Mini-Crate Secondary Board Reference Manual

M CSB Commands Description

L. Castellani

I.N.F.N. sez. PADOVA

16 December 2014

| ntroduction

This board manages seven RS485 bus, six for matesifor the wheel sector and one for
TSB, there is also a bus-1wire to which possiblenect ADC DS2450 or temperature sensor
DS18S20, two temperature sensors are present doodnd. There are also one optical RS232
compatible with old board, a second optical RS28Zdll-band communication at 230400 baud,
and one electrical RS422 for bridging communicabetween two board. The board have an
internal CAN bus with ten node, one per bus oufpbhe RS422 have node number 0, the seven
RS485 bus have node number from 1 to 7, the og@8&32 compatible have node number 8 and
full-band optical RS232 have node number 9.

The seven RS485 bus and compatible optical RS28#hesmini-care secondary frame
format and answer to the followings commands:

Status, code OXEA:
Return the state of the node that manages the bus.

Return data:

char 0xC4;

char hver; Firmware version H.

char lvers; Firmware version L.

char node; CAN bus node number.

char hid485; IDH

char 1id485; ID L to which node answer on RS485 bu S

char hdest; CAN node H

char Idest; CAN node L to witch RS485 data are rute (if -1 the RS485
data are not routed)

int adc[4]; four 10bits adc conversions (Vref~=4. 714.8V).

Little-endian format.
adc[0]=VCC/2 of the left near node;
adc[1]=VCC/2 of the right near node;
adc[2]=RS485_N level for bus monitor;
adc[3]=RS485_P level for bus monitor.
For optical RS232:
adc[2]=Optical signal;
adc[3]=Board current (V=20*1*0.1).
For RS422:
adc[2]=unused;
adc[3]=Board current (V=20*1*0.1).

Sel Output, code 0xD3:
Select the output to which route RS485 data.

Arguments:
char out; Outputs from 0 to 6, that identifier a CA N node write on
alias table, if out is 255 the route is disabled, i f out
is 254 the route is disabled and locked, to unlock send

out=255 and after a new valid out.
Return data:
char OxFC;
char 0xD3;
char error; 0=0K, 1=previous selected can node not answer,
2=selected can node not answer, -2=this node is loc ked.

CAN command, code 0xC5:

Send a command on CAN bus.

The 29bits identifier of the CAN frame are diviae8bit as source node, 8bit as destination node,
8bit as frame number and 5bit as port number, et the bus is implemented an handshake for
every frame. WARNING the command codes from Ox€0XCF are used on CCB server. Use
special code HOST (OXEC 0xXX) at the beginningesolve overlap.

Arguments:
char reply; 0 or 1 to indicate if the CAN command g enerate a reply
CAN frame.
char port; port number.
char dest; destination node.
char data[max 8];data[0]=CAN command, data[1]..da ta[7] arguments.

The data can be less of 8bytes.

Return data on error or replay=0:
char OxFC;
char 0xC5;
char error; 0=0K, 1=error destination node not answer.

Return data replay=1:
char 0xC6;
char OxC5;
char data[max 8];return data, can be less than 8by tes, the content depend
by send CAN command.

Read Optical Histogram, code OxC8:
Read the histogram of the optical signal.
This command is valid only on optical compatibletpo

Arguments:

char reset; Optional argument, if 1 reset histogra m.
Return data:

char 0xC9;

char base; the offset of the first histogram elem ent.

char histog[32]; the histogram bins

Special return data code OxFC:

The codes that follow OxFC code are:
0x00 unknown command
OxFF routing disabled or locked (valid only for com patible optical RS232 node)

CAN command over R$485 bus:

Read Error, code 1:
Read error information status.

Reply=1;
Port=0;
Arguments:

Return data from RS485 node:
char CanTXErrCnt; CAN Transmit Error Count Registe
char CanRXErrCnt; CAN Receive Error Count Register
char CanErrCode; First CAN error code

int AckTime; Time latency of the acknowledge (multi
t(ms)=AckTime*5. Little-endian format.
int AckTimel; Time latency of the acknowledge (sing

t(ms)=AckTimel1*5. Little-endian format.
char RsErrCode; First RS error code.

