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5.4 THE FORCE OF GRAVITY

All of Newton’s efforts in mechanics were directed toward the aim of explaining
the motions of the planets round the sun and of the moon round the earth.
His supreme achievement lay in the recognition that the force that caused an
apple to fall to the ground and the force that kept the moon in place in its orbit
round the earth were only different manifestations of one universal force. The
form of this force necessary to explain the known facts about the motion of the
planets and the moon was worked out logically, and his law of universal gravita-
tion was formulated as follows.

Every particle in the universe attracts every other particle with a force that
varies directly with the product of their masses and inversely with the square
of their distance apart. ’

To be of much use this formulation, which is in terms of particles, must be supple-
mented by a second law so that it can be applied to the sun, the earth, and the moon,
This second law may be stated as follows.

In its external gravitational action, a spherical body with a spherically sym-
metric distribution of mass acts as if its mass were concentrated at its center.

This second law does not have the same status, of course, as the law of gravitation
itself, since it can be shown to follow from it. Nevertheless, it is convenient to
state it overtly, since the proof is too difficult for an introductory book such as
this one. Note that it is not enough for the body to be spherical. Thus a hemi-
sphere of lead and a hemisphere of wood of the same radius can be joined face to
face to form a sphere, but in such a case the sphere would not act as if all the mass
were concentrated at the center, since the distribution of mass would clearly not
have spherical symmetry. On the other hand, the earth has a much higher density
in its core than near the surface, but the variation of density only depends on the
distance from the center of the earth and so the mass distribution has spherical







symmetry. Figure 5.3 shows two spheres with centres at O and P. Tl}e center Pis
considered to be located with respect to O as origin by. the position vector r.
Then, the force which sphere O exerts on sphere P is given mathematically as

Mm N
FOP = —0 “r‘a““ ¥, (‘}k) (5~9)
where M and m are the respective masses. The force which sphere P exerts on

sphere O is Fpo = —Fyp, by the third law. The negative s.ign .in Eq. (5._9) is
necessary, since the force is attractive, i.e. from P to O in the direction opposite to

r. The constant of proportionality in Eq. (5.9) is called the gravitational constant

and has the value G = 6.67 X 107" N m? kg2 (or m® kg™*s7%). It is measured

with a torsion balance entirely analogous to that used to verify Coulomb’s law in

electrostatics (cf. Section 22.4), but the experiment is difficult to perform and G
is the least accurately known of all the constants of nature.

Fig. 5.4. A small body and the earth exerting gravitational forces on each other.

Consider now a mass m near the surface of the earth. The 'gravitational fore
exerted on it by the earth has a magnitude G Mm/f*z, whe':re M is l_lcre the mass
the earth. The correct value of r to be substituted into this expression for the forc
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where R is the radius of the earth and / is the height of the obje(;t above éh;:f ear‘i
as shown in Fig. 5.4. Since the radius of the cartl} is 6.37 x 10° m, the lh'eft
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the vectors only. This simplification will rarely cause any ambiguity. The mass of
the object is scen to cancel out from Eq. (5.10), giving

g = GMJR®. (5.11)

This is the gravitational acceleration of any object near the earth, and is seen to
be a constant. Its value is 9.8 ms~2 In fact, g varies slightly over the surface
of the earth for two main reasons: one, the radius of the earth at the equator is
greater than the radius at the poles; two, the earth is spinning about its axis.
The maximum difference in g between any two points on the earth only amounts to
about 0.05 ms™2, and this is negligible for most purposes. At any one place on
earth the gravitational acceleration is rigorously independent of the mass of the
object, and this is the justification for the use of the beam balance for comparisons
of mass.

The force exerted on the object by the earth is called the weight of the object,
and is denoted by W, or more simply by W when the vector nature of this force
need not be taken into account. By Eq. (5.10)

W = mg, (5.12)
The reaction to this force, in the sense of the third law, is an equal and opposite
force exerted by the object on the earth, and acting at the center of the earth.
Thus every time an apple falls to the ground, the earth accelerates upwards toward
the apple. Fortunately, the enormous mass of the earth renders this real mechanical
effect of no practical importance. It must be stressed again that the question of how
the carth exerts its force on an object over the intervening distance {and vice versa)
is left open. The physicist is satisfied with the quantitative law of gravitation

expressed in Eq. (5.9) without worrying about the philosophical implications of
action at a distance.

Example 1. What is the acceleration of gravity at a height of 1000 km above the
surface of the earth?

Solution. By Newton’s second law, the acceleration of gravity at any height is the
force exerted on any object at that height divided By the mass of the object. Let
us denote it by g’ to distinguish it from g, the acceleration of gravity at the surface
f the earth. Then the magnitude of g’ is given by
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his equation tells us the manner in which g’ varies with height. Using the value

f R in the text and # = 10° m, we pet

f e —26_’332: —2 - =
g 8ms 737 9.8 ms® X 0.747 = 73 m s

ven at this great height the gravitational acceleration is still very large.







