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Abstract

The unsupervised search for overdense regions in high-dimensional feature
spaces, where locally high population densities may be associated with anoma-
lous contaminations to an otherwise more uniform population, is of relevance
to applications ranging from fundamental research to industrial use cases.
Motivated by the specific needs of searches for new phenomena in parti-
cle collisions, we propose a novel approach that targets signals of interest
populating compact regions of the feature space. The method consists in a
systematic scan of subspaces of a standardized copula of the feature space,
where the minimum p-value of a hypothesis test of local uniformity is sought
by gradient descent. We characterize the performance of the proposed algo-
rithm and show its effectiveness in several experimental situations.
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1. Introduction

1.1. Searches for new phenomena in collider physics

The word anomaly has its roots in the ancient Greek word ανὼµαλos; in
common parlance, anomalous means “different, peculiar, or not easily clas-
sified” [1]. Consistently with the common usage of the word, in Statistics
an anomalous datum is one which does not conform to the others in a set,
because its observable features θ single it out as unlikely to have been sam-
pled from the probability density function1 pb(θ) which the rest of the data
conform to.

In the context of searches for new phenomena in high-energy particle
physics (HEP), the identification of anomalies is of great interest. At the
Large Hadron Collider (LHC), which produces the most energetic subnu-
clear reactions ever achieved in a laboratory, the CMS [2] and ATLAS [3]
experiments compare the observable features of the final state of proton-
proton collisions to extremely precise predictions yielded by the Standard
Model (SM) of particle physics [4], in search for signals of new physics that
the SM does not account for. Each collision can be typically summarized,
through a complex reconstruction of tens of millions of digitally recorded
signals, into few dozens of high-level features. The comparison of the dis-
tribution of those features with the ones expected from SM processes yields
sensitivity to new physics phenomena. Given the large dimensionality of the
problem, the typical approach followed by CMS and ATLAS in their searches
is supervised classification: Monte Carlo simulations of both SM processes
and hypothetical new physics phenomena inform the training of a classifier,
whose output enables inference on the existence of new physics.

The above modus operandi rests on two pillars: reliance on an extremely
precise model of pb(θ), from which SM processes are sampled, and availabil-
ity of theoretical models predicting the possible distribution of the density
function ps(θ) of signal events. It should be clear that the conditions on
which those two pillars are based are difficult to satisfy in practice.

The SM, while superbly tested through decades of experimental prob-
ing [5], is subjected to uncertainties arising from imperfect knowledge of
its underlying parameters, as well as from the purely empirical description

1The subscript b denotes it as the distribution of the “background”, which is the name
commonly associated to the non-anomalous component of unknown data.
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of some of the fundamental ingredients playing a role in the particle colli-
sions –e.g., the parton distribution functions of the colliding protons, which
determine the relative probability of different processes and their energy re-
lease. The resulting systematic uncertainties are especially impactful in those
poorly-investigated regions of phase space which, thanks to the LHC’s un-
precedented reach, are probed by experimental data for the first time, and
which are consequently the most likely hiding place of new processes. In ad-
dition to systematic uncertainties, new physics models suffer from the limited
range of possibilities that they explore. New physics may manifest itself in
ways that theoreticians have not yet ventured to speculate; if the resulting
high-level features of signal events are not striking enough, or if they do not
result in conspicuous modifications of some of the marginals of pb(θ), they
may be overlooked.

For the above reasons it appears necessary to plan for a systematic, un-
supervised exploration of the feature space of LHC collider data. This task
must be pursued with a diversified weaponry, such that sensitivity to a range
as wide as possible of new physics phenomena is achieved. In this document
we describe a contribution in that direction. The algorithm we developed,
called RanBox, is designed to exploit and fit to the characteristics of collider
data: in particular, the wide range of values taken by pb(θ), which calls for a
vigorous standardization procedure at preprocessing stage; its local smooth-
ness in the feature space; and the typically limited phase space where a
signal density ps(θ) may contribute in an observable way to recorded data.
We however stress that, while conceived with the specific task of achieving
sensitivity to new physics phenomena at the LHC, and designed around it,
the developed algorithm may prove useful to a wide range of applications
that share the need for sensitivity to localized overdensities in the feature
space.

The plan of this document is as follows. In the remainder of this Section
we briefly formalize the problem we wish to solve. In Sec. 2 we describe
the RanBox algorithm and its variant RanBoxIter. In Sec. 3 we demon-
strate the performance of the algorithm on a synthetic dataset of simplified
characteristics. We proceed to exemplify the results of the application of
RanBox and RanBoxIter on several publicly available datasets in Sec. 4. In
Sec. 5 we mention other studies that address the issue of unsupervised or
semi-supervised searches of new phenomena in particle collisions, and their
relation to RanBox. We offer some concluding remarks in Sec. 6.
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1.2. Problem Statement

We consider a set of N data examples x ∈ S ⊆ RD sampled from a unknown
multivariate density function p(x). In general, p(x) can be written as the
sum of a background component pb(x) and a possible signal contamination
ps(x),

p(x) = (1− fs)pb(x) + fsps(x) (1)

where fs is the signal fraction. An anomaly detection problem may be defined
as one of finding a localized region of the feature space S that contains a
density of data examples significantly higher than that of its surroundings,
as defined by some suitable metric. This problem may be cast as a semi-
supervised or a unsupervised one, depending on whether the (by definition)
non-anomalous density of the background component is assumed known or
not; in both cases, a central issue is how to retain sensitivity to a wide variety
of anomalous contaminations, which may produce distortions of the density
in a subset of the D features.

1.3. The idea of RanBox

In this work we consider the unsupervised version of the problem, which offers
the benefit of avoidance of any model-related uncertainties, and we focus
on new physics signals that characteristically produce localized, compact
variations in the overall density of the feature space.

We wish to construct an algorithm that searches the feature space S by
considering a “box”, i.e., a multidimensional interval constructed in a sub-
space of S. The random nature of the box lays not only in the endpoints
xmini , xmaxi of its intervals in each marginal, xi ∈ [xmini , xmaxi ], but also in
the involved subspace S ′ ⊆ RD

′
of S described by a subset of the xi. Al-

ternatively, one may think of the box as having restricted intervals in only
a subset D − D′ of the dimensions of S. If we consider for the time being
the case fs = 0 and N data points in S sampled from a multi-dimensional
uniform density pb(x) = U(x), such a box will contain a predictable fraction
of the total data: given the box volume Vbox and the total volume V of the
feature space S, the expectation value of the number of events in the box is
Nexp = NVbox/V . Conversely, if fs > 0, the observed number of events cap-
tured within the box boundaries Nobs may yield an estimate of the density of
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the total sampling distribution in the corresponding region of S, contributed
by both pb(x) and ps(x):

p̂(x) =
Nobs

V Nexp

=
Nobs

NVbox
. (2)

The above estimate may be used to construct a test statistic sensitive to
an anomalous local overdensity of the data; e.g., one may simply define the
test statistic to equal the estimated excess of events in the box, Nobs−Nexp,
or a significance measure of its non-null value. The maximization of such a
test statistic will be appropriate for searches of anomalies that preferentially
populate well-confined regions of the feature space, such as those of interest
in collider searches for new physics, but also relevant to other branches of
science as, e.g., astrophysical observations, or industrial applications such as
process control, fraud detection, or spam filtering. Conversely, we expect lit-
tle sensitivity to multi-modal signals, and (by construction) no sensitivity to
broad deformations of a nearly-uniform background distribution pb(x). The
locality of the signal to be detected, however, is the only assumption we al-
low ourselves to take in the construction of our anomaly detection procedure.
The assumption of uniformity on which the estimate in Eq. 2 is based can be
loosened if we work in the copula space, as discussed more in detail in Sec. 2.

2. Algorithm Description

2.1. Starting considerations

The multitude of subnuclear particles resulting from proton-proton collisions
recorded by LHC experiments, which we take as our target application in the
construction of the algorithm, yield tens of millions of electronic signals in the
detectors. This large body of information is summarized by a process called
“event reconstruction” through the extraction of several tens of high-level
features that describe the measurement of energy and direction of all observed
particles (e.g., energetic electrons or muons) or sets of particles (hadronic
jets) 2. Even if we focus on specific interesting subsets of the available data,
any energy-related feature of the observed particles will show a highly dis-
uniform distribution, with a peak at low values and long tails extending to

2In HEP it is thus customary to call events the observed data examples, and we will
stick to that convention in this work.

5



higher energy (see, e.g., Fig. 1). The variation in density between those peaks
and tails may amount to orders of magnitude, and is due to the corresponding
large variation in the probability that the collision is originated by quarks or
gluons carrying a low or a high fraction of their parent’s total momentum.
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Figure 1: Distribution of the invariant mass of candidate electron-positron pairs
observed by the CMS experiment in 36 fb−1 of Run 2 LHC collisions [6]. The data
show a variation in density by several orders of magnitude as a function of mass.
The cited reference reports on searches for a new physics contribution involving
contact interactions, which could contribute to the distribution at its high-end tail
(green curve).

Because of the above, it seems natural to proceed by first pre-processing the
data with an integral transform of all the features, such that each marginal
becomes uniform by construction. The algorithm will then work in the copula
space, examining the data structure with a metric unaffected, at least to first
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order, by the original strong density variations in the feature space.

2.2. Data preprocessing

The probability integral transform of a function f(x) is defined by setting

F (x) =

∫ x

−∞
f(t)dt, (3)

which is such that y = F (x) is uniform in [0, 1]:

Fy(y) = P (Y ≤ y)

= P (FX(X) ≤ y)

= P (X ≤ F−1x (y))

= FX(F−1X (y)) = y. (4)

Once each of the variables of the feature space xi is transformed as above
into the corresponding one in the set yi, information once contained in the
interdependence of the xi is retained in the copula, which is the joint dis-
tribution function of variables with uniform marginals (Sklar’s theorem) [7].
The advantage of the transformation is evident: a search for overdensities
in the space spanned by yi will not be spoiled by uneven marginals, and
will correctly concentrate on the regions of space which are dense because of
interdependence of the features. An additional bonus of working with the yi
variable basis is that the feature space is now a unit hypercube, with volume
V = 1.

2.3. Dimensionality reduction

The dreaded “curse of dimensionality” [8] affects any search in high-dimensional
spaces populated by sparse data. In the typical applications considered in
this work, the total data size N lays in the few thousands to few hundreds
of thousands range; consequently, an investigation of subspaces S ′ of the
feature space S quickly becomes meaningless as their dimensionality grows
larger than about D′ = 12− 15, when Poisson fluctuations prevent any rea-
sonable multi-dimensional density estimate.

