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Abstract

This document describes the performance of the optimized algorithms developed for
application to the classification and regression problems of WP1.
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1 Introduction

While machine-learning (ML) techniques saw a growing expansion since the first years of the
new millennium, with an increasing range of applications to industry and academia, in ex-
perimental high-energy physics (HEP) only a sporadic use of “multivariate analysis” (MVA)
approaches was initially made. The situation changed around 2012, when there was a major
paradigm shift, epitomized by the use of boosted decision trees (BDTs) for four separate tasks
in the landmark CMS discovery of the Higgs boson decay to photon pairs [1]. Following that
success, BDTs and similar multivariate analysis tools began to be more used and accepted in
HEP data analyses.

The change was slightly slower in the case of deep neural networks (DNN), which had been
outperforming BDTs since around 2009 (see e.g. Ref. [2] and Ref. [3]), but whose perception as
imperscrutable black boxes by the physics community made them a less agreed-upon tool for
measurements and searches. This perception has however become unimportant today, mostly
because the higher performance of DNNs has become harder to renounce.

In recent years, ML innovation has been the driver of solutions to the domain-specific
problems in HEP, such as object reconstruction [4], collision and detector simulation [5], and
particle identification [6]. Although these tasks are specific to the very special environment of
particle physics, their solutions normally rely on applying and adapting techniques developed
outside of HEP. Those techniques are continually being refreshed and updated, and are normally
presented on benchmark datasets for some specific task, such as image recognition on ImageNet
[7]. However, it is not always obvious whether improvements on such datasets would be reflected
by similar success when applied in other domains. We consider this a strong motivation to
study how large an improvement can be obtained on a very well-studied use case, the one of
discriminating the Higgs boson signal from H → ττ decays as measured by the ATLAS detector
at the CERN LHC. This study is reported in Section 2.

A different specificity of HEP applications of multivariate analysis techniques concerns the
task of measuring as accurately as possible a physical quantity in the presence of nuisance
parameters. The latter are parameters that describe the system under measurement, or the
measuring apparatus, or the technique employed in the estimation process. Nuisance parame-
ters are not interesting per se, yet their imprecise knowledge impacts the accuracy with which
the parameters of interest of a system can be estimated. The treatment of nuisance parame-
ters in the optimization of a measurement strategy is a difficult problem, one which none of
the proposed solutions have proven completely successful at handling. In Section 3 we offer a
potentially groundbreaking solution to it which has become possible thanks to recent advances
in the technology of DNN architectures and software.

In Section 4 we discuss in more detail the specific use case of a search for the signal due
to associated production of a Higgs boson and a top-quark pair. Since the 2012 Higgs discov-
ery this process has attracted a huge interest in the physics community, both because of its
intrinsic spectacular nature (a pair of the heaviest fundamental matter particles is produced in
association with the Higgs boson, giving rise to a fireworks-like decay chain) and because of its
rarity and the consequent difficulty of demonstrating its existence.

While in principle the problem of spotting a small signal S in large amounts of data X
ridden by backgrounds B is solved optimally by studying the likelihood ratio between the two
hypotheses, L=S(x)/B(x), L is not directly accessible. ML tools can solve this problem by
generative means -i.e. by constructing approximations to the densities S(x) and B(x), or by
discriminative means which try to directly approximate the likelihood ratio L. The Matrix-
Element Method (MEM) attempts to estimate the likelihood of an event as being due to
signal or background by working out the probability of each hypothesis based on a direct
calculation of the quantum-mechanical contributing processes, and incorporating the effects of
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the measurement apparatus by means of a parametrization of the relative “transfer functions”.
This technique proves very effective in the case at hand, as shown by the illustrated results,
which are based on real data acquired by the ATLAS collaboration.

1.1 Higgs physics at the Large Hadron Collider

There are four major ways of producing Higgs bosons in proton-proton collisions at the Large
Hadron Collider (LHC), which is currently operating at

√
s = 13 TeV. They are summarized

below in Figure 1 and in the following list:

• ggF : gluon-gluon fusion has the highest cross-section σ and is the most abundant process,

• V BF : vector boson fusion is characterized by two jets emitted at small angle from the
proton beams

• WH, ZH: the radiation of a Higgs boson (Higgsstrahlung) from W and Z bosons is the
third most common process,

• tt̄H: Higgs production in association with top quarks is the rarest of the main Higgs
production processes at the LHC

12 11. Status of Higgs boson physics

Table 11.1: The SM Higgs boson production cross sections or mH = 125GeV in
pp collisions, as a function of the center of mass energy,

√
s. The predictions for the

LHC energies are taken from Refs. [36,38], the ones for the Tevatron energy are
from Ref. [40].

√
s (TeV) Production cross section (in pb) for mH = 125 GeV

ggF VBF WH ZH tt̄H total

1.96 0.95+17%
−17%

0.065+8%
−7%

0.13+8%
−8%

0.079+8%
−8%

0.004+10%
−10%

1.23

7 15.1+15%
−15%

1.22+3%
−2%

0.58+4%
−4%

0.33+6%
−6%

0.09+12%
−18%

17.4

8 19.3+15%
−15%

1.58+3%
−2%

0.70+4%
−5%

0.41+6%
−6%

0.13+12%
−18%

22.1

14 49.8+20%
−15%

4.18+3%
−3%

1.50+4%
−4%

0.88+6%
−5%

0.61+15%
−28%
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Figure 11.3: The SM Higgs boson production cross sections as a function of the
center of mass energy,

√
s, for pp collisions. The theoretical uncertainties [39] are

indicated as a band.

(i) Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production mechanism with the
largest cross section is the gluon-fusion process, gg → H + X , mediated by the exchange
of a virtual, heavy top quark [41]. Contributions from lighter quarks propagating in the
loop are suppressed proportional to m2

q . QCD radiative corrections to the gluon-fusion
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Figure 1: Dominant processes for Higgs production and the relative cross-sections in proton-
proton collisions as a function of centre of mass energy. Bands indicate uncertainties in the
cross-section calculation [8]

The Feynman diagram for ggF contains a loop, in which virtual particles are exchanged.
Multiple particles contribute to this loop. In the Standard Model (SM), the contributions
are dominated by the top quark due to its high mass, and thus this process offers a way to
determine the top quark Yukawa coupling yt. It is however plausible that yet undiscovered
particles beyond the Standard Model contribute to this loop as well, thus a measurement of
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yt via ggF could be contaminated by effects originating from unknown physics beyond the
Standard Model.

The tt̄H process on the other hand allows for a direct tree-level determination of the top
quark Yukawa coupling, which makes it extremely appealing to measure despite its small cross-
section. An advanced technique for a search for the tt̄H production process is described in
section 4.
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2 h→ τ τ̄ classification

2.1 Introduction

In 2014 the Higgs ML challenge was launched on Kaggle. Participants were tasked with working
on a specific kind of problem one often faces in HEP, the search for a rare signal by classification
of data based on its features. The competition drew a lot of attention, with almost 2000 entries.
Given the level of expertise and effort that went into the solutions, the challenge forms a viable
method to benchmark models and quantitatively measure the impact of new methods and
approaches.

