1. * Consider the hypersurface in \mathbb{R}^n described by $M = \{x \mid f(x) = 0\}$. Show that the kernel of the differential operator on f gives the tangent space to M, namely

$$\ker[df(p)] = T_pM.$$

- 2. In \mathbb{R}^2 , let $x^a = (x, y)$ denote Cartesian and $x'^a = (r, \phi)$ plane polar coordinates. Consider the vector fields X, Y, Z of components $X^a = (1, 0), Y^a = (0, -1)$ and $Z^a = (-y, x)$. Find their components in the x' basis.
- 3. In a coordinate basis show that

$$\Gamma^{\rho}_{\mu\rho} = \partial_{\mu}(\log\sqrt{-g}),$$

where $g \equiv \det g_{\mu\nu}$. Then show that

$$D_{\mu}j^{\mu}=\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}\,j^{\mu}\right).$$

Note that $\det(\mathbb{1} + \epsilon A) = 1 + \epsilon \operatorname{tr} A + O(\epsilon^2)$.

- 4. Compute the Riemann tensor for the metric of Assignment 2, exercise 2.
- 5. Consider a 2-sphere with metric $ds^2 = d\theta^2 + \sin^2\theta \, d\phi^2$.
 - (a) Show that lines with constant ϕ are geodesics, while lines with constant θ are geodesics only at the equator.
 - (b) Write the equations for the parallel transport of a vector V along

$$\theta = \theta_0$$
, $\phi = \phi_0 + \tau$.

Derive $V^{\theta}=V^{\theta}(\tau)$ and $V^{\phi}=V^{\phi}(\tau)$, for V=(1,0) as initial condition. In what case $V(2\pi)=V(0)$?