An additional optional preprocessing step, which may prove useful to re-
duce the dimensionality in cases when D is larger than a few tens, is the
application of Principal Component Analysis (PCA) to the feature space.
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PCA essentially consists in fitting a hyper-ellipsoid to the data, and remap-
ping the feature space in a space spanned by the principal axes of the el-
lipsoid. One may then use the principal components, which are those on
which the data exhibit the largest variance, and ignore the last few in the
ordered list of components, which are likely to contain the least information.
PCA can be useful for RanBox in cases when the search for subspaces of
limited dimensionality D′ of the feature space proves impractical because of
the large binomial coefficient

(D
D′

)
, which makes the exploration of a mean-

ingful fraction of the possible D′-dimensional subspaces too CPU-intensive.
However, in our investigations we have found that PCA is generally liable
to reduce the power of the search for overdense regions of the feature space
when the data are composed of a large background component and a small
signal contamination to which we wish to be sensitive. The typical reason
of this effect is connected with the fact that a variable which exhibits little
variance on the majority of the data, and is thus discarded by PCA, may
still be very distinctive for a small signal. An example of this behaviour is
given in Sec. 4.2.

A viable alternative to reduce the dimensionality of the problem, which
may facilitate the identification of small signals, is to exploit the correlation
matrix of the features, by removing features which add little information.
This is an attractive option when searching for small anomalous components
in a background-rich dataset: by identifying and removing variables that are
highly correlated with others on the majority component of the data, we
reduce the possibility that such correlations affect negatively the chance of
the algorithm to identify localized overdensities genuinely due to a clustering
of multiple distinguishing features of a minority component. As a telling
example, if in a D = 30-dimensional feature space one of the variables were
identically repeated 10 times, and RanBox performed a search in D′ = 10-
dimensional subspaces, the algorithm would be very likely to end up focusing
on the same narrow interval (any one would do) of each of those features:
e.g., a 10-dimensional box of width 0.1 in each of the correlated features
would have a volume of 10−10; if there were N = 10, 000 events in the space,
such a box would be predicted to contain Nexp = 10−6 events, while it would
in fact contain exactly 1000 events!

Our correlated variable removal (CVR) procedure, which performs the
identification of variables to be discarded, works as follows. We first compute
the correlation coefficients ρij among all pairs of variables ij, and order them
in a list by decreasing absolute value |ρij|. Then we choose the number of
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variables to be removed Nvoid; in order to identify these we consider that
if the k-th variable is removed, all correlation coefficients that include k as
one of the two indices will become irrelevant. We thus find the combination
of Nvoid variables which, when removed, minimizes the value of the highest
surviving correlation coefficient. A graphical example of the technique is
shown in Fig. 2.

Figure 2: Graphical description of the CVR procedure available in the prepro-
cessing stage of RanBox and RanBoxIter. The ordered list of absolute values
of correlation coefficients among the variables defining the D−dimensional feature
space is scanned by searching for all possible combinations of Nvoid variables which,
once removed, minimize the largest surviving correlation coefficient. In the figure,
for Nvoid = 3 the removal of variables 3, 1, 2 (shown in succession for clarity)
reduces the highest surviving correlation most effectively.

2.4. Choices of a test statistic

We consider two estimates of the expected number of events contained in a
multi-dimensional region of the unit hypercube resulting from the standard-
ization procedure, both corresponding to a binomial ratio. The first one is
simply

Nexp,V = NVbox. (5)

As the total copula space volume is V = 1, the above estimate is only driven
by the extension of the box volume Vbox. The expectation results from as-
suming that the data distribute in the feature space with a constant density,
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and is useful in cases when pb(x) contains little structure in its copula, as de-
partures from that assumption can then easily be associated with anomalous
contaminations. This measure is the default one for the studies of algorithmic
performance presented in Sec. 3, which are performed on synthetic datasets
where the assumption above is identically true in the limit fs = 0.

Figure 3: Representation of the sideband method for box density estimation. Two
possible search boxes in a 2-dimensional space are shown in green; the relative
sidebands, constructed according to the recipe of Eq. 8, are the regions between
the red and the green rectangles. The sideband region on the lower right can only
extend horizontally to the left, and the area it defines is thus smaller than that of
the related search box.

A second estimate, affected by higher statistical uncertainty than the former
but conversely much less affected by a non-uniform density pb(x) in the copula
space, may be obtained by defining a “sidebands” (SB) region that surrounds
the search box (see Fig. 3). In this case, no reliance is made on overall
constancy of the density for non-anomalous events, and the estimate leverages
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the density of data in the immediate neighborhood of the search box. If
[ximin, x

i
max], i = 1....D′ are the boundaries of the search box, the SB region

is defined by the following relations:

δi = 0.5(ximax − ximin)(21/D′ − 1), (6)

ximin,SB = max(0, ximin − δi), (7)

ximax,SB = min(1, ximax + δi), (8)

with xi /∈ [ximin, x
i
max] for at least one i, i.e. the SB volume does not include

the search box volume. The SB then has a volume at most as big as the
search box volume; it is in general smaller than that, as some of the intervals
cannot extend on each side of the search box by the required length δi, due to
the hard boundaries at 0 and 1 (see again Fig. 3). If one observes a number
of events Nout in the sideband region, the expectation value of the number of
events in the search box in the assumption of uniformity may be written as

Nexp,τ = τNout, (9)

where

τ =
Vbox
VSB

(10)

is defined by the volumes of sideband region VSB and search box Vbox. A
slight modification of the recipe for the expectation value above, which we
have found to be effective, is operated when the number of observed sideband
events Nout is zero. In that case, which is frequent for large dimensionality
searches and small statistics of the data sample, it is useful to reset Nexp to
the full-volume prediction, Eq. 5. We stick to this recipe in our applications
of the sideband method in the studies described in this work.

To formulate the problem in its generality through the above definition
of the extrapolation variable τ , we observe that the full-volume estimate in
Eq. 5 corresponds to setting

τ =
Vbox

1− Vbox
(11)
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and Nout = N−Nin. In either case a likelihood-ratio-based test statistic may
now be defined as follows:

ZPL =
√

2

{
Nin ln

[
(1 + τ)

(
Nin

Nin +Nout

)]
+Nout ln

[
1 + τ

τ

(
Nout

Nin +Nout

)]}0.5

(12)
The above defined function has been shown [9] to be a good approximation of
the Z-score corresponding to the binomial probability of observing an excess
of events Nin−Nexp,τ in the box. It is to be noted, however, that ZPL cannot
be considered a genuine signal significance, because in real applications “non-
anomalous” data contain structure in the copula due to interdependence of
their features; as a result, the ZPL test statistic for the null hypothesis has
fatter tails at positive values than a Normal distribution. In addition, as
discussed infra in more detail, RanBox effectively operates multiple testing
on the dataset, hence ZPL cannot be used as a significance measure in the
absence of a Bonferroni or similar correction [10]. Despite the above caveats,
the fact that ZPL is a principled proxy to the significance of an excess in
a Binomial counting experiment makes it a sound choice for a test statistic
when the focus is the search for significant, anomalous signals.

We have observed that the ZPL test statistic is especially useful when
anomalies are sought which may interest wide volumes of the feature space,
with Nexp correspondingly being not very small —typically in the range of
several tens to a hundred of events. Conversely, when the expectation Nexp

in the overdense region amounts to only a few events or less, an attractive
alternative is to use the function Rreg defined as

Rreg =
Nin

Nexp +Nreg

, (13)

with, e.g., the regularization term set to Nreg = 1. The maximization 3

of Rreg may identify more effectively small anomalies well confined in the
search volume, in cases when the copula space of non-anomalous events has
a rich structure, capable of producing high values of ZPL in regions of large
volume and thus diverting the algorithm’s attention from small, well-confined
anomalies.

3In this work we stick to the setting Nreg = 1, and consequently address the test
statistic as R1.
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2.5. Box seeding

The search for the most overdense multi-dimensional interval in a feature
space populated by sparse data points is complicated by the presence of
a large number of local extrema; hence, a careful initialization of the box
location and dimensions may significantly improve the performance of the
algorithm. Although we tried several recipes for this task, here we only
describe three of them, which we found the most suitable for our applications.

The baseline method, “Algorithm 0”, consists in a fixed initialization of
the box to a multi-dimensional interval of total volume Vbox, set to equal a
given fraction of the unit volume of the full feature space hypercube. The
box, which lives in a D′-dimensional subspace of the copula, is constructed
by defining intervals ximin, ximax (with i = 1, ...,D′) as follows:

∆ =
1− V 1/D′

box

2
(14)

ximin = ∆ (15)

ximax = 1−∆ (16)

An optimization of the initial value of Vbox is of course impossible in a un-
supervised search, where neither non-anomalous or anomalous data have a
specified density. However, our tests suggest that setting Vbox = 0.1 is a rea-
sonable choice when, as is the case in several of our considered applications,
D′ lays in the 6-10 dimensions range. E.g., with D′ = 6 one obtains starting
intervals equal to [0.16, 0.84], and with D′ = 10 intervals equal to [0.10, 0.90].
Note that this corresponds to a relatively large box, in terms of its extension
along each marginal. When combined with a search algorithm that considers
initial expansions or shrinkages in each of the box dimensions by amounts
sufficient to extend all the way to the unit hypercube boundaries, the above
initialization ensures that no overdensity laying close to the boundary of a
coordinate will be overlooked by the search algorithm taking a step in the
wrong direction at the start of the search.

The second method, “Algorithm 1”, is instead based on clustering the
data based on a specialized Nearest-Neighbour (NN) search. First, the near-
est neighbour j is found for every event i in the data, by using as a distance
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the following function:

dij =
∏ D′/2

k=1 |x
i
ok(ij)

− xjok(ij)| (17)

where ok(ij) are the D′/2 indices identifying the spatial coordinates for which
the intervals |xi−xj| are the smallest. In other words, the map dij determines
the minimum volume of a D′/2-dimensional box that includes events i and
j. Once dij is defined for all i and j, one may compute for every event i
the number of neighbouring events j = j1...jNcl

that have i as their closest
event according to that metric. The event imaxNN with the maximum number
Ncl,maxNN of such neighbours now allows to identify all N2nd order events which
have any of the Ncl,maxNN events as their own nearest neighbours. The box
can finally be initialized as the smallest D′-dimensional interval that includes
all the N2nd order neighbours. A graphical description of the algorithm is
provided in Fig. 4.