In this section we examine the benefits and cross-domain applicability of several recent
advances in deep-learning, including: a method to quickly optimise the learning rate; newer
activation functions; learning rate scheduling; data augmentation; and alternative ensembling
techniques. Following these experiments we present a solution which is able to achieve better
performance than the winning solution under competition circumstances: an AMS increase from
3.808 to 3.818, where AMS, defined in Sec. 2.2.2, is an approximate measure of the significance
of a Higgs boson signal in the data. In addition to providing a better result, the solution can
be trained in less than 10 % of the time on less specialised hardware.

We begin with a more detailed description of both the general problem and the specific chal-
lenge (Sec. 2.2). An overview of neural networks is presented in Sec. 2.3. From Sec. 2.4 through
Sec. 2.8 we describe the baseline model and the various improvements, reporting performances
on validation data. In Sec. 2.9 we report the performance on the testing data, expanding to
a fuller comparison with the winning solutions in Sec. 2.10. The investigation and the main
results are summarised in Sec. 5.1.

The framework and notebook experiments are freely available at https://github.com/

GilesStrong/QCHS-2018.

2.2 Challenge description

2.2.1 Overview

At particle colliders such as the LHC [9], sub-atomic particles or ions are accelerated to high
energies and made to collide with one another. The resulting collisions are attributable to
fundamental-physics interactions between the particles, and their study can be used to compare
theoretical models to reality in order to better understand the nature of the universe. The
energy of these collisions gives rise to particles which are recorded with specialised instruments
called particle detectors. Since there are many possible processes which could have given rise to
a particular final state, and because the detectors only capture information of the products of
the collision, there is no way to tell exactly how the final state was created. However, each of the
contributing processes is likely to have some specific signature which is reflected in its outgoing
products, e.g. a process which gives rise to an unstable particle will have decay products which
can reconstruct its mass, but due to experimental limits, such as the finite resolution of the
detector, other processes can still give rise to collisions which reproduce the signature of desired
process. Effectively, the data is unlabelled with respect to the class of process which gave rise
to it.

When looking to test some theory, such as the presence of a new signal process, one normally
defines some signal-enriched region, in which the process being searched for is expected to
contribute appreciably. One can then examine the rate at which events populate this region
and compare it to the rate expected if the new process were not occurring and the region
were only being populated by known processes (background). This is done via a test of the
signal+background hypothesis against the null hypothesis of background only. The catch is
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that, due to the data being unlabelled, the background and signal rates are unknown, and only
their sum is known. In some situations the signal signature (e.g. a particle mass with some
determined resolution) is well known, and the background rate can be extrapolated from, or
interpolated between, signal-depleted regions, but this is not always the case.

Instead, what can be done is to simulate particle collisions and the experimental equipment
using a combination of analytical and stochastic modelling (see e.g. Ref [10]), a process referred
to as Monte Carlo generation and detector simulation. Since one is able to generate collisions for
specified processes, one now has a labelled approximation of the collider data and can estimate
the signal and background rates in the signal-enriched region, applying correction factors if
need be to improve the modelling and marginalising over any remaining unknown (nuisance)
parameters in the hypothesis test.

The exact specification of the signal-enriched region is an important task which can have
a strong influence on the outcome of a search; if the region is too wide the included signal
becomes washed out by background, while if it is too narrow it may end up not be populated
at all. The main problem is the high dimensionality of the data; due to the high energy of
the collisions, each collision can result in hundreds to thousands of particles, and each particle
can produce multiple ’hits’ and energy deposits in the detector. Traditionally, the first step is
to reduce the dimensionality by reconstructing the hits and deposits back into known physics
objects (fundamental particles, jets, missing energy, et cetera). The next stage is to select
objects from the data which correspond to the expected final states of the signal process (and
cut away events which fail to produce such objects). The signal region can then be defined
using some theoretically or phenomenologically motivated function of the properties of these
final states and other objects in the event.

As mentioned in Sec. 1, machine learning techniques are becoming more and more used in
high energy physics analyses, due to the ease with which they can discover high-dimensional
patterns in data and use them to learn to solve some problem, such as learning to separate
particle collisions by class. This ability, however, has limits and it is currently beyond our
computational capacity to run such event-level classification algorithms directly on the detector
recordings. The contemporary compromise is to still perform the particle reconstruction and
event selection, but then to feed the features of the selected particles as inputs to a machine-
learning based classifier and use its response to help define the signal-enriched region.

The development, training, and inference of such algorithms is still a difficult task and
a source of experimentation in its own right. Launched in 2014, the “Higgs ML” challenge ,
hosted on Kaggle (https://www.kaggle.com/c/higgs-boson), was designed to help stimulate
outside interest and expertise in solving such high-energy physics problems. Participants were
tasked with searching for a signal process, which was the Higgs boson decaying to a pair of tau
leptons, against a background comprised of several more common processes. The competition
was highly successful with 1785 teams competing, and helped to introduce many new methods
to HEP, as well as produce more widely used tools, such as XGBoost [11].

The data used in the challenge consist of simulated particle collisions, generated to mimic
those expected at the LHC during its 2012 running. These are fed through a detailed, Geant 4
[12, 13]-based simulation of the ATLAS detector [14], and finally though the ATLAS recon-
struction algorithms, resulting in a set of physics objects per simulated collision. These events
are then filtered to select those compatible with containing the semi-leptonic decay of a pair of
tau leptons, i.e. events which contain a hadronically decay tau lepton and either an electron
or a muon. The properties of the reconstructed physics objects are then recorded in columnar-
data format, with each row corresponding to a separate collision event, along with the process
label and a weight used to normalise the contributions of the events. Both the label and the
weight are only known due to the event being simulated.

The top solutions to the challenge made heavy use of ensembling techniques, combining tens
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to hundreds of models. The bases of the models were mostly either decision trees/forests, or
neural networks. A lot of work seemed to go into feature engineering and selection, with a new
fit-based high-level feature (CAKE: https://www.kaggle.com/c/higgs-boson/discussion/
10329) being developed towards the end of the competition. This appeared to improve the
results for tree-based models, but not so much for DNN solutions, indicating that sufficiently
well trained networks were able to learn their own versions of it. The other focus appeared to
be optimising the way in which models were ensembled, e.g regularised greedy forests [15].

2.2.2 Scoring metric

The performance of a solution is measured using the Approximate Median Significance [16], as
computed in Eq. 1:

AMS =

√
2 (s+ b+ br) log

((
1 +

s

b+ br
− s
))

, (1)

in which s is the sum of weights of true positive events (signal events determined by the solution
to be signal), b is the sum of weights of false positive events (backgrounds events determined by
the solution to be signal), and br is the a constant term which was set to 10 for the competition.
This provides a quick, analytical value which is an approximation of the expected signal strength
one would obtain after a full hypothesis test of signal+background versus background only. In
High Energy Physics, an observed significance of five sigma or more, can be evidence of a new
discovery.