Return data from node 0 and 9:
char CanErrCode; First CAN error code
char RsErrCode; First RS error code.
char CanTXErrCnt; CAN Transmit Error Count Registe
char CanRXErrCnt; CAN Receive Error Count Register
char unused; always 0
char RSErrCnt; RS Error Counter.

Read CAN Error Counters, code 2:
Read the CAN error counters.

Reply=1;
Port=0;
Arguments:
char bank; Bank number must be incremented up to re
or less than eight bytes.

Return data:
char err[8]; the error counters;

Return data from RS485 nodes:

CAN error counters description:

ple frame mode),

le frame mode),

turn zero byte

Counter | Description

Hardware buffer overflow

Command buffer overflow

TX Acknowledge buffer overflow

Port number error

Software error

Not received Acknowledge on TX data frame

Double RX data frame

Double RX data frame (frame already processed)

RX Acknowledge error

O 0[N O O W[N O

RX Acknowledge error (TX data frame not in FIFO)

[N
o

RX Acknowledge error (TX buffer overflow)

RX Frame number error

[N
[N

=
N

TX frame repeated

Return data node 0 and 9:

CAN Error counters description:

Counter | Description

CAN Hardware buffer overflow

CAN TX buffer overflow

CAN Software error

CAN Command buffer overflow

CAN Local command Acknowledge error

gl »f W[N O

CAN Not received Acknowledge on TX data frame

Destination, code 3:

Set destination CAN node of the data received o488us.

If destination is -1 (OXFFFF) or bigger than 258 thata are not routed.

To have bidirectional communications for RS485 degtiaveen two nodes, for example node 1 and
node 2, the destination on node 1 must me setatw2lestination on node 2 must be set to 1, and
be sure that other node not use destination 1 ©n@use of old value returned by command is
deprecated to clear old destination after set nestimhtion, use Get Destination command to clear
connection between two node and after use Setria¢istn for new node connection.

Reply=1;

Port=0;

Arguments:
char destL; Low part of the destination node.
char destH; High part of the destination node.

Return data:
char oldL; Low part of previous destination node.
char oldH; High part of previous destination node.

Reset, code 4:
Reset node. Return always an error on RS485 baaube the node is reset without send

acknowledge frame.
Reply=0;
Port=0;

Set Destination, code 5:

Set destination CAN node of the data received of88Pus.

If destination is -1 (OXFFFF) or bigger than 2586 RS485 data are not routed.

To have bidirectional communications for RS485 degtiaveen two nodes, for example node 1 and
node 2, the destination on node 1 must me seata2lestination on node 2 must be set to 1, and
be sure that other node not use destination 1 or 2.

Reply=0;

Port=0;

Arguments:
char destL; Low part of the destination node.
char destH; High part of the destination node.

Get Destination, code 6:
Get destination CAN node of the data received oAg8dus.
If destination is -1 (OXFFFF) or bigger than 258 tata are not routed.

Reply=1;
Port=0;
Arguments:
Return data:
char destL; Low part of previous destination node
char destH; High part of previous destination node
Set 1D, code 7:
Set identifier of the RS485 bus. The value takeatféfter a reset
Reply=0;
Port=0;
Arguments:
char idH; High part of the RS485 identifier.
char idL; Low part of the RS485 identifier.
Get 1D, code 8:
Get identifier of the RS485 bus.
Reply=1;
Port=0;
Arguments:
Return data:
char idH; High part of the RS485 identifier.
char idL; Low part of the RS485 identifier.

Syncronize, code 9:

Synchronize the CAN frame number. After a resetetlage 1/256 probability that the first
transmitted frame can be seen as already receiastefand so ignored, repeat the command just
one time on error.

Reply=0;
Port=0;

Reset error counters, code 10:
Reset all error counters except CAN Transmit/Rexé&rror Count Registers.