Figure 4: Graphical description of the clustering algorithm used for box initial-
ization with Algorithm 1. Blue points indicate the position of events in the two
shown variables of the feature space. Arrows pointing from an event to another
indicate the location of the closest neighbour of the event originating the arrow
(according to a metric described in the text). The green point is the closest to
four others, and it provides the seed of the box: the collection of all events which
point to those four events define the boundaries of the box.

A third initialization method, “Algorithm 2”, uses instead a kernel estimation
of the density for the identification of starting box boundaries. The density
is evaluated at the position of each of the N events as the sum of N D-
dimensional Gaussian distributions centered at the location of every event in
the sample, and with equal diagonal covariance matrices C = k2ID, with ID
the D-dimensional identity matrix and k a tunable parameter which must

14



be chosen according to the total dataset size and the dimensionality of the
D′ subspaces scanned by RanBox; its default value, used in the applications
described in this work, is k = 0.2. Once the point of highest density xHD
is identified, the box is initialized as the multi-dimensional interval whose
extension in each coordinate x is

[max(xHD − δ2, 0.),min(xHD + δ2, 1.)], (18)

with the provision that if xHD is at less than δ2 distance from the boundary at
0 (1), the interval defaults to [0., 2δ2] or [1.−2δ2, 1.], respectively. The default
value of δ2 is 0.2; e.g. this corresponds, for a 10-dimensional subspace search,
to initial boxes of volume equal to or smaller than 0.0001: the expected
number of events within a 10,000-event sample contained in a random box
of that volume is 1.0, which is a suitable starting point for the background
expectation in the test statistic maximization. Given that the initialization
provided by Algorithm 2 offers a good candidate for an overdense region,
the focusing on a small initial region of feature space has been observed to
be effective in the tested applications of our interest: those are in fact cases
when a small, overdense region exists in the first place.

2.6. Maximization of the test statistic

A search for the multi-dimensional interval providing the highest value of the
chosen test statistic (either ZPL or Rreg as defined in Sec. 2.4 above) in a
D′-dimensional subspace of the feature space can be performed as follows.

Step 1: The initialization of the box is performed with the algorithm of
choice. A set of step parameters are set to the starting value λi = 0.5 (i =
1...D′). A loop counter NGD is set to zero.

Step 2: Seven possible modifications are considered for each of the D′
intervals defining the box:

(ximin)′ (ximax)
′

max(ximin − λi, 0) ximax
min(ximin + λi, x

i
max − ε) ximax

ximin max(ximax − λi, ximin + ε)
ximin min(ximax + λi, 1)
max(ximin − λi, 0) max(ximax − λi, ε)
min(ximin + λi, 1− ε) min(ximax + λi, 1)
rimin = min(r1, r2) rimax = max(r1, r2)
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where ε is a parameter determining the coarseness of the algorithmic scan in
the feature space, fixed in applications described in this work to ε = 0.01.
In the last line the values r1, r2 determining a “random jump” in the i-th
interval are random numbers sampled from a uniform distribution in [0, 1].
The values of (ximin)′ and (ximax)

′ defined above are rounded off to two decimal
places in all cases. For each of these 7D′ variations, an associated SB region
is defined by the recipe described supra; this determines the numbers Nin

and Nout and consequently the 7D′ values of the test statistic of choice.
Step 3: If the highest among the 7D′ values of the test statistic corre-

sponding to the tentative box modifications is higher than the current maxi-
mum value, the box is modified to the corresponding new multi-dimensional
interval, and all λi values for the coordinates not affected by the change are
reduced as follows:

λi → max (fλi, ε) (19)

where the factor f is set to 0.9. In addition, if the box modification is
chosen based on one of the D′ random intervals [rimin, r

i
max], a counter ji is

incremented by one; once a ji reaches a maximum value (10 by default),
no more random jumps are allowed for the intervals in variable i. This
recipe allows to control the convergence of the algorithm as well as the trade-
off between its CPU consumption and its freedom in exploring new box
configurations in the considered feature space dimensions.

If, instead, the current value of the test statistic is higher than all of the
7D′ new values, no modifications to the box boundaries are applied, and λi
values are reduced as in Eq. 19.

Step 4: The loop counter NGD is incremented by one. If NGD reaches a
limiting value (set to 100 by default) the algorithm stops; the algorithm also
stops if all values λi have reached the value ε. Otherwise, steps 2, 3, and 4
above are repeated.

Despite its simplicity, the procedure described above typically converges in
30 to 50 iterations for D′ = 6−10, which are typical values for the considered
applications of fixed-subspace searches.

2.7. Iterative scan of subspaces: RanBoxIter

A variation of the above algorithm, called RanBoxIter, is based on a different
approach to the problem of scanning high-dimensional spaces. RanBoxIter

performs a scan of the subspaces of the feature space incrementally, starting
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with two-dimensional subspaces and adding dimensionality gradually, until a
maximum value D′max is reached. The maximum dimensionality may be cho-
sen such that it adapts to preconceptions on the behaviour of the anomalous
signal sought, similarly to the choice of D′ for RanBox.

RanBoxIter works as follows:
Step 1: a loop is performed on all the D(D− 1) combinations of pairs of

features. For each combination, the corresponding two-dimensional subspace
is considered, and a search for the box that maximizes the predefined test
statistic of choice is performed, exactly as is done by RanBox. At the end
of the D(D − 1) scans, a list is compiled of those subspaces where the Nbest

boxes yield the highest values of test statistic. A reasonable value for Nbest

is in the 20-50 range.
Step 2: For each of the Nbest subspaces, all possible choices for an addi-

tional feature are considered; the search for the box with the highest value
of the test statistic is performed in each of the three-dimensional subspaces.
At the end of the scans (which are at most Nbest(D− 2), but typically fewer
due to repetitions) a new list of the Nbest boxes is compiled.

Step 3-D′max + 1: A repetition of Step 2 is performed iteratively, each
time incrementing by one the dimensionality of the considered subspaces,
from 4 to D′max.
At the end of the above procedure, the box of interest is the one which
corresponds to the highest value of the test statistic among the Nbest ones
returned by the algorithm; the full list may however be used for more detailed
studies of the feature space.

Depending on the values of D and D′/D′, as well as on the distinguisha-
bility of the anomalous signal, RanBoxIter may take a shorter or a longer
time to run than RanBox to reach comparable sensitivity: when the anomaly
involves many distinguishing features the latter may require few scans of
subspaces to find anomalous regions of feature space, while the former must
consider a significant number of combinations of up to D′max dimensions.
For a comparison we consider a typical situation of interest for our applica-
tions, involving a 20-dimensional feature space and an anomalous overdensity
involving a significant modification of pb(x) for 10 of the features. Let us fur-
ther assume that the RanBox search is run on subspaces of 8 dimensions. In
that case, the probability that a random choice of eight dimensions captures
a significant number of features in which the signal is distinguishable will be
small. The formula that yields the probability that a choice of C features
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out of D selects X of them within a subset S (with S ≥ X) is

P (X,C, S,D) =
c(S,X)c(D − S,C −X)

c(D,C)
= (20)

=
S!C!(D − C)!(D − S)!

X!(S −X)!D!(C −X)!(D +X − S − C)!
(21)

where c(n, k) = n!
k!(n−k)! is the binomial coefficient for (n, k). With D=20,

S=10, C=8, X=8 the odds are 3/8398, i.e. one in 2800; if X=7, this raises to
40/4199, i.e. about one in 105; for X=6, it reaches 315/4199, or about one
in 13.3. Given these numbers, a RanBox run on a random choice of 1000 8-
dimensional subspaces will encounter a large number of situations where the
signal is distinguishable. Conversely, a run of RanBoxIter that sequentially
scans subspaces of dimensionality from 2 to 8, each time considering the
Nbest = 20 subspaces returned by the previous step, will have to scan a much
larger number of combinations; although that number depends on the specific
combinations of best boxes at each iteration, in practical situations it is of
the order of 10,000. On the other hand, low-dimensional subspace scans will
take a shorter time to be completed.

In order to appraise the merits and peculiarities of the two algorithms it is
not trivial, nor necessary, to go beyond the simple comparison offered supra
of the number of combinations of subspaces that the algorithms consider. A
much better option is to empirically observe their performance in controlled
cases; this is what we present in the next Section.

3. Performance studies with synthetic data

3.1. Event generation

A synthetic dataset sampled from a multi-dimensional Uniform distribution
pb(x) = U(x), with x ∈ [0, 1]D, may be generated by repeated calls to the
TRandom3→Uniform() routine 4 of the ROOT package [11], which we em-
ploy in our c++ implementations of RanBox and RanBoxIter. Such a dataset
may be considered the ideal background for an anomaly search: by lack-
ing any internal structure in the copula, it constitutes a best-case scenario

4The random generation is based on the Mersenne primes, and has a periodicity of
about 106000.
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for performance evaluations of the algorithm in a controlled setting. The
unknown signal may instead be generated by drawing samples from a multi-
dimensional Gaussian distribution in a subset xg, g = 1, ..., Ng of the features,
xg ∈ RNg , and the remaining ones xu, u = Ng + 1, ...,D from a uniform den-
sity. While Gaussians have support on the real axis, the generation ensures
that the drawn features are also contained in the [0, 1] interval, as detailed
below.
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We define the following default set of parameters:

• (for background) xi = U(0, 1);

• (for signal) xu = U(0, 1);

• sigma σgg = U(0.01, 0.1);

• mean µg = U(3σgg, 1− 3σgg);

• rgh = U(−1, 1) (with g, h ∈ {1, ..., Ng}, g 6= h).

A random choice of σgg and rgh values as defined above will not in general
generate a positive-definite covariance matrix C with variances σ2

gg and σ2
gh =

rghσggσhh; hence the procedure of generating C is repeated until a Cholesky-
Banachiewicz (CB) decomposition LLT = C into a lower-triangular matrix
L [12] is found, which guarantees the positive-definite nature of C. Once
successful, the CB decomposition allows to easily draw samples from the
multi-dimensional Gaussian distribution by posing, for every g,

• (for signal) xg = µg +
∑

h=1..Ng
Lghnh

with nh sampled from a Normal distribution. During event generation, if a
coordinate sampled from the multivariate Gaussian exceeds the range [0, 1],
it is simply resampled. This truncation has the effect that Gaussians with µg
values close to the boundaries have an up to twice higher local density than
Gaussians closer the center of the [0, 1] interval. For this reason, in most
tests we limit µg values to the range stated above, except when we explicitly
study the performance at the edges (see infra). Although the background
is already generated with flat marginals, after the inclusion of signal we of
course re-standardize the dataset by using Eq. 4.