The common practice for these kinds of problems is to cut events from the data in order
to remove preferentially the background events whilst retaining the signal events, in order to
improve the AMS of the remaining data. Either a single cut can be used on some highly
discriminating feature of the data, or multiple cuts can be used over several features. The
common machine-learning approach is to adopt the former procedure by using the features of
the data to learn a new single highly discriminating feature, place a threshold on it, and then
only accept events which pass the threshold. The feature learnt in this approach is simply the
predicted class distribution of events, in which background events will be clustered towards
zero, and signal events towards one. The AMS can then be optimised by only accepting events
with a class prediction greater then some value.

The threshold cut can easily be optimised by scanning across the range of possible cuts
(either at fixed steps, or checking at each data point) and picking the value which maximises
the AMS. This is likely, however, to be optimal only for the dataset on which it is optimised, and
performance can be expected to drop when applying the cut to unseen data. This is reflected
in the challenge by requiring the solutions to predict on test data for which the class labels are
not provided. It is important then that one is more careful when choosing a cut, in order to
generalise better to unseen data. The approach adopted here is to maximise the cut on many
bootstrap resamplings of some validation dataset, and then take the final cut as the arithmetic
mean of the set of cuts.

2.2.3 Data and processing

Although the full dataset created for the challenge has now been made public [17], in order to
provide an accurate comparison to the previous scores only the subset which was made available
is used here, both for training and testing. The training and testing sets consist of 250 000 and
550 000 events, respectively. Both contain a mixture of both classes: signal (h → τ τ̄); and
background (t t̄, Z → τ τ̄ , and W boson decay).
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Each event is characterised by two sets of training features: primary - low level information
such as tau pT ; and derived - higher-level information calculated via (non)-linear combinations
of the low-level features or from hypothesis-based fitting procedures. A full list and description
of the features is available is Ref [18]. The coordinate system of the data is originally provided
in terms of (pT , η, φ), however initial tests and past experience dictates that NN-based models
perform better when vectors are mapped into a Cartesian coordinate system, due to the cyclical
nature of the azimuthal angle, and the non-linear nature of the pseudorapidity, η:

η = tanh−1

(
pz
|p̄|

)
,

where pz is the component of 3-momenta along the beam axis, and |p̄| is the magnitude of the
3-momenta.

The data also contain information about the hardest two jets in each event. For cases in
which there were not enough jets reconstructed, the features are set set to default values of
−999. In order to prevent these values from having an adverse effect on the normalisation and
standardisation transformations which will later be applied, these values were replaced with
zeros. Similarly, any infinities or missing values (indicated by NaN ) which were present in the
data following the coordinate transformations were also replaced with zeros.

Since scoring the testing data requires optimising a threshold on some data, and also to
provide some way to compare architectures without relying on the public score of the testing
data, an 80 : 20 random split into training and validation sets is performed on the original
training data.

After the feature processing the data consists of 31 features. The training data features
are transformed to have a mean of zero, and a standard deviation of one. The exact same
transformation is then applied to both the validation and testing data. The training and
validation datasets are then each split into ten folds via random stratified splitting on the
event class. The testing data is also split into ten folds, but via simple random splitting.
This was done to move the data into a format compatible with existing tools and algorithm
implementations, and to make the process of augmenting the data easier. Additionally, we
henceforth redefine one epoch as being a complete use of one of these folds, and during training
will load each fold sequentially.

Each event in the training and validation data also contains a weight. This is normalised to
be used to evaluate the AMS, but also reflects the relative importance of the particular event.
It is a product of the production cross-section of the underlying process and the acceptance
efficiency of the initial skimming procedure. Since the model is unlikely to achieve perfect
classification, it is important that it focuses on learning to classify the higher weighted events
better than other, less important events. This can be achieved by applying the weights as
multiplicative factors during the evaluation of the loss. This method of loss weighting can also
be used to account for class imbalances in the data. Keras can automatically globally reweight
to balance the classes, however its method of applying per-event weights does not account for
the number of events of each class. To correctly apply the per-event weights, a copy of each
event weight is created (the original weights are still needed to compute the AMS). The copied
weights are then renormalised by dividing each weight in each fold by the sum of the weights
of its class in its fold, i.e. in each fold, the sum of weights in each class is now one.

2.3 DNN overview

Whilst the history of these algorithms extends back to 1957, it was only in 2010 that they really
started to become competitive in terms of other possible machine learning (ML) tools, such as
boosted decision trees and support-vector machines, particularly in the realms of image and
speech recognition; their recent renaissance being due to several changes in their design.
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In essence, a NN attempts to learn a mathematical function which maps a selection of input
features to some desired target function. This is accomplished by a series of matrix operations
involving learned weights, and non-linear transformations, on the inputs. It can be visualised
as layers of neurons, each of which receives inputs from all neurons in the previous layer. Such
an illustration is shown in Fig. 2. Layers between the input and output layers are referred to
as hidden, and when the number of hidden layers goes beyond one, the network is normally
referred to as deep (DNN).

Figure 2: Conceptual illustration of a deep artificial neural network.

Two common use cases for neural networks are for regression and classification. In regres-
sion, the target function is continuous and the NN is tasked with reproducing this function
by predicting its values for a given set of inputs. In classification, the target function is a set
of discrete classes, and the NN attempts to map inputted data into these classes by taking
advantage of the differences of the classes’ PDFs when they are projected along feature axes.

Whereas other ML are built around linear methods, and rely on high-level features being
constructed for them from non-linear combinations of the basic features (kernel method), NNs
have direct access to non-linear responses, and are able to learn more easily their own high-level
features. This non-linear response comes from the activation functions which are applied to
the connections between neurons in the network.

Similar to other supervised ML algorithms, NNs are first exposed to a training dataset which
is used to adjust the free parameters (the weights) in the architecture and learn the desired
function. NNs are now normally trained via a process called back-propagation [19]. This is a
two-stage process in which a set of training points are entered. The response of the network
is then evaluated (forward propagation) and the outputs produced. These are then compared
to the true target values, and a quantitative measure of the network’s current performance is
evaluated using a formula called the loss function. Optimisation of the network is normally
arranged in terms of a minimisation problem, in which a minimum of the loss function must
be found. Whilst the field of functional optimisation is fairly advanced, the aim of most state-
of-the-art optimisers is to find the global minimum. For neural networks the difference in
performance between the global minimum and local minima is minimal, and so it is often more
efficient to reach any local minima, than to locate the global minimum. For this task, the
comparatively simple stochastic gradient decent (SGD) algorithm is ideal.

SGD works by evaluating the gradient of the loss function at the current coordinates in
parameter space (via forward propagation), and then taking steps down the gradient. By taking
advantage of the fact that NNs are fully continuously differentiable functions from the output
to the inputs, the effect of each free parameter in the network can be analytically evaluated by
back-propagation. Each parameter can then be adjusted optimally, and after enough iterations,
the response of the network should converge to that of the desired function.
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There are several choices to be made when constructing NNs, and a brief overview of the
choices used in the architectures developed in this note are listed below.

