Geometric methods in Theoretical Physics

1. Compute the coset representatives, vielbeins, connection, metric and curvature for the homogeneous manifolds

$$
\frac{\mathrm{SO}(3)}{\mathrm{SO}(2)} \quad \text { and } \quad \frac{\mathrm{SU}(1,1)}{\mathrm{U}(1)}
$$

2. Consider the three-sphere embedded in \mathbb{R}^{4}

$$
\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}+\left(x_{4}\right)^{2}=1
$$

and the map $\Pi: S^{3} \rightarrow S^{2}$

$$
\begin{aligned}
& \xi^{1}=2\left(x_{1} x_{3}+x_{2} x_{4}\right), \\
& \xi^{2}=2\left(x_{2} x_{3}-x_{1} x_{4}\right), \\
& \xi^{3}=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}-\left(x_{4}\right)^{2} .
\end{aligned}
$$

Use two charts on S^{2}, called U_{N} and U_{S}, covering the northern and southern hemispheres and use stereographic projection coordinates, i.e.

$$
\begin{equation*}
X+i Y=\frac{\xi^{1}+i \xi^{2}}{1-\xi^{3}} \tag{1}
\end{equation*}
$$

for the southern hemisphere. The sphere S^{3} is then a fibre bundle, where S^{2} is the base space and $U(1)$ is the fibre. Construct the local trivializations for such bundle and the transition functions at the equator.
3. Write in differential form language the action

$$
S=-\frac{1}{4} \int d^{4} x \operatorname{tr}\left(F_{\mu v} F^{\mu v}\right)
$$

and the equations of motion following from this action, using the definition

$$
F=\frac{1}{2} d x^{\mu} \wedge d x^{\nu} F_{\mu v}=d A+\frac{1}{2} A \wedge A,
$$

with $A=A^{I} t_{I}$, for $t_{I} \in \mathfrak{g}$, the algebra of a non-abelian, semisimple gauge group.