When performing power tests of the algorithm, we avoid the random effect
of varying σ parameters, and use reference samples with a more narrowly
defined signal component, by fixing all Gaussian sigmas to σgg = 0.05. In
this case correlation coefficients rgh are chosen at random within the discrete
set {−max(rgh), 0.,max(rgh)} by posing max(rgh) = 0.2, and we allow means
µg to vary at random in their default range, [0.15, 0.85]. The different signals
that correspond to varied means and correlations have equal chance of being
identified by the algorithm. For example, Fig. 5 shows average ZPL values
from runs of the algorithm with the following choice of parameters:
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• Nb = 4950 background events

• Ns = 50 signal events

• D = 20 active dimensions of feature space

• NG = 6 Gaussian features in signal component

• D′ = 6 dimensions for box definition

• Ntrials = 1 subspace sampled per dataset, of features coincident with
the NG in which signal component has a Gaussian distribution.

• Nrep = 50 datasets generated and searched

• Algorithm 0 (random box initialization) and 2 (kernel density) used

• No dimensionality reduction (PCA or correlated features removal) per-
formed

By only considering, through the above choices, the subspace which yields
the highest probability of locating a signal-rich box, we reduce the effect of
randomness and allow for a more precise study of the impact of the tested
parameters. In Fig. 5 the values of the test statistic ZPL appear stable as a
function of the sampled ranges max(rgh) and ∆µg = µmaxg −µming , indicating
that the search algorithm is capable of locating overdensities regardless of
their position in the space 5, and that the correlation between Gaussian-
distributed variables does not affect the chance of identifying overdense multi-
dimensional intervals. Similar results are obtained by initializing the box
dimension with Algorithm 1 (kNN-seeded clustering), and/or by using R1 as
a test statistic.

5The observed slightly lower performance of searches initialized by Algorithm 0 for ∆µg
values close to 1 is an effect of the higher chance of central signals to be initially contained
in randomly-initialized boxes. Instead, Algorithm 2 allows to exploit the slightly higher
maximum density reached by signals with one or more features close to the boundaries of
the space, due to the already mentioned truncation we operate outside the [0, 1] range.
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Figure 5: Mean values of the test statistic ZPL as a function of the characteristics
(∆µg for rgh = 0.2 (left), and rgh for ∆µg = 0.7 (right)) of the signal component,
from 50 repetitions of searches in synthetic datasets each composed of 50 signal
events and 4950 background events. Black points correspond to searches initialized
with Algorithm 2, empty points correspond to searches initialized with Algorithm
0. For reference, the critical region (for α = 0.05) corresponds to ZPL = 7.1(7.2)
for Algorithm 0 (2, respectively). See the text for other detail.

3.2. Power tests of RanBox

While in a unsupervised search one cannot in general define a hypothesis
test, given the absence of hypotheses for the sampling distributions, we are
still interested in verifying the ability of RanBox to locate overdense regions
of the feature space as a function of its free parameters for a set of different
benchmark datasets. This will enable a comparison of the fixed subspace
search strategy to the iterative one, as well as provide a scale of the algorithm
sensitivity. Hence we construct a “flat” dataset containing events uniformly
distributed in the feature space, and “signal” datasets where a fraction of the
events are sampled from a PDF which includes, for some of the features, a
multivariate Gaussian component (see supra). Once a type-I error rate α is
defined, the tail integral of the test statistic distribution f(TS|H1), output
by RanBox searches on alternative hypotheses H1 corresponding to datasets
contaminated with events having multivariate Gaussian features, allows to
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construct a power function 1− β(α) as

1− β(α) =

∫ ∞
xcr(α)

f(x|H1)dx, (22)

where xcr(α) is defined by the relation

α =

∫ ∞
xcr(α)

f(x|H0)dx. (23)

To check the performance of the algorithm in a controlled setting, we de-
fine signal parameters by fixing the Gaussian sigma values in signal events
to σgg = 0.05, and allow means and correlations to vary in the range µg ∈
[0.15, 0.85] and rgh ∈ {-0.2,0.,0.2}, respectively. We consider again sam-
ples of 5000 events, and study the power 1 − β for the three choices α =
0.05, 0.01, 0.001, using D = 20 space dimensions. We also set the following
algorithm hyperparameters:

• Algorithm = 0

• Ntrials = 1000 subspaces scanned for each dataset

• test statistic used: ZPL

• expectation value of events in the box: Nexp,V .

In a first test we fix the number of features where the signal component
exhibits a Gaussian distribution to Ng = 15, and vary the number of signal
events in the generated samples. The critical region is directly obtained for
α = 0.05 from the distribution f(TS|H0) obtained by repeating 500 times
the procedure of generation and 1000-subspace-search of datasets including
no signal. For the two smaller values of α (0.01, 0.001), we instead rely on
the modeling of the distribution of f(TS|H0) with a Gamma function (see
Fig. 6) to determine the corresponding xcr values. For each studied value of
the signal component we obtain 50 values of f(TS|H1), from which we extract
the power as the fraction of values in the critical regions corresponding to
the three chosen values of α. The results of this test are shown in Fig. 7
(top row). We observe that RanBox is fully capable of spotting localized
accumulations due to a multivariate Gaussian signal, down to few-per-mille
contaminations of the data sample.
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Figure 6: Distribution of the ZPL test statistic for 500 repetitions of RanBox tests
of the null hypothesis in 5000-event background-only samples; a fit to a Gamma
function is overlaid. 1000 subspaces are scanned with Algorithm 0 for the box
initialization. See the text for other details.

In a second study we determine, with the same procedure described supra,
the power of RanBox as a function of the number of Gaussian dimensions Ng

of the signal component, by fixing the signal fraction to fs = 1% (i.e., 50
signal events and 4950 background events). We observe in Fig. 8 (top row)
that there is sensitivity to multivariate Gaussian signals that involve even
only few (4 and above) of the 20 dimensions of the feature space.

In Fig. 9 and Fig. 10 we provide a visualization of sample results of a
RanBox run. The first figure shows marginal distributions of the six features
where RanBox identifies an anomalous signal, in the copula space (where
the total dataset has by definition uniform marginals before the selection).
The subspace where the best box is found is one where the signal exhibits
Gaussian distributions in all the features, and all the events in the box are
in fact due to the signal component. The scatterplots of Fig. 10 show two-
dimensional distributions of the full data sample and the data selected as the
best box. This further demonstrates the correct working of the algorithm,
which can effectively extract the overdense region from an apparently flat
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Figure 7: RanBox (top) and RanBoxIter (bottom) power curves for ZPL as a
function of the fraction of signal in 5000-event samples. The black points (left)
correspond to α = 0.05, the blue points (center) to α = 0.01, and the red points
(right) to α = 0.001; the critical region for the latter two tests are obtained from
extrapolated values of ZPL for the null hypothesis. 68.3% intervals are computed
with the Clopper-Pearson method for the Binomial ratio. See the text for other
details.

distribution. The conclusions we draw are that the algorithm performs as
expected when run on a synthetic data sample and in controlled conditions.

3.3. Power tests of RanBoxIter

We follow the same approach as the one discussed supra for tests of the power
of RanBoxIter on synthetic datasets. In Fig. 7 (bottom row) we show the
power of hypothesis tests based on the most significant box of dimension up
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Figure 8: RanBox (top) and RanBoxIter (bottom) power curves for ZPL as a
function of the number of Gaussian features in signal events, in samples containing
50 signal events and 4950 flat-distributed events. The black points correspond to
α = 0.05, the green points to α = 0.01, and the red points to α = 0.001; the latter
two are obtained from extrapolated values of the critical region. 68.3% intervals
are computed with the Clopper-Pearson method for the Binomial ratio. See the
text for other details.

to 12 found by the iterative algorithm, as a function of the signal fraction in
5000-event samples and for three different type-I error rates. In those tests,
the signal has 15 Normally-distributed features out of 20, with the same
settings for width, location, and correlation among them already described
above. In Fig. 8 (bottom row) we then show the result of varying the number
of Gaussian dimensions of the signal, in datasets with 1% signal fraction (50
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Figure 9: Distribution of the six features defining the subspace where RanBox finds
the highest-ZPL box in a run on 5000 synthetic events, 4950 of them generated from
a D = 20-dimensional uniform distribution and the remaining 50 “signal” events
generated with 11 features drawn from a multidimensional Gaussian distribution.
The blue histograms show the totality of the data; the filled green histograms
show the distribution of events contained in the highest-ZPL box; the filled red
histograms show the distribution of events that fail to be contained in the box only
because of their value on the displayed variable. See the text for other details.

signal events and 4950 background events), again for three different type-I
error rates.

From inspection of the two sets of graphs we verify that the iterative algo-
rithm is effective in identifying the signal in these controlled conditions. We
also observe that its power is comparable to that of the non-iterative version.
Of course, as the performance of RanBox strongly depends on the number of
scanned subspaces, and conversely that of RanBoxIter on the value of Nbest,
one may not draw general conclusions, and computing load considerations
have to be included in a choice of which version of the algorithm to employ
for generic applications. In addition, since the performance of RanBoxIter

is reliant on the existence of two-dimensional subspaces where the signal
component produces overdensities, we believe that rather than making an a
priori choice of which version to employ, users should consider scanning their
datasets with both methods for a deeper insight.
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Figure 10: Scatterplots of the six features defining the subspace where RanBox

finds the highest-ZPL box in a run on 5000 synthetic events, 4950 of them gen-
erated from a D = 20-dimensional uniform distribution and the remaining 50
“signal” events generated with 11 features drawn from a multidimensional Gaus-
sian distribution. The distribution of the totality of the data is shown in blue on
the left of each pair of graphs, while the distribution of selected events (in green)
is shown in green on the corresponding right graph; in red are events that fail
to be included in the highest-ZPL box only because of their value of the shown
features. From top to bottom and left to right each pair of graph describes the
spaces (v1, v2), (v1, v3), (v1, v4) (first row), (v1, v5), (v1, v6), (v2, v3) (second row),
(v2, v4), (v2, v5), (v2, v6) (third row), (v3, v4), (v3, v5), (v3, v6) (fourth row), and
(v4, v5), (v4, v6), (v5, v6) (fifth row). See the text for other details.
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4. Experiments

The power tests described in Sec. 3 are about as far as one can go to char-
acterize the performance of RanBox and RanBoxIter, since on any real-life
dataset the specificities of the data structure and the lack of generalization
power of the algorithm will make it pointless to investigate in a systematic
way its optimal settings and resulting sensitivity. For this reason, in this
Section we free ourselves of the need to assess confidence intervals on all
the reported statistics, which would also entail a quite significant computing
burden 6, and prefer to offer sets of results of single runs of the algorithm on
samples of data taken from three datasets, the first two offered by particle
physics research and the third taken from an industrial application. This will
allow us to walk the reader through the possible uses and search methodology
that can be adopted in addressing the search for anomalies.