2.3.1 Activation function

The activation functions used in a network act to provide a (non)-linear response of each neuron
based on the weighted sum of their inputs, in order to provide the neuron output:

y = Act (x̄ · w̄) ,

where y is the output of the neuron, equal to the activation function (Act) acting on the dot
product of the inputs to the neuron (x̄) and its weights (w̄).

Whilst the sigmoid or hyperbolic tangent (tanh) functions were used for many decades, the
default choice for the internal activation-functions in contemporary ML is now the rectified
linear-unit (ReLU) [20]. This consists of a unit-gradient linear function for positive activations,
and a flat line at zero for negative activation. This solves one of the problems of the sigmoid and
tanh functions, which was gradient saturation, where for large absolute values of activation, the
output was approximately equal to one. At saturation the gradient of the back-propagated loss-
function gradient would become zero, and no training could take place. By removing gradient
saturation in half of the activation region, the ReLU allows larger networks to be constructed,
and more quickly trained.

The ReLU is affected by two problems: dead ReLUs, where the output of the neuron
is constantly zero due to its activation always being negative; and non-zero-centred outputs,
which leads to inefficient learning of the correct weights. More recent activation functions
attempt to fix some of these problems, and the potential improvements of a range of functions
are investigated in Sec. 2.5.

2.3.2 Weight initialisation

The weights in the network must start from some initial value; however, since uniform initial-
isation would lead to each neuron acting in the same way, with no possibility of learning, the
weights are normally sampled randomly from a distribution. Care must be taken when spec-
ifying this distribution, such that the levels of activation within the network are not too low
and not too high. Ideally, unit Gaussian inputs should remain unit Gaussian throughout the
network. The Glorot/Xavier [21] initialisation was derived to ensure this for linear activation
functions, and is also applicable to sigmoid and tanh functions. For ReLU-based functions, the
version modified by He [22] is optimal.

2.3.3 Pre-processing

The initialisation schemes mentioned above are mathematically derived under the assumption
unit Gaussian inputs. By transforming the input features such that they have zero mean and
standard deviation equal to one, the weight initialisations become more optimal, and the time
required for the network to converge decreases.

2.3.4 Loss function

As mentioned before, the loss function quantises the level of performance the NN currently
appears to offer. Several choices can be made, however in this note we use binary cross-entropy
(BCE) for classification tasks, and mean square-error (MSE) for regression.
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The BCE is calculated according to:

BCE = − 1

N

N∑

n=1

[yn log ŷn + (1− yn) log (1− ŷn)] , (2)

where N is the number of predictions, ŷn is a vector of predictions (in our case the prediction of
event class, ŷ ∈ [0, 1]), and yn is a vector of true values (here, the actual event class, y ∈ {0, 1}).

2.3.5 Optimisation

Standard SGD works for training the NN, however in recent years, various additions and mod-
ifications have been made. The optimisation algorithm used in this section is called ADAM
[23]. This makes use of both momentum from past updates and an accumulated store of past
gradient values to continually adapt its learning rate to make larger updates when the loss
function is slow to change, and smaller steps when it is rapidly changing.

2.3.6 Learning rate

According to Ref.[24], the learning rate (LR) is one of the most important parameters to set
when training a neural network. Effectively, it equates to the step size the network makes over
the loss surface at each update point, e.g. for standard SGD:

w̄′ = w̄ − lr × ∇̄w,

where w are the the weights of the network, and ∇̄w are the gradients of the loss with respect
to the weights. If it is set too low, the network can either under-fit the data by taking too
long to converge to a good enough configuration, or over-fit by finding features of the training
data which are not representative of the general distribution of the data, spoiling the models
performance when applied to unseen data. Conversely, if the learning rate is set too high,
the network may be unable to move into loss minima due to overshooting them, and in more
extreme cases can even start to diverge.

The LR range-test, introduced by Smith in Ref. [25] (and again in Ref. [26]), provides a
quick way to discover the approximate value of the optimal LR. It involves starting training
at a very small LR, and over the course of one epoch, increasing the LR to some high value.
The loss of the network can then be examined as a function of the LR. For small rates, the
loss can be expected to be flat, or slowly decreasing; the network under-fits and is unable to
learn properly. At some point the LR will become large enough to allow the network to train,
indicated by a falling loss. Finally the LR becomes too large, resulting in a plateau in the loss
swiftly followed by a sharp rise as the network diverges. The optimal learning rate is then the
highest value at which the loss is still decreasing.

Even after finding an initially optimal LR, it is unlikely that it will remain optimal through-
out training; a common approach is to decrease the LR as training progresses, in order to hone
in on lower loss values. Whilst this traditionally involves manually setting the LR during train-
ing, Ref. [25] and Ref. [27] both describe automated schedules for the learning rate; the former
focussing improving the speed of training (and is further improved in Ref. [28], and later in
Ref. [26]), and the latter trying to discover minima which generalise better to unseen data.

2.3.7 Ensembling

Ensembling is an approach in which multiple ML algorithms are combined to offer a greater
performance for a larger range of inputs. Where ensembling is used in this note, the responses of
the constituent NNs are weighted according to their performance as demonstrated on a separate
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testing set. This allows the most performant NNs to have the greatest influence, but still be
supported by other, weaker NNs in input regions where it is less performant.

2.3.8 Cross validation

For training, k-fold cross-validation is used. This involves splitting the training sample into
k equally sized portions. The NN is then trained and tested k times from scratch, each time
using a different portion for testing and the remaining k− 1 for training. This provides a data
efficient method of training which can have many applications such as: showing the general
response of a NN, rather than how it happened to respond to a particular set of data; parameter
optimisation; and training and evaluating many NNs for an ensemble.

For classifiers, the stratified version is preferable, which attempts to preserve the fraction
of data classes in each fold. This ensures that each NN receives a balanced training, which will
make its performance comparable to other train/test cycles.

2.4 Baseline model

2.4.1 Architecture

The model consists of a fully connected feed-forward neural network with 4 hidden layers, each
of 100 neurons. The hidden layer neurons apply ReLU activation functions [20], with weights
initialised according to He’s prescription [22]. The output of the network is a single sigmoid
neuron with Glorot initialisation [21]. The binary cross-entropy of predictions is minimised via
stochastic gradient descent with ADAM [23] using a minibatch size of 256.

2.4.2 Learning rate optimisation

An initial test is performed to validate the use of LR range test [25]. This involves training
networks for 19 epochs for three different learning rates (1× 10−5, 1× 10−3, and 1× 10−1),
five times for each LR. We then compare the mean loss reached by the networks after training.
These are detailed in Tab. 1. From these short training runs, it appears that a learning rate
around 1× 10−3 works best.