Reply=0;
Port=0;

Read RS Error Counters, code 11:
Read the RS error counters. This command is nat walnode 0 and 9.

Reply=1;
Port=0;
Arguments:
char bank; Bank number must be incremented up to re turn zero byte
or less than eight bytes.

Return data:
char err[8]; the error counters;

Return data from RS485 node:

RS error counters description:

Counter | Description

Hardware Receive Buffer Overrun

Frame error

Software Receive buffer overflow

CRC error

Start of Frame error

g | W N| | O

Transmitter buffer overflow

Return data node 0 and 9:
RS error counters description:

Counter | Description

RS Hardware Receive Buffer Overrun

RS Frame error

RS Software Receive buffer overflow

RS Start of Frame error

RS Software error

RS Timeout error

RS CRC error

N OO AW N | O

RS Command buffer overflow

Set DAC, code 12:

Set 10bits DAC to manage optical receiver threshaoldl transmitters current laser, Vref ~=
4.7/14.8V.

This command is valid only on optical RS232/485en0d

Reply=0;

Port=0;

Arguments:
char ch; ch=1 threshold, ch=2 laser current.
char daclL; Low part of the 10bits DAC value.

char dacH; High part of the 10bits DAC value.

Read ADC DS2450, code 13:
Read the 16bit ADC conversion. The value is updhataut every second.
This command is valid only on CAN node 7.

Reply=1;

Port=0;

Arguments:
char nadc; adc number, if adc is not present retur n zero byte

Return data:
charch_a L; Low part of the channel A conversion.
char ch_a_H; High part of the channel A conversion.
charch b L; Low part of the channel B conversion.
charch_b H; High part of the channel B conversion.
charch c L; Low part of the channel C conversion.
char ch_c_H; High part of the channel C conversion.
charch d L; Low part of the channel D conversion.
charch_d_H; High part of the channel D conversion.

Read ADC 1D DS2450, code 14:
Read ADC identifier.
This command is valid only on CAN node 7.

Reply=1;
Port=0;
Arguments:
char nadc; adc number, if adc is not present retur n zero byte
Return data:
char id[8]; the 64bit device identifier.

I nitialize B1W, code 15:
Initialize bus 1-wire and search ADCs DS2450 amapterature sensors DS18S10, max four device
each type. This command is valid only on CAN node 7

Reply=1;

Port=0;

Arguments:

Return data:
char error; The DS2482 initialize result, 0=0OK.
char nadc; The number of DS2450 found.
char ntsens; The number of DS18S20 found.

Read Temperature DS18S20, code 16:
Read the ADC conversion. The value is update apoerty second.
This command is valid only on CAN node 7.

Reply=1;
Port=0;
Arguments:
char nsens; The sensor number, if the sensor is not present return
zero byte.
Return data:
float temp; The converted temperature, 3byte format equivalent to
4byte IEEE32 little endian format with first byte=0

Read Temperature sensor |D DS18S20, code 17:
Read temperature sensor identifier.
This command is valid only on CAN node 7.

Reply=1;
Port=0;
Arguments:
char nsensor; Sensor number, if sensor is not prese nt return zero byte
Return data:
char id[8]; The 64bit device identifier.

Set Alias Table, code 18:
Set the alias table. The table contain the CAN mageber for the SelOutput command on RS485
bus.

Reply=0;

Port=0;

Arguments:
char sel0_node; The node number used with SelOutput =0.
char sell_node; The node number used with SelOutput =1.
char sel2_node; The node number used with SelOutput =2.
char sel3_node; The node number used with SelOutput =3.
char sel4_node; The node number used with SelOutput =4.
char sel5_node; The node number used with SelOutput =5.
char sel6_node; The node number used with SelOutput =6.

Read ADC Internal, code 19:
Read the 10bit ADC internal to the node, Vref~=4.8Y/.