4.1. Exotic signals in LHC data

The search of new phenomena in LHC proton-proton collisions data is the
very application that RanBox is designed to address. A signal of new physics
may manifest itself as a localized increase in density in some of the fea-
tures derived from particle interactions in the detector. A model-independent
search should consider a complete set of kinematical features describing the
observed particles in the final state of the collision events, and perform an
unbiased scan of their combined multi-dimensional distribution.

For a test of RanBox on the above use case we rely on the large dataset
of simulated proton-proton collisions available in the University of Irvine’s
repository [13], a dataset known by its nickname “HEPMASS”. This dataset
was generated explicitly to test multivariate algorithms for classification and
search of small signals in large background datasets. The generated signal
is that of an exotic resonant particle X, with a mass of 1000 GeV, which
decays to a pair of top quarks, X → tt̄, when the top quarks successively
produce in their decay a single-lepton final state characterized by a high-
energy electron or muon, a neutrino, and four hadronic jets. Background
samples describe all Standard Model processes that produce a similar final-
state signature. The ATLAS experiment is considered as the detector that

6The tests we report in this work overall cost several thousand hours of single-machine
CPU by themselves.
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performs the reconstruction of the produced particle signals; more detail on
the generated dataset and the simulation are available in [14].

Number Feature Description
1-3 P `

xyz Primary lepton momentum
4-6 P j1

xyz First jet momentum

7 P j1
tag First jet b-tag information

8-10 P j2
xyz Second jet momentum

11 P j2
tag Second jet b-tag information

12-14 P j3
xyz Third jet momentum

15 P j3
tag Third jet b-tag information

16-18 P j4
xyz Fourth jet momentum

19 P j4
tag Fourth jet b-tag information

20 Pmiss
T Missing transverse momentum

21 φPmiss
T

Missing transverse momentum azimuthal angle

22 m`ν Mass of reconstructed lepton-neutrino system
23 mjj Mass of jets from W → qq′ decay products
24 mjjj Mass of reconstructed t→ Wb→ bqq′ decay system
25 mj`ν Mass of reconstructed t→ Wb→ lνb decay system
26 mWbb Mass of leptonic W plus leading b-jets
27 mWWbb Mass of hypothetical X resonance

Table 1: List of the 27 features of signal and background events in the HEPMASS
dataset. The first 21 are low-level features, the last 6 are higher-level ones produced
by combining the low-level features into physics-motivated observables. See the
text for more detail.

The data are characterized by reconstruction-level variables from a fast sim-
ulation. An idealized reconstruction of a proton-proton collisions yielding
top quark pairs is performed, identifying the observed jets, leptons, and b-
jets 7. From the reconstruction of the event, the low-level kinematic features
obtained are particle momenta: the momentum of the leading lepton, the
momentum of the four leading jets (in decreasing order of transverse mo-
mentum) and related b-tagging information, and magnitude and azimuthal
angle of the so-called “missing transverse momentum” vector. The latter is

7We call “b-jet” a hadronic jet which has been originated from a b-quark. When
classified as such by a software algorithm, the jet is said to be “b-tagged”.
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defined as the opposite of the sum of the momentum vectors of all observed
particles, calculated in the transverse plane of the particle beams 8.

Figure 11: Normalized and standardized distributions of the 27 features of HEP-
MASS data for signal (black) and background (blue).

The high-level features of the set are the values of the invariant masses of the
intermediate objects calculated using the low-level kinematic features, in the
hypothesis that a correct identification of decay objects and assignment to fi-
nal state particles has been obtained. These are: m`ν from the decay process
W → `ν, mjj from the W → qq′ process, mjjj from the t→ Wb→ bqq′ pro-
cess, mj`ν from the t → Wb → `νb process, and the combined mWWbb mass
of the decay products assumed for X. Table 1 lists identity and information

8Missing transverse momentum carries information on the momenta of neutrinos, par-
ticles typically produced in weak boson decays that do not leave a traceable signal in the
detector but can still be inferred from the imbalance of the momenta of observed particles.
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of the 27 features.

Figure 12: Comparison of signal and background efficiency curves for four classes
of neural networks on the HEPMASS dataset. Of relevance here is the dashed
red curve, which correspond to a non-parametrized network trained and tested
on the sample of reference, with a resonance mass of 1000 GeV. Reprinted with
permission from [15].

In [15] several ROC curves are presented to compare the performance of
parametrized and non-parametrized neural networks on the HEPMASS sig-
nal discrimination problem. Those are the result of supervised classification,
which duly exploits a priori knowledge of the signal density. As can be
seen in Fig. 12, the non-mass-parametrized neural network achieves a back-
ground efficiency of about 3% for a signal efficiency of 80%, e.g.. We will use
these approximate values for a qualitative comparison to the performance of
RanBox, bearing in mind all the caveats of any comparison of supervised and
unsupervised classification methods.

In this section we use a mixture of signal and background events from
the HEPMASS dataset to test under what conditions RanBox is capable of
evidencing feature space regions with a dominant signal contamination. Since
the feature space is rich with interdependencies among the features, the task
of a unsupervised algorithm is considerably harder than in the case of the
synthetic dataset studied in Sec. 3, as significant overdensities are expected
to arise from the structure of background processes alone. Furthermore, in
a real-life application of RanBox, the user would be unable to extract the
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Figure 13: Comparison of the distribution of pure background (blue) and a mix-
ture of 5% signal and background (black) in the most discriminating features in
the HEPMASS dataset. Left to right, top to bottom: features 0, 3, 6, 10, 14, 18,
25, and 26.

distribution of the test statistic under the null hypothesis, as even slight
differences between simulation and real data would distort the output. We
consider therefore that in that case RanBox would be used by running it on
real data as they come, without any pretense of assessing a significance level
of the returned overdense regions or of studying the power of a selection
criterion, but rather with the aim of focusing the attention of researchers on
the combinations of features that exhibit interesting localized overdensities.

We proceed with exploratory runs of the RanBox and RanBoxIter algo-
rithms on the HEPMASS dataset as we would perform them on real data. We
construct a dataset comprised of 250 signal and 4750 background events: the
5% signal fraction is small enough to make the signal indistinguishable in the
marginal distributions of even the most discriminating variables, as shown
in Fig. 13. We run RanBox and RanBoxIter with the parameters listed in
Table 2. They constitute a reasonable choice for a run on HEPMASS. In par-
ticular, since we wish to be sensitive to a small signal contamination rather
than having the algorithm get distracted by broader-scale background corre-
lations, we initially consider that the R1 test statistic might be more sensitive
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Algorithm Init. T.S. Extrap. D′ or D′max D red. Niter Nbest

RanBox A2 R1 SB D′ = 12 no 10,000 N/A
RanBoxIter A2 R1 SB D′max = 12 no N/A 50

Table 2: Run parameters of the RanBox and RanBoxIter algorithms for a test
on the HEPMASS dataset with a 5% signal contamination. “Init.” indicates the
method defining the initial dimension of the search box; “Extrap.” identifies the
way by which a prediction of events in the box is computed; D′ is the dimensionality
of the subspaces scanned by RanBox, and D′max the maximum dimension of the
subspaces constructed iteratively by RanBoxIter; “Dim. red.” indicates whether
the dimensionality of the feature space was reduced with PCA or by discarding the
most correlated variables; Niter is the number of searched subspaces by RanBox;
and Nbest is the number of feature combinations considered by RanBoxIter when
adding one dimension to the previous subspaces search.

to a signal component. Also, we use the sidebands method to extrapolate the
density in the search box, as this better factors out the local disuniformities
in the data. The choice of dimensionality (or maximum dimensionality, for
RanBoxIter) of the scanned subspaces is instead driven by preconceptions on
the fact that a signal of new physics will most likely exhibit distinctive fea-
tures only in a subset of the considered kinematical variables 9; 12 is anyway
close to the maximum meaningful choice for that parameter, as is clear if we
consider that in a 12-dimensional space a box of sides equal to half the range
of each feature will on average contain only 5000 × 2−12 = 1.2 events out
of 5000. Finally, we do not apply any dimensionality reduction to the input
data, as we observe that the maximum two-variable correlation coefficient
(0.757) in the mixture dataset is not particularly high.

From the results listed in Table 3 and 4 we may draw a few interesting
conclusions. First of all, the search of 10,000 subspaces performed by RanBox

returns a good number of signal-rich regions, as five of the ten most signif-
icant boxes are dominated by the signal component, and two more are also
considerably signal-enriched, by factors above six 10. Such an output, and

9Indeed, in the considered search for X → tt̄, apart from the resonant structure of the
total invariant mass of the decay products, one expects only minor differences of the signal
with respect to the non-resonant tt̄ production predicted by the SM.

10In the following we take that factor as a threshold to count the number of signal-rich
(SR) boxes among the first ten boxes, a number we report as SR1:10.
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R1 Nin Nexp Ns εs Gain Active features
52.78 54 0.02 46 0.184 17.04 101011100111010000000110001
45.35 48 0.06 38 0.152 15.83 000111100011001011000100011
41.60 46 0.11 33 0.132 14.35 100010010110111011000100001
40.72 46 0.13 18 0.072 7.83 101000110110101000100010011
40.38 44 0.09 41 0.164 18.64 100100100100010001110111001
40.17 47 0.17 0 0.000 0.00 011001000100010111001100011
39.82 44 0.10 0 0.000 0.00 100001010100011001010101011
38.54 44 0.14 0 0.000 0.00 001001101101110001101100000
38.36 44 0.15 30 0.120 13.91 000110101110010000001101011
38.05 43 0.13 14 0.056 6.51 110000100110001110100011001

Table 3: Results of an exploratory RanBox search on the HEPMASS dataset with
a 5% signal contamination; data for the 10 most significant boxes are reported.
Ns indicates the number of signal events in the search box; εs is the efficiency of
the box selection for the signal component; gain is computed as the increase in the
signal fraction of the box over the initial dataset. For other detail see the text.