Running a LR range test from 1× 10−5 to 1× 10−1 results in Fig. 3. The optimum learning
rate is the highest one at which the loss is still decreasing, and the results indicate that this is
approximately 1× 10−3, which is in agreement the with results of the rough tests we initially
performed. It is also worth noting that each of the initial checks took around 100 seconds to
run, whereas the LR range test finished in just 20 seconds.

2.4.3 Performance

Single model 10 models are trained in 10-fold cross-validation (using the predefined folds
described in Sec. 2.2.3) with a constant LR of 1× 10−3 (as was found to be optimal in Sec. 2.4.2).
Training continues until the loss on the validation fold does not decrease for 50 epochs and then

LR Mean final loss

1× 10−5 4.63× 10−5 ± 6× 10−7

1× 10−3 3.41× 10−5 ± 2× 10−7

1× 10−1 8.02× 10−4 ± 2× 10−6

Table 1: Losses reached after training for 19 epochs for a range of learning rates.

12



Figure 3: Loss as a function of learning rate for 10 LR range tests. The line indicates the mean
loss, and the shaded region shows its standard deviation.

Metric Single model Ensemble Improvement [%]

Overall maximum AMS 3.44 3.72 8.3
Mean maximal AMS 3.5± 0.1 3.8± 0.1 8.6
AMS at mean optimal cut 3.39 3.64 7.4
Inference time [s/event] 1.7× 10−5 1.7× 10−4 −890

Table 2: Validation-performance comparison between using the single best model and using a
weighted ensemble of all models.

the state of lowest validation-fold loss is loaded. The mean final loss and the mean maximal
AMS on the validation folds are found to be 3.29× 10−5±2× 10−7 and 3.49±0.03, respectively.
Using an Intel i7-6500U CPU with Keras v2.1.6 and non-source-compiled Tensorflow
v1.8.0, training takes 950 s.

Taking the model which reached the lowest loss on its validation fold, and applying it to
the validation dataset we find the AMS to peak at 3.44. Using 512 bootstrap resamples of the
validation data results in a mean maximal AMS of 3.5± 0.1, and an AMS corresponding to the
mean optimal cut of 3.39.

Ensemble Instead, combining all 10 models in an ensemble by weighting their predictions
according to the reciprocal of their final loss on their validation folds results in a large improve-
ment in validation performance, as shown in Tab. 2.

2.5 Different activation functions

2.5.1 Function overview

As stated in Sec. 2.3, whilst ReLU is a good default choice for an activation function, it does
exhibit several problems, which more recent functions attempt to address. The Parametrised
ReLU (PReLU) [22] can feature a non-zero negative gradient, which is learnt via backpropa-
gation during training. The Scaled Exponential Linear Unit (SELU) [29] uses careful derived
scaling coefficients to keep signals in the network approximately unit Gaussian, without the
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Activation function Learning rate Mean final loss

ReLU 1× 10−3 3.41× 10−5 ± 2× 10−7

PReLU 1× 10−3 3.40× 10−5 ± 2× 10−7

SELU 3× 10−4 3.44× 10−5 ± 2× 10−7

Swish 2× 10−3 3.34× 10−5 ± 1× 10−7

Table 3: Losses reached after training for 19 epochs for a range of activation functions. The
learning rates were found via a L range-test.

need to for manual transformation via batch normalisation [30] . It is recommended to use the
lecun initialisation scheme [31] for neurons using the SELU activation function. The Swish
function [32] was found via a reinforcement leaning based search, and features the interesting
characteristic of having a region of negative gradient, allowing outputs to decrease as the input
increases: Swish (x) = x · sigmoid (x). The recommended weight initialisation scheme for Swish
is the same as the one for ReLU, i.e. He. A comparison of these functions is shown in Fig. 4.

Figure 4: Responses (Act(x)) of the three different activation functions tested, for a range of
input values, x.

2.5.2 Comparison tests

Similar to the LR comparisons performed in Sec. 2.4.2, rather than performing full trainings,
we compare the network performances after only 19 epochs training and again on the average
of five networks. For each activation function, the LR is optimised via a range test. The results
are summarised in Tab. 3. From these results it appears as though Swish should be expected
to outperform the baseline ReLU model.

2.5.3 Performance

Again we train an ensemble of 10 models, with same stopping criterion. Full training takes
1050 s and the mean final loss and mean maximal AMS on the validation folds are 3.26× 10−5±
2× 10−7 and 3.57± 0.03, respectively. Comparing the Swish ensemble to the ReLU baseline in
Tab. 4, we find a minor to systematic improvement over the ReLU based model.
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Metric ReLU model Swish model Improvement [%]

Overall maximum AMS 3.72 3.78 1.5
Mean maximal AMS 3.8± 0.1 3.8± 0.1 0
AMS at mean optimal cut 3.64 3.72 2.3
Inference time [s/event] 1.7× 10−4 2.0× 10−4 −18

Table 4: Validation-performance comparison between just Baseline ReLU and the new Swish
models.

2.6 Learning-rate scheduling

2.6.1 Schedule overview

In Section 2.3 we mentioned that a common approach during network training is to adjust the
learning rate in order to converge to a more optimal weight configuration. Here we explore the
warm restarts approach by Loschilov and Hutter, 2016 [27], in which the LR decays according
to a cosine function of the minibatch iteration, and restarts at the initial LR when the LR
would become zero. Figure 5 details such a schedule, with the addition of a multiplicity factor
of two, meaning that after each restart the decay rate is halved. Reference [33] suggests that
discontinuities in the LR schedule allow the model to explore multiple minima across the loss
surface. The cycle multiplicity factor allows the model to eventually converge in one of these
minima, by increasing the time spent at small learning rates.

Figure 5: Example of a learning rate schedule following the cosine annealing with restarts
prescription.

2.6.2 Performance

We train an ensemble of 10 Swish-based models using cosine annealed learning rates with a
cycle multiplicity of two and an initial learning rate found via an LR range test (2× 10−3).
The stopping criterion is modified such that training continues until the learning rate completes
an entire cycle with no improvement in validation loss. At this point the training enters
redux decay ; the weight state with lowest validation loss is loaded, and the LR is set to the
corresponding value at that state. Training then continues without cosine annealing until ten
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Metric Constant LR Cosine annealed LR Improvement [%]

Overall maximum AMS 3.78 3.77 −0.17
Mean maximal AMS 3.8± 0.1 3.8± 0.2 0
AMS at mean optimal cut 3.72 3.72 0.086
Inference time [s/event] 2.0× 10−4 2.0× 10−4 0

Table 5: Validation-performance comparison between the Swish ensemble with constant and
annealed learning rates.

epochs elapse with no improvement in validation fold loss. After each epoch, if there has been
no improvement, then the LR is set to 80 % of its current value. The rationale behind this
second stage of training is that the cosine annealing may have been too rapid for the model
to converge to the minima, and so the redux decay provides a second chance to converge at a
slightly slower decay.

