1. * Consider the hypersurface in \mathbb{R}^{n} described by $M=\{x \mid f(x)=0\}$. Show that the kernel of the differential operator on f gives the tangent space to M, namely

$$
\operatorname{ker}[d f(p)]=T_{p} M
$$

2. In \mathbb{R}^{2}, let $x^{a}=(x, y)$ denote Cartesian and $x^{\prime a}=(r, \phi)$ plane polar coordinates. Consider the vector fields X, Y, Z of components $X^{a}=(1,0), Y^{a}=(0,-1)$ and $Z^{a}=(-y, x)$. Find their components in the x^{\prime} basis.
3. In a coordinate basis show that

$$
\Gamma_{\mu \rho}^{\rho}=\partial_{\mu}(\log \sqrt{-g}),
$$

where $g \equiv \operatorname{det} g_{\mu v}$. Then show that

$$
D_{\mu} j^{\mu}=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} j^{\mu}\right)
$$

Note that $\operatorname{det}(\mathbb{1}+\epsilon A)=1+\epsilon \operatorname{tr} A+O\left(\epsilon^{2}\right)$.
4. Compute the Riemann tensor for the metric of Assignment 2, exercise 2.
5. Consider a 2 -sphere with metric $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$.
(a) Show that lines with constant ϕ are geodesics, while lines with constant θ are geodesics only at the equator.
(b) Write the equations for the parallel transport of a vector V along

$$
\theta=\theta_{0}, \quad \phi=\phi_{0}+\tau .
$$

Derive $V^{\theta}=V^{\theta}(\tau)$ and $V^{\phi}=V^{\phi}(\tau)$, for $V=(1,0)$ as initial condition. In what case $V(2 \pi)=V(0)$?

