle molecole dopo la trasformazione.

Esercizio 9.

Una mole di gas ideale biatomico e` soggetta ad una espansione dallo stato termodinamico A (V_A =2 10^{-3} m³, p_A =20 10^5 Pa) allo stato B (V_B =2 10^{-3} m³, p_B =20 10^5 Pa). Si determini la variazione di energia interna del gas.