The training time doubles to around 2000 s, however the stopping criterion of one full
cycle without improvement could be refined after initial tests. The mean final loss and mean
maximal AMS on the validation folds are 3.23× 10−5 ± 2× 10−7 and 3.71± 0.03, respectively.
Table 5 compares the performance of the resulting ensemble to that of Sec. 2.5 with a constant
learning rate. The performance on the validation data indicates equal performance for both
training methods, however the mean performance on the validation folds during training shows
an improvement when the cosine schedule is used. Due to this inconclusivity we will consider
both schedules for the next set of improvements.

2.7 Data augmentation

2.7.1 Augmentation overview

Data augmentation is a common technique for improving the generalisation power of a model.
It involves applying class-preserving transformations to the data in order to exploit or highlight
certain invariances between the input and target features. In the field of image classification,
these transformations could be small rotations, flips, zooms, or colour and lighting adjustments,
e.g. Ref/ [34]. Application of the augmentations may be done during training in order to
artificially inflate the size of the training data (train-time augmentation), or during inference
by taking the mean prediction for a set of augmentations (test-time augmentation).

At particle colliders such as the LHC [9], beams of the same type of particle collide head-on
with approximately zero transverse momentum. Because of this the resulting final states can be
expected to be produced isotropically in both the transverse plane (x, y) and the longitudinal
axis (z). Particle detectors such as CMS [35] and ATLAS [14] are built to account for these
isotropies by being symmetric in both azimuthal angle (φ) and pseudorapidity (η). All this is
to say that the class of physical process which gave rise to the collision event is only related to
the relative separation between the final states, and not the absolute position of the event.

Since the data used in this problem is simulated for such a collider and detector combination,
the class is invariant to flips in the transverse or longitudinal planes, and to rotations in the
azimuthal angle, as illustrated in Fig. 6. Our set of class-preserving transformations therefore
consists of rotating the event in φ, flipping the event in the z axis, and flipping the event in the
x axis; allowing flips in both x and y axes, combined with a φ rotation, can recover the original
event, and so only one transverse axis is used to avoid redundancy.

Train-time augmentation is performed by applying a random set of augmentations before
each data point is used (implemented by augmenting each fold when loaded). Test-time aug-
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Mode Train time [s] Mean final validation-fold performance
loss maximal AMS

Data augmentation + cosine LR 5400 3.18× 10−5 ± 2× 10−7 3.98± 0.07
Data augmentation + constant LR 2000 3.21× 10−5 ± 2× 10−7 3.9± 0.1
Data fixing + cosine LR 1800 3.187× 10−5 ± 7× 10−8 3.9± 0.1
Data fixing + constant LR 990 3.21× 10−5 ± 2× 10−7 3.81± 0.07

Table 6: Validation-fold performance and train-time comparison between the different sets of
data augmentation and fixing trainings.

mentation consists of taking the mean prediction for each data point over a set of 32 transfor-
mations: each possible combination of flips in x and z for eight different φ orientations.

One may well notice that the above mentioned symmetries could be removed from the data
by transforming the events such that they are oriented in a predefined position. This data
fixing approach will also be tested by rotating and flipping the events to have the light-lepton
at φ = 0 and in the positive η region, and the tau jet in the positive φ region. Since the lepton’s
φ feature is now constant, it may be removed from the input features, meaning that classifiers
trained on the fixed data only use 30 inputs.

2.7.2 Performance

We train four ensembles of 10 Swish-based models: one using the cosine annealed learning rate
schedule of Sec. 2.6 and data augmentation; another using the constant learning rate of Sec. 2.5
and data augmentation; another using a constant learning rate and data fixing; and a final one
using using the cosine annealed learning rate schedule of Sec. 2.6 and data fixing. Table 6
details the training performance of each set; tables 7 and 8 compare the various setups on the
validation data, and Tab. 9 compares the best performing setups for both of the data schemes.

Whereas Sec. 2.6 showed similar performance for both constant and scheduled learning rates,
here we see that whilst data augmentation improves both, the improvement is much larger when
combined with a cosine annealed LR. It is interesting to note the similar performance of the
data augmentation and data fixing schemes. It can be taken to indicate that the classifier is able
to learn the invariants in the data sufficiently well via the augmentation procedure but that
the data fixing procedure adequately removes the symmetries. Additionally, the data fixing
method is less costly to run, in terms of train and inference time.
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Metric Constant LR Constant LR Improvement [%]
+ data augmentation

Overall maximum AMS 3.78 3.88 2.9
Mean maximal AMS 3.8± 0.1 4.0± 0.2 5.3
AMS at mean optimal cut 3.72 3.80 1.9

Metric Cosine LR Cosine LR Improvement [%]
+ data augmentation

Overall maximum AMS 3.77 3.96 5.1
Mean maximal AMS 3.8± 0.1 4.0± 0.2 5.3
AMS at mean optimal cut 3.72 3.91 5

Metric Constant LR Cosine LR Improvement [%]
+ data augmentation + data augmentation

Overall maximum AMS 3.88 3.96 2.0
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0
AMS at mean optimal cut 3.80 3.91 3.1

Inference time [s/event] Without TTA With TTA Improvement [%]
2.0× 10−4 4.6× 10−3 −2200

Table 7: Validation-performance comparison between the Swish ensemble with constant and
annealed learning rates with and without data augmentation.

Metric Constant LR Constant LR Improvement [%]
+ data fixing

Overall maximum AMS 3.78 3.91 3.4
Mean maximal AMS 3.8± 0.1 4.0± 0.2 5.3
AMS at mean optimal cut 3.72 3.81 2.4

Metric Cosine LR Cosine LR Improvement [%]
+ data fixing

Overall maximum AMS 3.77 3.97 5.3
Mean maximal AMS 3.8± 0.1 4.0± 0.2 5.3
AMS at mean optimal cut 3.72 3.93 5.6

Metric Constant LR Cosine LR Improvement [%]
+ data fixing + data fixing

Overall maximum AMS 3.91 3.97 1.5
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0
AMS at mean optimal cut 3.81 3.93 3.1

Table 8: Validation-performance comparison between the Swish ensemble with constant and
annealed learning rates with and without data fixing.
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Metric Cosine LR Cosine LR Improvement [%]
+ data fixing + data augmentation

Overall maximum AMS 3.97 3.97 0
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0
AMS at mean optimal cut 3.93 3.91 −0.35
Inference time [s/event] 2.7× 10−4 4.6× 10−3 −1600

Table 9: Validation-performance comparison between the data augmentation and data fixing
schemes.

(a) Example event in the longitudinal-transverse plane, being flipped in the longi-
tudinal axis. Note that the missing transverse momentum (indicated by the dashed
red line) has no longitudinal component

(b) Example event in the fully transverse plane being rotated and flipped in the
transverse plane.

Figure 6: Illustrations of class-preserving transformations for particle collisions.
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2.8 Stochastic Weight Averaging

2.8.1 SWA overview

As mentioned in 2.6 Ref. [33] suggests that Ref. [27]’s process of restarting the LR schedule
allows the network to discover multiple minima in the loss surface. The paper builds on this
by introducing a method, in which an ensemble of networks results from a single training cycle
by saving copies of the networks just before restarting the LR schedule, i.e. when the model
is in the minima. This process of Snapshot Ensembling is further refined into Fast Geometric
Ensembling (FGE) in Ref. [36], by forcing the model evolution along curves of constant loss
between connected minima (simultaneously and independently discovered by Ref. [37]).

