General Relativity

- 1. Consider a particle moving radially in the Schwarzschild metric. Compute $\frac{d^2r(t)}{dt^2}$, where *r* and *t* are standard Schwarzschild coordinates and compare the result with what one expects from Newton's law. Show in which limit the two coincide. Finally, compute $\frac{d^2r(t)}{dt^2}$ for a photon and show that even in the limit $r \gg 2G_NM$ the result is different from what one expects for a non-relativistic particle.
- 2. An observer in circular motion in the Schwarzschild metric has velocity described by the vector

$$u^{\mu} = A \left(\delta^{\mu}_0 + \Omega \, \delta^{\mu}_{\phi} \right).$$

- (a) Fix *A* and discuss the result.
- (b) Compute the acceleration and the value of Ω that makes the trajectory a geodesic.
- 3. A static observer at $r = R_1$, $\theta = \pi/2$, $\phi = \phi_1$ in Schwarzschild spacetime sends a light signal with wavelength λ towards another static observer at $r = R_2 > R_1$, $\theta = \pi/2$, $\phi = \phi_2$. Compute the wavelength measured by the second observer (using energy conservation along geodesic motion). Does this depend on the angles ϕ_1 and ϕ_2 ?
- 4. Draw the surface

$$x^{2} + y^{2} = \left(\frac{z^{2}}{8m} + 2m\right)^{2}$$

embedded in flat Euclidean \mathbb{R}^3 . Compute the metric induced on the same surface, using polar coordinates on the *x*, *y* plane, and compare it with sections of the Schwarzschild metric at fixed time.

- 5. Consider the motion of a massive particle in the Schwarzschild background.
 - (a) Draw the potential as a function of the angular momentum *l* and compare it with the Newtonian one. Check the difference of the allowed region for bound orbits and explain the difference.
 - (b) When do you find an unstable circular orbit? What is the minimum distance from the horizon for this orbit?
 - (c) Compute how long is one year for such orbits, from the point of view of the orbiting observer as well as from the point of view of a distant observer.