Reply=1;
Port=0;
Arguments:
char ch; The physical channel number of the adc, s ee schematics
Return data:
char adcL; Low part of the ADC.
char adcH; High part of the ADC.

Read Optical Histogram, code 20:
This command is valid only on optical node and petonread the optical signal amplitude.
On the overflow the histogram bins are dividedWwg.t

Reply=1;
Port=0;
Arguments:
char bank; the bank to read.
char reset; optional argument, if 1 reset the his togram.
Return data bank=0:
char base; the offset of the first histogram eleme nt.

char histog|[7];

Return data bank!=0:
char histog[sz]; if the sz is less than 8 there are n't more data.

Latchup code 21:

Get info or active mosfet for latch up protectiobatch up protection short-circuit the power supply
on the near PIC node.

The latch up monitor watch the power supply ofrikar PICs and if it is less than a 1V (poliswitch
active) for more than 0.5 seconds short-circuitgberer with a MOSFET for 5 seconds, and after
if the power supply don’t return to the normal \@athe monitor is disabled.

Reply=1;
Port=0;
Arguments:
char ch; ch=0 read the state.
ch=1 active latch up mosfet for 0.6sec on left PIC;
ch=2 active latch up mosfet for 0.6sec on right PIC;

ch=11 active latch up mosfet on left PIC;

ch=12 active latch up mosfet on right PIC;

ch=10 disable latch up mosfet on left and right PIC;
ch=255 reset counters and state machine and reactiv ate the
monitor if disabled;

Return data:

char counterl; Left counter for the latch up event.
char counter?; Right counter for the latch up event
char flags; bit0 left monitor disabled;

bitl right monitor disabled;
bit2 left event in process;
bit3 right event in process.

Version code 22:
Get firmware version.

Reply=1;
Port=0;
Arguments:

Return data:
char versionL; Low part of the firmware version.
char versionH; High part of the firmware version.

GetDAC code 23:
Get threshold and laser dac setting, valid onlyofatical node 8 and 9.

Reply=1;

Port=0;

Arguments:

Return data:
char thrL; Low part of the threshold.
char thrH; High part of the threshold.
char laserL; Low part of the laser.

char laserH; High part of the laser.

Get Alias Table, code 24:
Get the alias table. The table contain the CAN nogteber for the SelOutput command on RS485
bus. This command is valid only on node 8.

Reply=1;
Port=0;
Arguments:

Return data:
char sel0_node; The node number used with SelOutput =0.
char sell_node; The node number used with SelOutput =1.
char sel2_node; The node number used with SelOutput =2.
char sel3_node; The node number used with SelOutput =3.
char sel4_node; The node number used with SelOutput =4.
char sel5_node; The node number used with SelOutput =5.
char sel6_node; The node number used with SelOutput =6.

Full-Band Frame

The frame format on full-band optical RS232 andteieal RS422 is:
[SOF] //start of frame = 0x55

N7 6 5 4 3 2 1 0
[sIDh] //[SID10][SIDY] [SID8] [SID7] [SID6] [SID5] [SID4] [SID3] Source
[sIDI] //[SID2] [SID1][SIDO] [] [EXIDE][] [EID17] [EID16]Port
[elDh] //[EID15][EID14][EID13][EID12][EID11][EID10][EIDY] [EID8] Destination
[eID]] //[EID7] [EID6] [EID5] [EID4] [EID3] [EID2] [EID1] [EIDO] nframe
[dic] /[[RTR] [[1 [] [Sz3] [SZ2] [SZ1] [SZ0] size data o RTR

[data O] /Idata

tdata n-1] /In=SZ[0..3] (max 8) see dlc.
[cre8]

The node work as a RS232-CAN modem, the frameudrd SOF and CRC8, are the CAN
controller internal registers. All frame receivemtrected on RS232 are transferred to the CAN bus,
so all frame received on CAN bus are transferreatiedRS232 bus, except in case of buffer
overflow or reception error .