The problem with these methods is that whilst they allow one to train an ensemble in
a much reduced time, one still has to run the data though each model individually, so the
application-time remains the same. Reference [38] instead finds an approach which leads to an
approximation of FGE in a single model. This is done by averaging the models in weight space,
rather than in model space. The general method involves training a model as normal, until the
model begins to converge. At this point the model continues to train as normal, but after each
epoch a running average of the model’s parameters is updated.

In application, one has to decide on when to begin collecting the averages: too early, and the
model average is spoiled by ill-performing weights; too late, and the model does not explore the
loss surface enough to allow SWA to be of use. An attempt was made to automate this decision
by starting the averaging early and keeping many averages running, offset by a few epochs,
and dropping those which were eventually outperformed. Although this procedure worked, it
introduced additional hyper-parameters (e.g. how often to start new averages, how long to wait
between comparing them), and was much slower, due to many models needing to be evaluated
during training. Because of this, the implementation used here relied on training once without
SWA, picking a suitable point to begin, and then rerunning allowing SWA to begin at the
chosen point.

Additionally, it was found that although SWA is compatible with a cyclical LR schedule
(by updating the average before each restart), for the setup used here, there were not enough
restarts (average updates) to provide the potential benefit of SWA, and so a constant LR was
used. Also, although SWA is meant to approximate an ensemble of models, ensembling a set
of SWA models still provided improved performance.

2.8.2 Performance

We train two sets of 10 Swish-based models, both using constant learning rate. One set uses
data augmentation and the other uses data fixing, and beginning SWA after 125, and 25 training
epochs, respectively.

Table 10 details the training performance of each set. It is particularly interesting to compare
the validation-fold loss evolution between the nominal and average weights, as shown in Fig. 7.
Here one can clearly see the effect of SWA, indicated by a sudden drop in loss, followed by
a flat plateau, with almost a complete suppression of the statistical fluctuations the nominal
model exhibits.

Table 11 compares the various setups on the validation data, and Tab. 12 compares the best
performing setup with SWA against the cosine LR with data augmentation model. We can see
that SWA provides improvements for both the fixing and the augmentation schemes when a
constant LR is used, however these improvements, whilst still present, decrease when a cosine
LR schedule is used.
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Mode Train time [s] Mean final validation-fold performance
loss maximal AMS

SWA + augmentation + const. LR 3800 3.18× 10−5 ± 2× 10−7 4.04± 0.07
SWA + fixing + const. LR 2000 3.21× 10−5 ± 2× 10−7 4.1± 0.2

Table 10: Validation-fold performance and train-time comparison between the different sets of
data augmentation and fixing trainings, with SWA.

Metric Constant LR Constant LR Improvement [%]
+ data augmentation + data augmentation

+ SWA

Overall maximum AMS 3.88 3.99 2.8
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0.0
AMS at mean optimal cut 3.80 3.97 4.5

Metric Constant LR Constant LR Improvement [%]
+ data fixing + data fixing

+ SWA

Overall maximum AMS 3.91 3.93 0.5
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0.0
AMS at mean optimal cut 3.81 3.85 1.0

Table 11: Validation-performance comparison between the Swish ensembles with constant learn-
ing rates and data augmentation/fixing with and without SWA.

Metric Cosine LR Constant LR Improvement [%]
+ data augmentation + data augmentation

+ SWA

Overall maximum AMS 3.97 3.99 0.7
Mean maximal AMS 4.0± 0.2 4.0± 0.2 0
AMS at mean optimal cut 3.91 3.97 1.4

Table 12: Validation-performance comparison between the cosine LR and constant LR with
SWA schemes, both using data augmentation.
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Figure 7: Validation-fold loss evolution during training for all 10 classifiers in the data aug-
mentation scheme. SWA begins at epoch 125.

2.9 Test-set predictions

During the three-month running of the original competition on Kaggle, participants were able
to submit predictions for the test data-set (which at the time was missing the true labels), and
receive an AMS score on the public section of it, which corresponded to 18 % of the test data.
Competitors were allowed to choose two of their entries to be run the remaining private test
set, and their final score was the higher of the two.

With the challenge now finished, both the public and private scores are immediately available
on entry submission. Additionally, the competition data were made public with all the truth
labels along with flags and specific weights to allow anyone to recreate the datasets that were
used in the competition, as is done for the is investigation documented in this note. Whilst the
private scores are available, model comparison has so far only used a validation subset of the
training data, on which the cut for the AMS is optimised.

Unfortunately, due to the small size of the training data available, the value of the AMS can
fluctuate heavily. As described in Sec. 2.2.2, an attempt was made to find a generally optimal
cut by bootstrapping the validation data, and finding the mean optimal cut. This was found
to generally provide more optimal public scores than a single analysis of the validation data,
over a variety of models.

Figure 8 summarises the AMS on both the validation and test data. “Overall Val. AMS”
is the maximal AMS computed on the entire validation dataset. “Val.AMS at mean cut” is the
AMS on the entire validation dataset at the mean optimal cut over 512 bootstrap resamples
of the validation data. One can see that the value of “Val.AMS at mean cut” is consistently
closer to the scores on the test data (“Public AMS” and “Private AMS”).

The trend in the public AMS generally reflects that of the validation data, with respect
to the improvements added to the model. Except in the case of the non-SWA data fix-
ing/augmentation choice; Sec. 2.7 had shown that both choices gave approximately equal per-
formance, however it would appear that the augmentation scheme offers greater generalisation
to unseen data.

It is also interesting to note the scores of the SWA model. The version with data aug-
mentation had shown superior performance on both the validation and public data, however
the private score is slightly worse than the non-SWA data augmentation model, which slightly
improves on the winning score.
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Figure 8: AMS values computed on validation and test data.

Ours 1st 2nd 3rd

Method 10 DNNs 70 DNNs Many BDTs 108 DNNs
Train time 1.5 h 24 h 48 h 3 h
Inference time 40 min 1 h Unknown 20 min
Private AMS 3.818 3.806 3.789 3.787
Hardware Intel i7-6500U Nvidia Titan >= 8-core CPU 4-core CPU

< 8 GB RAM < 24 GB RAM > 64 GB RAM RAM Unknown
(2016 laptop) (AWS m2.4.xlarge) (2012 laptop)

Table 13: Extended comparison between solutions

2.10 Solution comparison

Section 2.9 showed that the Swish ensemble using cosine annealing and data-augmentation
outperformed the winning solution of the original competition. It is perhaps more useful to
instead compare the solutions in terms of train and inference time, and the hardware required
to get their scores. From Tab. 13 we can see that the solution developed here (labelled ‘Ours’)
trains in less than 10 % of the winning solution’s time, and requires much less specialised
hardware (a system with a top-of-the-range GPU compared to a €700 laptop with a third of
the RAM). Of course this comparison does not account for any advances in software or hardware
that have occurred between the competition (2014) and the time of writing (2018).

