Prof. Nicola Bartolo

Physics and Astronomy Department "G. Galilei" Office 236

e-mail: <u>bartolo@pd.infn.it</u>

Tel. 049-827-7125

http://www.pd.infn.it/~bartolo/

✔ Goals:

Early Universe physics nowadays is a building block of modern cosmology. The course aims at

- offering an up-to-date overview of the main aspects of the physics of the Early Universe
- providing the necessary tools to *understand and analyze* such aspects, both from a modelling and an observational point of view
 - (e.g., some basic principles and tools that can be appllied to different issues)
- being able to solve different types of problems

Course contents:

The course contains three main parts:

- I) the issue of the initial conditions (inflationary models)
- II) cosmological perturbations
- III) baryogenesis; production of dark matter particles

✓ Relevance for the degree in Physics:

Interconnections with

- Cosmology
- Astroparticle physics
- Relativisitic Astropysics
- General Relativity
- Theoretical physics
- Field theory
- Multimessenger Astrophysics
- Gravitational physics

The course is higly interdisciplinary, but self-contained!

Course contents in details

- General Introduction. The "issue" of initial conditions: primordial density perturbations at the origin of large-scale structure formation.
 Inflation, dark matter (and baryogenesis), cosmological perturbations: *ingredients* of the early universe that go beyond the standard Hot Big-Bang model.
- Short recalls of the standard Hot Big-Bang cosmological model and of its main `
 ``shortcomings":

The horizon problem and its different formulations; the flatness problem (evolution of the parameter density); mention to cosmic defects

- Inflationary cosmology in the early universe:

solutions to the standard Hot Big-Bang model: kinematics of inflation; de Sitter universes

- Modelling:

Inflationary models: vacuum enegy and the inflaton; energy scale of inflation; dynamics of a scalar field in a Robertson-Walker metric; *background evolution and cosmological perturbations in the early universe*; slow-roll parameters and their importance to confront with observations.

- Generation of first density perturbations at the origin of cosmic structures:

From quantum perturbations in an expanding universe to first density primordial perturbations: computations for different cases (starting from the simplest case of a massless scalar field in a de Sitter universe) and different computational methods.

- Primordial gravitational waves (tensor perturbations) and their observability
- Possible realizations of the inflationary scenario:
 Inflationary models within high-energy particle physics
 Observational predictions of inflationary models

- Observational predictions of inflationary models:

power spectra for scalar and tensor perturbations; tensor-to-scalar ratio;

- (n_s-r) plane; main present constraints on inflationary models
- **Reheating phase:** simple toy model for the transition from the primordial inflationary universe to the standard Friedmann-Robertson-Walker universe.
- Baryogenesis : basic concepts and details on some concrete models.
- Mechanisms of dark matter particle production.
- Cosmological perturbations in General Relativity
 scalar, vector and tensor perturbations; gauge transformation; issue of gauge-invariance;
 Einstein equations linearly perturbed around Robertson-Walker metric

- Computational methods:

Delta-N and in-in formalisms to compute correlation functions; example: primordial non-Gaussianity

- Observational tests of the early universe

Teaching methods:

48 hours: lectures with a proposal of exercises/examples/applications

Textbooks:

- Andrew R Liddle and David H Lyth, The Primordial Density Perturbation, Cambridge University Press, 2009

- Andrew R Liddle and David H Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge University Press, 2000.

- Kolb, E.W. and Turner, M.S., The Early Universe. Redwood City: Addison-Wesley, 1990.

The relevant parts of the course will be clearly identified in the various textbooks and notes of the teacher will be available

and.....your notes during lectures

Attendance is recommended

Useful information

 Prerequisites: "Fundamentals of Astrophysics and Cosmology" (equivalently "The Physical Universe")
 But in any case the course is self-contained

Examination methods:

oral exam

Exam dates: 2 for each sessions (1/02; 21/02; 2/07; 30/08; 12/09),

Assessment criteria

Acquisition of the basic concepts of the course, ability of the student to elaborate in an original and *independent* way the concepts acquired, capacity of reasoning and of *applying the tools provided by the course*

Office hours

Office hours: in every moment, in person by phone or by e-mail.

To avoid coming to my office when I am not there, you are kindly requested to contact me before.

(049/8277125) or bartolo@pd.infn.it

For a description of the course see also

https://en.didattica.unipd.it/off/2017/LM/SC/SC2382/001PD/SCP7081761/N0