The protocol implemented on RS485 node foreseeaathatiata frame (RTR =0) sent, need
an acknowledge return frame that is identical td fmme except that have not data and RTR bit is
set to 1 (CAN Remote Frame is the acknowledge fraintiee protocol). The 29bit CAN identifier
are divide as show above, note that nframe mustdobemented by one for successive frame to the
same destination. If acknowledge is not receittegl frame must be retransmitted for maximum 3
time after 300ms interval.

Node number from 0 to 15 are reserved for physiodk, the rest can be used for virtual
node in the server.

Port number is 5bitggID2][SID1][SIDO][EID17][EID16]) and EXIDE bit must be set to 1.

In the figure 1 is represented the structure adraey

On the RS485 node are implemented four port:

Port 0, for the control command describe above

Port 3, for the reply of the control command.

This ports support single frame transaction fromdento node, so you must wait acknowledge frame
before to send new one at the same node. Diffei@i¢ can send command to the same node
asynchronous.

Port 1, for RS485 space data parity (mini-crata fi@ame) .

Port 2, for RS485 mark data parity (mini-crateradd frame).

This ports support multiple frame transaction, @2 frame, from node to node, the transmission
order on RS485 bus is guaranteed by frame numbelifdrames are lost and retransmitted.
Different node can’t send data to the same node.

Application Software
CCanNode 16 CCanNode 17 CCanNode n
4 2 £
D N
Software Layers T .
y Data —
Aok £
Ackn
Data 1 vg h 4 ‘
Mutex | | |
Write Node Table
Read Process
CCanCom 1
Physical Layer RS232 to CAN Converter
I T CAN BUS |
NODE1 NODE2 | T NODE6
! v !
RS485 RS485 . RS485
Figurel

To communicate with full-band node simply use isi@ number.

On the nodes are implemented on Port=0 the commesctibe in “CAN Command over RS485
bus” paragraph.

The return data have Port value set to 3.

To Communicate by CAN bus through RS485 node yostmse CAN command, code 0xC5, or
by other full-band node.

McSecSever Software

This software implement the structure show in tgare 1, to communicate with minicrate, and
also it implement a TCP sever that create a vimode (CCanNode) for every client connection,
that can be used to monitor the McSecondaryBoard.

The virtual node to work properly, after havingadsished the connection, must be initialized.
The number of connections is physically limitechbmut 40 by bits assigned to identifies the node
and by node used/mapped by software.

The frame accepted by TCP connections is defined as

typedef struct {
TCPHEADER header;
TCPCANFRAME frame[64];
} TCPFRAMEBUFFER;

typedef struct {
DWORD sof;
DWORD nframe;
DWORD type;

} TCPHEADER,;

typedef union { //warning sizeof(TCPCMD)<=sizeof(CANFRAME)
CANFRAME can;

TCPCMD tcp;

} TCPCANFRAME;

typedef struct { /I ' 7 6 5 4 3 2 1 0
BYTE sIDh; //[SID10][SIDY] [SID8] [SID7] [SID6] [SID5] [SID4] [SID3] Source
BYTE sIDI; //[SID2] [SID1] [SIDO] [[] [EXIDE][-] [EID17] [EID16] Port
BYTE elDh; //[EID15][EID14][EID13][EID12][EID11][EID10][EID9] [EID8] Destination
BYTE elDlI; //[EID7] [EID6] [EID5] [EID4] [EID3] [EID2] [EID1] [EIDO] nframe
BYTE dic; I [RTR] [[[Sz3] [SZ2] [SZ1] [SZ0] size data o RTR
BYTE data] 8];

} CANFRAME;

typedef struct {
BYTE cmd;
BYTE arg[K

} TCPCMD;

Thesof :

#define TCPSOF
Thenframe is the number of CPCANFRAMEansmitted;

Thetype :

enum TYPEFRAME {
TYPE_CAN,
TYPE_TCP

b

Thecmd:

enum TCP_CMD {
TCPCMD_ASSIGNMODE,
TCPCMD_CMDOK,
TCPCMD_ACKERROR,
TCPCMD_CMDERROR,

Initialize the Node

After having established the connection the nodstrhna initialized with the following command:

