
5.3 

~HE LAWS OF TRANSLATlONAL MOTION 

le 2. An object of mass 10 kg is subjected simultaneously to two constant 
a force Fl of magnitude 5 N towards the North, and a force Fil ofmagnitude 

)wards the East. .What is the acce1eration of the object? 

m. The unba1anced force acting on the object is Fl + F2
, and this vector 

i illustrated in Fig. 5.2. The magnitude of the sum is given by 

Fil = (5 N)2 + (12 N)2 = (13 N)I!, 

:. F 13 N. 
'orce F acts along the Une OP at an angle eNorth of East as shown, where 

tan e = 5{12 = 0.417. 

efore () = 22°37'. The acceleration is also directed a10ng OP, and is of 

nitude kg = 1.3 m a F{m 13 

p 

1<'.=5 N 

F = 12 N -+'Q~~------------~ 
2o 

Fig. 5.2. IIlustrating Example 2. 

xample 3. Two sliders on an air track are fitted with magnets arranged in such a 

ay ,hat the ,lide" <epel one anoth". The ,lide" a<e pu,hed \ogeth" until they 

re nearly in contact and are then released. One slìder, of mass 0.8 kg, is observed 

() move away with an initia1 acceleration of 3 m ç2, What is the initial acceleration 


tf the other slider if its mass is 0.6 kg? 

)olution. We do not need to know anything about magnetism to solve this prob­

lem: all that is necessary is to rea1ize that with magnets present the sliders 

interact with one another, and that Newton's third law will apply to this inter­

action. From Eq. (5.5) we get 
Fl = -F , and so mlal = -mila\!. 

2

The negative sign tells that the second slider moves off with an acceleration in a us 
direction opposite to the acceleration of the first slider, and the magnitude of the 
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5.4 THE FORCE OF GRAVITY 

Ali of Newton's efforts in mechanics were directed toward the aim of explaining 
the motions of the planets round the sun and of the moon round the earth. 
His supreme achievement lay in the recognition that the force that caused an 
appie to fall to the ground and the force that kept the moon in piace in its orbit 
round the earth were only different manifestations of one universal force. The 
form of this force necessary to explain the known facts about the motion of the 
planets and the moon was worked out logically, and his law of universal gravita­
tion was formulated as follows. 

Every partide in the universe attracts every other partic/e with a force that 
varies directly with the product of their masses and inversely with the square 
oftheir distance aparl. . . 

To be of much use this formulation, which is in terms of particles, must be supple­
mented by a second law so that it can be applied to the sun, the earth, and the moon. 
This second law may be stated as follows. 

In its external gravitational action, a spherical body with a spherically sym­
metric distributioll of mass acts as if ifs mass )Vere concentrated at ifs center. 

This second law does not have the sa me status, of course, as the law of gravitation 
itself, since it can be shown to follow from it. Nevertheless, it is convenient to 
state it overtly, since the proof is too difficult for an introductory book such as 
this one. Note that it is not enough for the body to be sphericaL Thus a hemi­
sphere of lead and a hemisphere of wood of the same radìus can be joined face to 
face to form a sphere, but in such a case the sphere would not act as if ali the mass 
were concentrated at the center, since the distribution of mass would clearly not 
have spherìcal symmetry. On the other hand, the earth has a much higher density 
in its core than near the surface, but the variation of density only depends on the 
distance from the center of the earth and so the mass distribution has spherical 





symmetry. Figure 5.3 shows two spheres with centres at O and P. The center P is 
considered to be located with respect to O as ori gin by the position vector r. 
Then, the force which sphere O exerts on sphere P is given mathematicaUy as 

Mm
F = _G r 3 

(.~ ) (5.9)
op r, 

where M and m are the respective masses. The force which sphere P exerts on 
sphere O ìs F po = -Fop, by the third law. The negative sign in Eq. (5.9) is 
necessary, since the force is attractive, i.e. from P to O in the direction opposite to 
r. The constant of proportionality in Eq. (5.9) is called the gravitational constant 
and has the value G = 6.67 X 10- 11 N m2 kg- 2 (or m3 kg- 1 ç2). It is measured 
with a torsion baI ance entirely analogous to that used to verify Coulomb's law in 
electrostatics (cf. Section 22.4), but the experiment is difficult to perform and G 
is the Ieast accurately known of all the constants of nature. 
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Fig. 5.4. A small body and the earth exerting gravitational forces on each other. 

Consider now a mass m near the surface of the earth. The gravitational 
exerted on it by the earth has a magnitude GMmlr2, where M is here the mass 
the earth. The correct vaIue of r to be substituted into this expression for the 

is 
r = R + h, 

where R is the radius of the earth and h is the height of the object above the 
106 as shown in Fig. 5.4. Since the radius of the earth is 6.37 X m, the differc",,;;i 

between r and R is negligible for all ordinary heights h. So the force which 
earth exerts on the object is essentialIy GMmIR2, and this, by the second law, 
cause the object to accelerate towards the surface of the earth with an 

g. Thus 
F = G(MmIR2) = mg, 

where, for simplicity, the equation has been written in terms of the magnitudes 
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the vectors only. This simpIification will rarely cause any ambiguity. The mass of 
the object is seen to cancel out from Eq. (5.10), giving 

g = GMIR2. (5.11) 

This is the gravitational acceleration of any object near the earth, and is seen to 
be a constant. Its vaIue is 9.8 m g- 2. In fact, g varies sIightly over the surface 
of the earth for two main reasons: one, the radius of the earth at the equator is 
greater than the radi us at the poles; two, the earth is spinning about its axis. 
The maximum difference in g between any two points on the earth only amounts to 
about 0.05 m g-2, and this is negligible for most purposes. At any one pIace on 
earth the gravitational acceleration is rigorously independent of the mass of the 
object, and this is the justification for the use of the beam balance for comparisons 
of masso 

The force exerted on the object by the earth is called the lI'eìght of the object, 
and is denoted by W, or more simply by W when the vector nature of this force 
need not be taken into account. By Eq. (5.10) 

W = mg. (5.12) 

The reaction to this force, in the sense of the third law, is an equal and opposite 
force exerted by the object on the earth, and acting at the center of the earth. 
Thus every time an appIe falls to the ground, the earth accelerates upwards toward 
the appIe. Fortunately, the enormous mass ofthe earth renders this real mechanical 
effect of no practical importance. It must be stressed again that the question of how 
the earth exerts its force on an object over the intervening distance (and vice versa) 
is left open. The physicist is satisfied with the quantitative law of gravìtation 
expressed in Eq. (5.9) without worrying about the philosophical implications of 
action at a distance. 

Examplc 1. What is the acceleration of gravity at a height of 1000 km above the 
of the earth? 

So/ution. By Newton's second law, the acceleration of gravity at any height is the 
force exerted 011 any object at that height divided oy the mass of the object. Let 
us denote it by g' to distinguish it from g, the acceleration of gravity at the surface 

the earth. Then the magnitude of g' is given by 

GM GM GM( R)2 (R)2
g' = = (R + h)2 = R2 R -+h g R+-h . 

equation tells us the manner in which g' varies with height. Using the va/ue 
R in the text and h = 106 m, we get 

6.37 2 

g' = 9.8 m S-2 -) = 9.8 m S--2 X 0.747 = 7.3 m ç2.(7.37 

at this great height the gravitational acceleration is stili very large. 




