1. Show that the geodesic equation transforms covariantly under arbitrary change of coordinates.
2. Consider the metric discussed in class describing flat space rotating with fixed angular velocity ω about the z axis

$$
\begin{equation*}
d s^{2}=-\left[1-\omega^{2}\left(x^{2}+y^{2}\right)\right] d t^{2}+2 \omega(y d x-x d y) d t+d x^{2}+d y^{2}+d z^{2} . \tag{1}
\end{equation*}
$$

(a) Verify this by expressing the metric in cylindrical coordinates (ρ, ϕ, z) and transforming $\phi \rightarrow \phi+\omega t$.
(b) Obtain the geodesic equations for x, y and z in the rotating frame.
(You may assume that the only non-zero Christoffel symbols are $\Gamma_{t t}^{x}, \Gamma_{y t}^{x}, \Gamma_{t t}^{y}$ and $\Gamma_{t x}^{y}$. Also note that the metric is not diagonal, so the inverse is not straightforward)
(c) Show that in the nonrelativistic limit these reduce to the Newtonian equations of motion for a rotating free particle exhibiting the centrifugal and the Coriolis force, i.e.

$$
\begin{align*}
& \ddot{x}=\omega^{2} x-2 \omega \dot{y}, \\
& \ddot{y}=\omega^{2} y+2 \omega \dot{x}, \tag{2}
\end{align*}
$$

where ${ }^{\circ} \equiv \frac{d}{d t}$ and ${ }^{\prime} \equiv \frac{d^{2}}{d t^{2}}$.
3. The hyperbolic plane is defined by the metric

$$
\begin{equation*}
d s^{2}=\frac{1}{z^{2}}\left(d x^{2}+d z^{2}\right), \quad z>0 \tag{3}
\end{equation*}
$$

(a) Show that vertical lines (i.e. $x=$ const) satisfy the geodesic equation and that $z=0$ is at infinite distance from any point in the upper half plane;
(b) Show that the other possible geodesics are semicircles centered on the x-axis. (Use the parametrization with $\left(\dot{x}^{2}+\dot{z}^{2}\right) / z^{2}=1$ to simplify the problem)