R1 Nin Nexp Ns εs Gain Active features D′
69.92 83 0.19 47 0.188 11.33 000000100110011001100011111 12
63.93 66 0.03 59 0.236 17.88 000101100110011000101100001 11
62.74 65 0.04 57 0.228 17.54 010000100100011001100111011 12
60.71 68 0.12 54 0.216 15.88 000000100100011011100111011 12
58.52 61 0.04 49 0.196 16.07 000100100110001001100101011 11
56.88 62 0.09 46 0.184 14.84 000000100110011000100001011 9
51.07 56 0.10 31 0.124 11.07 000000100110011000100111001 10
51.03 53 0.04 49 0.196 18.49 000100100100001001100101011 10
51.00 54 0.06 35 0.140 12.96 000100100110011010100100001 10
50.72 57 0.12 39 0.156 13.68 000010100110011000100001001 9
49.98 51 0.02 0 0.000 0.00 100001000110010001001100000 8
49.94 54 0.08 47 0.188 17.41 000000100100001000100111011 9

Table 4: Results of an exploratory RanBoxIter search on the HEPMASS dataset
with a 5% signal contamination. The 12 most significant boxes are reported, such
that we may include a negative result (the 11th most significant box). D′ is the
dimensionality of the reported box. For other detail see the text.

in particular the most significant box alone, would certainly allow experi-
mentalists to focus on the small signal now evident in the identified regions,
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hence we consider this output a success of the anomaly detection task. We
also note that the scan of 10,000 12-dimensional subspaces costs nearly 10
hours of running on a single CPU; the scan of all 12-dimensional subspaces
of the 27-dimensional feature space is instead not an easily viable option, as
this would require 27!/(12!15!) = 1.738 × 107 iterations, or about two years
of CPU on a single machine. Regardless, on the HEPMASS dataset a limited
number of combinations of 12 features still allow to evidence a small signal.

RanBoxIter is quicker to run with the above settings, as it completes its
scan in little more than five hours of CPU, keeping a list of the 50 most
significant boxes during its iterative scan (a parameter which scales roughly
linearly with CPU time). It also returns, as the 10 most significant regions,
ones which are all quite rich in signal. In Table 4 we observe that the list of
features defining the subspaces where the most significant boxes are found
include a few (e.g. features 9, 18, and 26) which are always used —an indica-
tion that their combination is highly discriminant for the anomaly originating
the overdense regions, and an observation that may be useful in the interpre-
tation of results. One may also notice (see the rightmost column in Table 4)
how in some cases the dimensionality of the most significant box is smaller
than the maximum investigated in the run (12), which shows that the al-
gorithm cannot always fruitfully exploit the value of D′max to maximize the
test statistic. In general this might indicate that the signal does not pos-
sess discriminating characteristics in enough of the features, but in the case
at hand it rather reflects the relatively small number of events of the data
sample over which the algorithm is run: the identified boxes have sidebands
already devoid of any background event, hence the maximization of the test
statistic does not favour further losses of events in the signal box by cuts on
additional features 11.

By comparing the results shown in the two tables above, one may conclude
that RanBoxIter performs better than RanBox on this particular application,
as it returns signal-rich regions in all its ten most significant boxes, and the
signal-to-noise gain resulting in those regions is higher than those of the best
regions reported by RanBox. This result proves that the incremental scan is
effective, especially in situations such as the one considered here, where the
large combinatorial factor that RanBox has to overcome in order to examine

11As mentioned supra (Sec. 2.4), for zero events in the sideband region the estimate
Nin,τ reverts to Nin,V .
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combinations of features sensitive to a small signal prevents it from reaching
its full sensitivity.

If we now compute the signal and background efficiency of the regions
returned by the algorithms in their exploration of the fs = 5% datasets, we
notice that the best box identified by RanBox contains 46 signal events out
of 54, which corresponds to an 85% efficiency; the background efficiency is
instead 8/4950 = 0.16%. For RanBoxIter the signal and background effi-
ciencies of the best box are instead respectively 94% and 0.73%. In both
cases these numbers compare quite favourably to those of the neural network
results graphically displayed in Fig. 12. We stress again the modest value of
this observation, given the improper nature of a comparison of this kind. In
particular, the RanBox and RanBoxIter results have unknown generalization
properties —they are obtained from a single dataset, on which multiple test-
ing is performed: the performance would be less good on a different testing
sample. On the other hand, the search algorithms were only shown a total
data sample of 5000 events, a number over two orders of magnitude smaller
than the training sample of the neural networks.

4.1.1. Further studies

The above tests prove the usefulness of the algorithm in both its instantia-
tions, but leave open the question of what are their limits of sensitivity to
a smaller signal contamination. In Table 5 we therefore present the results
of a few additional runs of RanBoxIter on sets of 5000 events, a variable
fraction of which are taken from the HEPMASS signal simulation and the
rest from the corresponding background simulation. In the reported tests we
fix the maximum dimensionality of the iterative scans to D′max = 12, use Al-
gorithm 1 or Algorithm 2 for initialization of the search box, and employ the
R1 test statistic in the maximization search. We operate no dimensionality
reduction technique to the input data. We provide some commentary of the
results below.

The tests show that RanBoxIter has no difficulty in spotting a 2% to 4%
signal in a HEPMASS sample of 5000 events, when Algorithm 2 is used for
the box initialization. For tests 1 to 7, the decreasing value of the number of
signal-rich regions and signal efficiency in the 10 most significant boxes (last
two columns in the table) with decreasing signal contamination indicates
that 2% is indeed close to the limit when local background fluctuations or
overdense region start to compete and offset the small signal. Tests 8 to 14
further show that the initialization provided by Algorithm 1 is equally or
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Test Ns/Nb R1 Nin Nexp Ns Gain SR1:10 ε1:10s

1 200/4800 51.12 55 0.075 48 21.82 9 0.164
2 150/4850 48.61 52 0.069 0 0.00 4 0.037
3 100/4900 41.20 44 0.067 0 0.00 2 0.024
4 80/4920 44.48 47 0.056 8 10.64 9 0.112
5 70/4930 52.45 56 0.067 14 17.86 7 0.113
6 60/4940 46.74 51 0.091 1 1.64 2 0.027
7 50/4950 42.16 43 0.019 0 0.00 3 0.028
8 200/4800 33.05 35 0.058 32 22.86 6 0.098
9 150/4850 38.24 40 0.045 31 25.83 10 0.175

10 100/4900 31.50 63 1.000 0 0.00 1 0.001
11 80/4920 31.66 33 0.042 0 0.00 5 0.065
12 70/4930 41.50 83 1.000 0 0.00 1 0.013
13 60/4940 36.47 37 0.014 0 0.00 7 0.088
14 50/4950 45.50 91 1.000 5 5.49 4 0.066

Table 5: Results of a few additional RanBoxIter test runs on 5000 events from
the HEPMASS dataset, using Algorithm 2 (tests 1-7) and Algorithm 1 (tests 8-14)
for the initialization of the search boxes, and scans of subspaces with dimension
up to D′max = 12. The last two columns report the number of signal-rich boxes
and the average signal efficiency of the ten most significant boxes. See the text for
more details.

maybe slightly less effective on this dataset, as searches converge to boxes
with smaller values of R1, with a minor reduction in sensitivity. Figure 14
shows the two-dimensional distributions of the subspace identified by test 9.

We perform a similar investigation using RanBox, as detailed in Table 6,
using 10,000 trials for the subspace sampling and a subspace dimensionality
of D′ = 12. This time we start (see test 1) by searching for a 5% signal in a set
of 5000 events using the ZPL test statistic. The algorithm returns as the most
significant box one which is rich in signal component, and we observe that
the three next-best-significance boxes (not reported in Table 6) are similarly
enriched in signal events. We gradually reduce the signal fraction in tests 2-6
and observe that results are not uniform: RanBox in some cases identifies as
the most significant box one devoid of signal. In general we observe that the
number of boxes that are signal-enriched among the first 10 (SR1:10) usually
decreases as initial signal fraction is reduced; the average signal efficiency also
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Test Ns/Nb T.S. max Nin/Nexp Ns Gain SR1:10 ε1:10s

1 250/4750 ZPL = 28.06 39/0.00 35 17.95 8 0.097
2 200/4800 ZPL = 27.46 1003/133.00 0 0.00 6 0.079
3 150/4850 ZPL = 24.45 24/0.00 21 29.17 7 0.140
4 100/4900 ZPL = 26.95 45/0.01 0 0.00 1 0.014
5 80/4920 ZPL = 24.65 43/0.05 14 20.35 3 0.044
6 70/4930 ZPL = 23.56 41/0.01 0 0.00 1 0.010
7 250/4750 R1 = 52.78 54/0.02 46 17.04 7 0.092
8 200/4800 R1 = 50.78 60/0.18 33 13.75 6 0.097
9 150/4850 R1 = 43.58 53/0.21 15 9.44 6 0.071

10 100/4900 R1 = 45.29 49/0.08 0 0.00 3 0.038
11 80/4920 R1 = 51.22 52/0.02 0 0.00 0 0.000
12 70/4930 R1 = 43.44 48/0.10 0 0.00 0 0.000

Table 6: Sample results of RanBox runs on 5000 events from the HEPMASS
dataset, with varying signal fraction and the two choices of test statistic. See the
text for more details.

becomes smaller. Yet the algorithm finds significantly signal-enriched boxes
among the first 10 even for an initial signal fraction of 1.4% and 1.6%. We
also observe that in test 2 the ZPL maximization focuses on a very wide box,
an indication of the existence of broad-scale multivariate density variations
of the background component of this dataset.

Based on the above observation, in tests 7-12 we turn our attention to
the R1 test statistic, which should give more importance to smaller feature-
space regions. This indeed allows RanBox to converge on signal-rich regions
when the signal fraction of the data sample is 3% or larger; for smaller signal
fractions, however, RanBox becomes unable to evidence the signal component
in the reported overdense regions.

In all the tests reported above we stuck to data samples of 5000 events.
The reason of that choice is that RanBox and RanBoxIter in their present im-
plementation have not been designed to handle much larger datasets, as their
CPU consumption is significant, especially in the initial k-NN (Algorithm 1)
or kernel-based (Algorithm 2) initialization of the search box boundaries.
In order to test the performance of the search method over a larger sample
of HEPMASS data we use RanBoxIter, which on that dataset requires less
CPU to produce stable results, and we further lessen the CPU load by using
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Figure 14: Two-feature copula-space distributions from test 9 in Table 5. Each
left graph in a pair (columns 1,3,5,7,9) shows the totality of the data (blue scat-
terplots with 5000 events, including a 3% signal component) on the 45 com-
binations of the 10 features (out of D′max = 12) defining the highest-R1 box;
the corresponding graph on the right shows the data selected in the best box
(in green), and data failing the selection only because of the values of the fea-
tures shown in the graph (in red). From left to right, the shown pairs of fea-
tures are: [1,6],[1,11],[1,14],[1,9],[1,10] (row 1); [1,13],[1,25],[1,7],[1,19],[6,11] (row
2); [6,14],[6,9],[6,10],[6,13],[6,25] (row 3); [6,7],[6,19],[11,14],[11,9],[11,10] (row 4);
[11,13],[11,25],[11,7],[11,19],[14,9] (row 5); [14,10],[14,13],[14,25],[14,7],[14,19] (row
6); [9,10],[9,13],[9,25],[9,7],[9,19] (row 7); [10,13],[10,25],[10,7],[10,19],[13,25] (row
8); [13,7],[13,19],[25,7],[25,19],[7,19] (row 9).