TCPFRAMEBUFFER tcpframe;
tcpframe.header.sof=TCPSOF;
tcpframe.header.type=TYPE_TCP;
tcpframe.header.nframe= ;

tcpframe.frame|[]-tcp.cmd=TCPCMD_ASSIGNMODE;
tcpframe.frame|[]-tcp.arg[]=PORT_CMD;
tcpframe.frame|[]-tcp.arg[]=SINGLE_FRAME;

tcpframe.frame|[]-tcp.cmd=TCPCMD_ASSIGNMODE;
tcpframe.frame|[].tcp.arg[]=PORT_REPLAY;
tcpframe.frame|[]-tcp.arg[]=SINGLE_FRAME;

Below the constant definitions:

#define PORT_CMD
#define PORT_RS485S
#define PORT_RS485M
#define PORT_REPLAY
#define PORT_DATA
#define PORT_ADDR
#define PORT_READ

enum RXMODE{
IGNORE_FRAME,
SINGLE_FRAME,
MULTIPLE_FRAME

h

This two command initialize the node to send ameiree only the CAN frame to monitor the

board.

Thereturn data from server is:

tcpframe.header.sof == TCPSOF
tcpframe.header.type ==TYPE_TCP
tcpframe.header.nframe ==

tcpframe.frame|[].tcp.cmd == TCPCMD_CMDOK
tcpframe.frame|[]-tcp.cmd == TCPCMD_CMDOK

Now can be send the CAN frame to communicate vighpthysical node on the board

tcpframe.header.sof=TCPSOF;
tcpframe.header.type=TYPE_CAN;
tcpframe.header.nframe= ;

port=PORT_CMD;

dest= 1; /ldestination node

size= 2; /Isize of can data

tcpframe.frame|[].can.sIDh = ; lloverride by server

tcpframe.frame|[].can.sIDI = (port &) | ((port &)<< 3) | ;
tcpframe.frame|[].can.elDh = dest;

tcpframe.frame[].can.elDI = ; lloverride by server

tcpframe.frame|[].can.dlc = size;

tcpframe.frame|[].can.data][1= ; /lcommand code

tcpframe.frame[].can.data[1= ; /llcommand argument

From the server return one acknowledge can-franedioate that the write frame is received by

destination node and an eventually one replay cand, it depend by command.

The acknowledge can-frame:

tcpframe.header.sof == TCPSOF

tcpframe.header.type == TYPE_CAN

tcpframe.header.nframe ==

tcpframe.frame|[].can.sIDl == (port &) | ((port &)<< 3) | :
tcpframe.frame|[].can.eIDh == dest;

tcpframe.frame|[].can.dlc == :

or in caseof writeerror:

tcpframe.header.sof == TCPSOF
tcpframe.header.type ==TYPE_TCP
tcpframe.header.nframe ==

tcpframe.frame|[].tcp.cmd == TCPCMD_ACKERROR

Thereply can-frame:

tcpframe.header.sof == TCPSOF

tcpframe.header.type ==TYPE_CAN

tcpframe.header.nframe ==

tcpframe.frame[].can.sIDh /Ithe source node

tcpframe.frame|[].can.sIDl == (PORT_REPLAY &)I((PORT_REPLAY &)<< 3)|
tcpframe.frame|[].can.eIlDh /Ithis node number assigned by server

tcpframe.frame|[].can.elDI /lframe number

tcpframe.frame[].can.dlc /Isize of data valid

tcpframe.frame|[].can.data[] //data

tcpframe.frame|[].can.data][] //data

For the moment is discourage to send multiple camé with one tcp-frame, future modification of
the server will be done, but it can be done, ia tase you receive only one acknowledge frame and
can receive multiple replays in one or more tcpagaand in any order.

It is also deprecated send multiple can-frame ¢écsime node because the node have the FIFO by
only tree message, instead can be send multipkrame to different node.