Algorithm 0 and reducing Nbest to 20, accepting the slight loss of perfor-
mance that these settings offer. We use a total of 100,000 events, wherein
we mix fractions of signal events smaller than those those which allowed the
previously reported runs to converge to signal-rich boxes. Since for any given
signal fraction the absolute number of signal events is now higher by a factor
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of 20 with respect to all previous tests, we expect to gain some more sensi-
tivity to smaller signal fractions, as in the higher-statistics conditions the R1

test statistic is a more robust estimator of density variations in the scanned
space.

Test Ns/Nb R1 Nin/Nexp Ns Gain SR1:10 ε1:10s

1 1000/99,000 40.94 41/0.001 35 85.4 3 0.009
2 800/99,200 46.10 52/0.125 46 110.6 5 0.025
3 600/99,400 42.00 84/1.000 0 0.0 2 0.008
4 500/99,500 37.00 185/4.000 0 0.0 4 0.012
5 400/99,600 51.00 102/1.000 0 0.0 1 0.001
6 300/99,700 36.96 37/0.001 0 0.0 1 0.007

Table 7: Sample results of RanBoxIter runs on 100,000 event samples from the
HEPMASS dataset, with varying signal fraction. See the text for more details.

As shown in Table 7, indeed RanBoxIter is capable of identifying signals
contaminating the data samples with fractions smaller than 1% if in absolute
terms the signal is large enough to produce significant overdensities. We
further observe that if the users do not limit themselves to examining the
highest-R1 box and verify the distributions of data in the 10 best boxes, they
will be able to observe anomalous regions contributed by significant signal
fractions in datasets where the signal contribution is as small as 0.5% or less.
For example, the single signal-rich box among the 10 best boxes found in test
6, where the initial signal fraction is of 0.3%, contains 28 events (with zero
expected), of which 19 are from the signal component; the corresponding
gain in signal fraction is a factor of 226.

We believe the above observations prove the usefulness of RanBoxIter

scans of the typical datasets studied in high-energy physics searches for new
physics, as an exploratory modus operandi involving the systematic examina-
tion of anomalous regions would allow experimenters to spot regions of phase
space that constitute valid starting points of broader investigations. They
would e.g. be able to compare the observed distributions to ones predicted
by SM simulations, as well as define blind selection strategies for analysis of
data collected in future runs of the collider.

The results also allow us to draw some conclusions on the most performing
settings of RanBox to be used in the HEPMASS use case. Here, however,
we stress one important point: by telling the tale of how these choices may
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be defined based on sample test results, we are implicitly declaring how the
algorithm —but in general, we believe, any unsupervised search— requires
an ad hoc tuning to perform its task most effectively. This is not to be
taken as a demonstration that this kind of search is useless: quite on the
contrary, the tool can be a very useful one in examining the properties of
multi-dimensional data. It cannot, on the other hand, be employed as a
catch-all machine ready to identify an anomaly in an arbitrary dataset: this
is nothing else than a by-product of the well-known absence of a universal
high-power test statistic, when the alternative hypothesis is not specified.

4.2. Electron neutrino identification in MiniBooNE

For a second research application wherein to test the performance of RanBox
and RanBoxIter, we turn to another public dataset available in the UCI ML
repository and those which possess the characteristics that are most suitable
to our algorithm. In particular, we look for a dataset suitable for binary
classification where the majority of features are non-categorical, with a total
number of features not exceeding several tens, and at least several thousand
available examples for both classes.

The MiniBooNE dataset [16] suits the above requirements. MiniBooNE [17]
is a neutrino experiment built to study neutrino oscillations at Fermilab, in
particular in order to shed further light in the so-called LSND anomaly [18].
The public dataset available in the UCI repository contains about 130,000
events with 50 features per event (see Fig. 15). The classification task consists
in separating real electron neutrino appearance events from spurious back-
grounds where the event is not due to a charged-current electron neutrino
interaction in the detector. The dataset was used in pioneering studies of
the application of boosting techniques to decision tree classification [19, 20].

Given the dimensionality of the feature space, this dataset lends itself
to an investigation of dimensionality-reduction techniques at a data prepro-
cessing stage, in order to reduce the CPU demand of the subspace sampling.
We will therefore study the effect of reducing to 40 or 30 the feature space
dimensionality by selecting the corresponding highest-variance components
with PCA, or alternatively select by CVR the features which present col-
lectively the smallest amount of inter-correlation, as described supra (see
Sec. 2.2). We again start with a (5% : 95%) signal:background mixture sam-
ple of 5000 events, and perform tests with the two versions of the algorithm.
We employ R1 as the test statistic, Algorithm 2 for initialization, and the
SB method to compute the expectation value of events in the boxes. The
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Figure 15: Normalized and standardized distributions of the 50 features of
electron-neutrino candidate interactions in MiniBooNE. Distributions of real elec-
tron interactions are in black, and backgrounds are in blue.

(maximum) dimensionality of the subspace scans is set to D′(D′max) = 12.
RanBox is run on 10,000 subspaces, and RanBoxIter keeps track of the 50
most significant boxes as it scans iteratively higher-dimensional subspaces.

As shown in Table 8 (test 1), RanBox returns as the most significant
identified 12-dimensional box one considerably enriched in the small signal
component; among the ten best boxes returned by the algorithm, only one has
a signal fraction increased below a factor of six. This is a demonstration that
on this dataset the signal can be extracted even by scanning a very small
fraction of the available subspaces (10,000 out of 1.21 × 1011). The most
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significant box identified by this run is one containing 49 signal events out of
69, which correspond to 19.6% of the total signal present in the data sample,
and 20 background events, which correspond to a background efficiency of
0.42% 12. Tests 2 and 3 instead show that PCA worsens the performance of
RanBox in this data sample, removing sensitivity to a 5% signal component;
while CVR (tests 4 and 5) appears to increase it or anyway maintain it
intact. Of course, given the smallness of the fraction of investigated subspaces
(10,000) in all tests, these results are affected by large statistical fluctuations,
and they can only be taken as a non-conclusive indication of the merits of
the two techniques.

Similar insight is offered by examining the results of iterative scans of
RanBoxIter (tests 6-10). We again note that on this particular data sample
the reduction of dimensionality operated by PCA worsens the performance
of the algorithm, which are instead uncompromised by using the CVR tech-
nique. Concerning the latter, in the case at hand the removal of the 10
most correlated features results in a maximum correlation of 0.679 among
the remaining 40, while the removal of twenty features leaves a maximum
correlation of 0.549; the original maximum correlation observed among the
2450 pairs of features was 0.910.

A note we need to make, when comparing the average gain in signal to
background ratio and average signal fraction of the ten best boxes returned
by RanBox and RanBoxIter, is that the latter algorithm returns overdense
regions in subspaces which share most of the features, because of the way it is
designed. On the contrary, RanBox finds totally independent solutions to the
problem, and thus is bound to return boxes whose signal-like characteristics
are less homogeneous.

Having observed that CVR is useful with MiniBooNE data, we fix the
number of removed features to 10 in our further tests, which are aimed at
quantifing the minimum signal fraction to which the algorithm is sensitive
by progressively reducing its value. We use RanBoxIter for this study, as
its results do not depend on a stochastic choice of features in the examined
small fraction of subspaces 13. Apart from changes in the signal fraction, all

12Comparing these figures to the original results of [19, 20] looks odd not only because
of the improper nature of the comparison of supervised and unsupervised learning, but
also because the latter are 15 years old at the time of writing; we abstain from doing so
here.

13The trade-off, as already noted, is the dependence of RanBoxIter on fluctuations in
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Test D R1 Nin Nexp Ns SR1:10 ε1:10s

1 50 67.3 69 0.03 49 8 0.139
2 40 (PCA) 36.5 73 1.00 2 0 0.007
3 30 (PCA) 37.5 75 1.00 0 1 0.014
4 40 (CVR) 90.44 98 0.08 62 8 0.146
5 30 (CVR) 64.63 68 0.05 42 10 0.161
6 50 101.77 106 0.04 58 10 0.215
7 40 (PCA) 31.0 62 1.00 0 0 0.001
8 30 (PCA) 30.5 61 1.00 0 0 0.001
9 40 (CVR) 103.85 111 0.07 111 10 0.208

10 30 (CVR) 52.8 57 0.08 32 10 0.120

Table 8: Results of tests on the MiniBooNE data sample composed of 250 signal
and 4750 background events; tests 1-5 are performed with RanBox and tests 6-10
with RanBoxIter; see the text for other detail.

Test Ns/Nb R1 Nin Nexp Ns SR1:10 ε1:10s

9 250/4750 103.85 111 0.068 111 10 0.208
11 225/4775 95.90 106 0.105 62 10 0.183
12 200/4800 85.65 86 0.003 52 10 0.234
13 175/4825 77.33 81 0.047 4 4 0.053
14 150/4850 89.50 93 0.039 42 10 0.368
15 125/4875 61.50 67 0.088 31 9 0.168
16 100/4900 60.73 61 0.004 27 10 0.195
17 80/4920 70.40 71 0.008 23 10 0.205
18 70/4930 79.15 85 0.074 21 7 0.160
19 60/4940 70.60 74 0.047 0 1 0.030
20 50/4950 67.50 76 0.124 1 8 0.186

Table 9: Tests of sensitivity of RanBoxIter to varying signal fraction in Mini-
BooNE data. All tests use CVR preprocessing of the data samples to remove the
10 most correlated features. See the text for other detail.

the low-dimensional densities: e.g., only 50 combinations out of 40x39=1560 are used as
two-dimensional seeds for larger-dimension scans, and similar reductions occur every time
the dimensionality is increased.
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Figure 16: Marginal distributions in copula space for features defining the best box
found by RanBoxIter on MiniBooNE data for test 14 in Table 8: the 12 features
defining the subspace are shown for all data (blue empty histogram), for data in
the best box (green), for data failing only a selection on the variable displayed
(red), and for signal events in the box (black empty histogram with thick line).
All distributions are normalized to unit area.

run parameters are kept equal to those of test 9 of Table 8. Figure 16 shows
the nine marginal distributions of the best box returned by RanBoxIter in
test 14 of Table 9, where a conspicuous signal is identified.

From the tests reported in Table 9, we observe that RanBoxIter is sen-
sitive to signal fractions down to 1.5% in MiniBooNE data with the settings
we employed. It is of course likely that different choices for initialization al-
gorithm, number of studied boxes Nbest, and maximum dimensionality, along
with higher statistic of the studied data sample would reduce that fraction
still further, but an optimization of those parameters is too dataset-specific
to be interesting, and is anyway beyond the scope of this work.
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4.3. Credit card fraud detection

We finally turn to a non-research application of RanBox, by considering a
dataset of online credit card transactions by European cardholders [21]. The
data have a structure that suits the characteristics of our anomaly detector,
as it is a tall dataset of 284,807 examples, with 30 non-categorical features.
The original features include the time of the transaction, the amount, and
a few numerical variables resulting from a PCA transformation —hence we
will abstain from applying again that procedure in our data preprocessing
step.

Figure 17: Normalized and standardized distributions of the 30 features of credit
card transactions. Distributions of fraudulent transactions are shown in black, and
regular ones are shown in blue.

Fraudulent transactions, which we will consider our signal in the following,
constitute a very small fraction of the original dataset: only 490, correspond-
ing to 0.172%. Such a small contamination cannot produce excesses of events
detectable by RanBox unless we consider total data samples much larger than
a few thousands. In the following we consider data samples of 4900 events
in total, in order to allow for up to 10% signal fractions in our studies.

As shown in Table 10, RanBox fails to focus on the fraud component of
the data even when its fraction is rather large (10%), if run with D′ = 10.
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Test D′ Ns/Nb R1 Nin Nexp Ns SR1:10 ε1:10s

1 10 490/4410 268.8 272 0.01 0 0 0.000
2 6 490/4410 215.0 430 1.00 430 7 0.542
3 6 441/4459 247.6 258 0.04 258 4 0.193
4 6 392/4508 214.4 221 0.03 221 3 0.167
5 6 343/4557 217.4 225 0.03 225 4 0.255
6 6 294/4606 202.7 210 0.04 0 1 0.065
7 6 245/4655 202.5 405 1.00 0 0 0.001

Table 10: Results of RanBox on a 4900-event sample of fraud detection data,
with 10,000 trials. The tests have varying signal contamination and subspace
dimensionality D′. SR1:10 reports the number of signal-rich boxes among the 10
with highest test statistic. See the text for other detail.

However, better results are achieved in this case by reducing the dimension-
ality of the scanned subspaces: e.g., the algorithm shows good sensitivity
down to signal fractions of 7% if the scan is performed in six dimensions.

Test D′max Ns/Nb R1 Nin Nexp Ns SR1:10 ε1:10s D′
1 10 490/4410 307.2 321 0.04 321 9 0.725 9
2 10 441/4459 219.6 222 0.01 222 3 0.196 7
3 10 392/4508 274.5 549 1.0 1 0 0.001 4
4 10 343/4557 263.5 275 0.04 275 10 0.712 7
5 10 294/4606 329.8 337 0.02 0 0 0.001 10
6 10 245/4655 340.5 681 1.00 1 0 0.002 4
7 6 490/4410 222.5 445 1.00 445 10 0.848 6
8 6 441/4459 206.0 412 1.00 412 3 0.266 4
9 6 392/4508 274.0 548 1.00 1 3 0.189 4

10 6 343/4557 249.1 254 0.02 254 9 0.617 6
11 6 294/4606 214.0 642 2.00 1 0 0.001 4
12 6 245/4655 340.5 681 1.00 1 0 0.001 4

Table 11: Results of RanBoxIter on a 4900-event sample of fraud detection data,
using two values for the maximum dimensionality D′ and signal contamination
fractions varying from 5% to 10%. SR1:10 reports the number of signal-rich boxes
among the 10 with highest test statistic. See the text for other details.
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The iterative version of the algorithm achieves a similar sensitivity to the
non-iterative version, as shown in Table 11. In this case, one notices that
it makes little difference to set the maximum dimensionality of the scanned
subspaces to the smaller (6) or higher value (10), as in both cases a 7% signal
contamination may be evidenced in the most significant box; Fig. 18 shows
the original and copula space marginals of the features, where test 10 iden-
tifies a large signal component. However, one also notices how the results
are not always consistent: in the dataset including an 8% signal contami-
nation (test 3), the scan sticks to a signal-poor region where a background
fluctuation creates a locally overdense region in just four dimensions. Rather
than investigating further the specific reasons for this behaviour, we catalog
it as a further indication that RanBox and RanBoxIter cannot be considered
as catch-all anomaly search tools; their power ultimately depends on the
specificities of the searched data sample and of the contributing densities,
in analogy to the absence of an optimal hypothesis test in the absence of
specified alternatives.
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Figure 18: Marginal distribution in the original (top two rows) and copula space
(bottom two rows) of six features selected by RanBoxIter on a sample of 4900
credit card transactions, with 7% fraudulent ones (test 10 in Table 11). The six
features are the ones defining the subspace selected by the algorithm, where the
highest-R1 box contains 100% of fraudolent transactions. The green distributions
refer to the selected events, the blue ones are the original distributions, and red
distributions show transactions that do not belong to the box solely because of the
value of the displayed feature.
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5. Related work

With the exception of a couple of ante litteram studies that attempted to
apply semi-supervised techniques to searches in Tevatron collisions data [22,
23, 24], anomaly detection caught the interest of researchers only relatively
recently as a viable tool for searches of new phenomena in particle physics.
A good review of the status of this area of studies is [25]; a description of
some new methods is offered in [26].

In general, all methods that rely on the validity of SM-based simulations
for the modeling of backgrounds share a weakness in the large systematic
uncertainties of their predictions in those regions of feature space which are
the most likely hiding place of new phenomena, and any positive result they
yield is liable to raise suspicion —something that in the past has deterred
data analysts from investing efforts in this area of research 14. Data-driven
approaches are more practicable, at least from a psycho-sociological point of
view 15, but they are usually very specific to the considered signatures (see
e.g. [27] or [28] for two recent applications), or allow anyway a limited range
of uses due to constraining assumptions they rest upon (a good example of
this situation is given by the semi-supervised approach pioneered in [31]).

Since an almost ubiquitous feature of new physics signatures in collider
searches is constituted by the presence of a bump in an invariant mass distri-
bution, a number of studies (see e.g. [32, 33] for two recent examples) have
concentrated on that distinctive trait in designing algorithms that exploit
the signal localization by employing the concept of sidebands: backgrounds
usually vary smoothly, so their density can be estimated in the phase space
relevant to the signal estimate task by relying on the observed data in re-
gions defined by a positive or negative offset with respect to the assumed
mass of the sought resonance. This concept is also used by RanBox, which
however extends it to multiple dimensions, moving away from the need to
single out one specific variable in the applications. This approach guarantees
more generality.

14The book “Anomaly! Collider Physics and the Quest of New Phenomena at Fermi-
lab” [29] describes a number of examples of the general issues connected with the trust of
simulations in collaborative searches for new physics signals, taken from the history of the
CDF experiment at Fermilab.

15These issues play a role in collaborative experimentation, as discussed in [29] as well
as in [30].
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More in general, the task of data-driven anomaly searches in collider data has
been addressed with methods that exploit the capability of neural networks
or other machine-learning algorithms to provide density estimates [34, 35],
or to map a low-dimensional representation of the data with variational au-
toencoders [36, 37, 38], or to discriminate a signal by adversarial methods
combined with autoencoding [39, 40, 41]. A large body of relevant literature
has built up in the past few years; we direct the interested reader to an up-
to-date, living review of such techniques, maintained by Benjamin Nachman
in [42].

Among all the methods proposed to find new physics in collider data,
RanBox shares the most similarities with unsupervised anomaly detection
methods that directly attempt a density estimation in the data and con-
struct test statistics to detect anomalous regions, such as ANODE [34]. Of
relevance are also a few other methods that were used in the LHC Olympics
anomaly detection challenge [43], which had the merit to provide a direct
comparison of the merits of different approaches to LHC searches. We be-
lieve that RanBox however offers some advantages with respect to many of
those methods, especially consisting in its lack of strong assumptions about
the structure of the data and in its applicability to problems in different
domains.

If we step outside the field of high-energy physics, we find extensive stud-
ies of anomaly and outliers detection in statistical and machine learning
literature. A number of different approaches have been implemented. Model-
based methods [46] identify a profile of normal instances, then find instances
that do not conform to the normal profile, which are considered anomalies;
normal profiles can be estimated through classification-based methods [44],
clustering-based methods [49] or by using robust statistical methods (for a
comprehensive monograph on this approach, see [52] or [53], and [54] for a
multivariate example). Other methods are based on distances [50] and on
densities [48, 51]. Frauds, which we have considered as a use case in Sec. 4
above, are a particularly relevant topic in anomaly detection; widely used
tools for fraud detection, most of which are based on unsupervised anomaly
identification, are reviewed in [47].
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6. Concluding remarks

A number of problems in data science are solved by casting them as ones
of supervised learning. Thus, for example, the existence of new elementary
particles or phenomena can be routinely tested and excluded in searches at
particle colliders by employing simulations of the considered signals as well
as of the contributing backgrounds, and classification algorithms that can
enrich the data in the signal component. Such a modus operandi however
precludes from our view effects and phenomena for which we have not built,
or even considered, a model. To be more inclusive one may cast the problem
in the form of anomaly detection: at the expense of renouncing to prior
information, we then obtain a more unbiased view of our datasets. In this
work we have described and tested a new algorithm which is appropriate for
such unbiased searches. By modifying the metric of the space and casting the
data in a unit hypercube, a search for regions of the multi-dimensional feature
space which contain localized increases in data density becomes feasible even
when the original data displays large density variations. The technique has
been designed to be applicable to new physics searches, and indeed it proves
effective in that domain. However, it also offers itself as a solution to a wide
range of problems in unrelated research or non-research fields.

RanBox and RanBoxIter are potentially quite useful tools for the ex-
ploration of feature spaces with a dimensionality in the several tens range.
We have observed that on particle physics use cases their results compare
favourably to those of supervised classification tools such as neural networks
or boosted decision trees. For this reason, they should be considered seri-
ously as an investigation tool in collider searches for new phenomena, where
each event is comprised typically by few tens of observable features. For
still larger dimensions CPU requirements become prohibitive, unless suitable
reduction techniques are applied.
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