Details of the top solutions may be found here: 1st - Melis (https://github.com/melisgl/
higgsml), 2nd - Salimans (https://github.com/TimSalimans/HiggsML), and 3rd - Pierre
(https://www.kaggle.com/c/higgs-boson/discussion/10481).
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3 INFERNO: Inference-aware Neural Optimisation

Complex computer simulations are commonly required for accurate data modelling in many
scientific disciplines, making statistical inference challenging due to the intractability of the
likelihood evaluation for the observed data. Furthermore, sometimes one is interested on infer-
ence drawn over a subset of the generative model parameters while taking into account model
uncertainty or mis-specification on the remaining nuisance parameters. In this work, we show
how non-linear summary statistics can be constructed by minimising inference-motivated losses
via stochastic gradient descent such they provided the smallest uncertainty for the parameters
of interest. As a use case, the problem of confidence interval estimation for the mixture co-
efficient in a multi-dimensional two-component mixture model (i.e. signal vs background) is
considered in this section, where we show that the proposed technique clearly outperforms
summary statistics based on probabilistic classification, which are a commonly used alternative
but do not account for the presence of nuisance parameters.

3.1 Background

Simulator-based inference is currently at the core of many scientific fields, such as population
genetics, epidemiology, and experimental particle physics. In many cases the implicit generative
procedure defined in the simulation is stochastic and/or lacks a tractable probability density
p(x|θ), where θ ∈ × is the vector of model parameters. Given some experimental observations
D = {x0, ...,xn}, a problem of special relevance for these disciplines is statistical inference on
a subset of model parameters ω ∈ ⊗ ⊆ ×. This can be approached via likelihood-free infer-
ence algorithms such as Approximate Bayesian Computation (ABC) [39], simplified synthetic
likelihoods [40] or density estimation-by-comparison approaches [41].

Because the relation between the parameters of the model and the data is only available
via forward simulation, most likelihood-free inference algorithms tend to be computationally
expensive due to the need of repeated simulations to cover the parameter space. When data are
high-dimensional, likelihood-free inference can rapidly become inefficient, so low-dimensional
summary statistics s(D) are used instead of the raw data for tractability. The choice of sum-
mary statistics for such cases becomes critical, given that naive choices might cause loss of
relevant information and a corresponding degradation of the power of resulting statistical in-
ference.

In the contex of data analyses at the Large Hadron Collider (LHC), the ultimate aim
is to extract information about Nature from the large amounts of high-dimensional data on
the subatomic particles produced by energetic collision of protons, and acquired by highly
complex detectors built around the collision point. Accurate data modelling is only available
via stochastic simulation of a complicated chain of physical processes, from the underlying
fundamental interaction to the subsequent particle interactions with the detector elements and
their readout. As a result, the density p(x|θ) cannot be analytically computed.

The inference problem in particle physics is commonly posed as hypothesis testing based on
the acquired data. An alternate hypothesis H1 (e.g. a new theory that predicts the existence
of a new fundamental particle) is tested against a null hypothesis H0 (e.g. an existing theory,
which explains previous observed phenomena). The aim is to check whether the null hypothesis
can be rejected in favour of the alternate hypothesis at a certain confidence level surpassing
1− α, where α, known as the Type I error rate, is commonly set to α = 3× 10−7 for discovery
claims. Because α is fixed, the sensitivity of an analysis is determined by the power 1 − β of
the test, where β is the probability of rejecting a false null hypothesis, also known as Type II
error rate.

Due to the high dimensionality of the observed data, a low-dimensional summary statistic
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has to be constructed in order to perform inference. A well-known result of classical statistics,
the Neyman-Pearson lemma[42], establishes that the likelihood-ratio Λ(x) = p(x|H0)/p(x|H1)
is the most powerful test when two simple hypotheses are considered. As p(x|H0) and p(x|H1)
are not available, simulated samples are used in practice to obtain an approximation of the
likelihood ratio by casting the problem as supervised learning classification.

In many cases, the nature of the generative model (a mixture of different processes) allows
the treatment of the problem as signal (S) vs background (B) classification [43], when the task
becomes one of effectively estimating an approximation of pS(x)/pB(x) which will vary mono-
tonically with the likelihood ratio. While the use of classifiers to learn a summary statistic can
be effective and increase the discovery sensitivity, the simulations used to generate the samples
which are needed to train the classifier often depend on additional uncertain parameters (com-
monly referred to as nuisance parameters). These nuisance parameters are not of immediate
interest but have to be accounted for in order to make quantitative statements about the model
parameters based on the available data. Classification-based summary statistics cannot easily
account for those effects, so their inference power is degraded when nuisance parameters are
finally taken into account.

In this section, we present a new machine learning method to construct non-linear sample
summary statistics that directly optimises the expected amount of information about the subset
of parameters of interest using simulated samples, by explicitly and directly taking into account
the effect of nuisance parameters. This new method, dubbed Infernce-aware Neural Optimisa-
tion, or simply INFERNO for short, produces summary statistics can be used to build synthetic
sample-based likelihoods and perform robust and efficient classical or Bayesian inference from
the observed data, so they can be readily applied in place of current classification-based or
domain-motivated summary statistics in current scientific data analysis workflows.

3.2 Problem Statement

Let us consider a set of n independent and identically distributed (i.i.d.) observations D =
{x0, ...,xn} where x ∈ X ⊆ Rd, and a generative model which implicitly defines a probability
density p(x|θ) used to model the data. The generative model is a function of the vector of
parameters θ ∈ × ⊆ Rp, which includes both relevant and nuisance parameters. We want to
learn a function s : D ⊆ Rd×n → S ⊆ Rb that computes a summary statistic of the dataset and
reduces its dimensionality so likelihood-free inference methods can be applied effectively. From
here onwards, b will be used to denote the dimensionality of the summary statistic s(D).

While there might be infinite ways to construct a summary statistic s(D), we are only
interested in those that are informative about the subset of interest ω ∈ ⊗ ⊆ × of the model
parameters. The concept of statistical sufficiency is especially useful to evaluate whether sum-
mary statistics are informative. In the absence of nuisance parameters, classical sufficiency can
be characterised by means of the factorisation criterion:

p(D|ω) = h(D)g(s(D)|ω) (3)

where h and g are non-negative functions. If p(D|ω) can be factorised as indicated, the
summary statistic s(D) will yield the same inference about the parameters ω as the full set of
observations D. When nuisance parameters have to be accounted in the inference procedure,
alternate notions of sufficiency are commonly used such as partial or marginal sufficiency [44,
45]. Nonetheless, for the problems of relevance in this work, the probability density is not
available in closed form so the general task of finding a sufficient summary statistic cannot be
tackled directly. Hence, alternative methods to build summary statistics have to be followed.

For simplicity, let us consider a problem where we are only interested on statistical inference
on a single one-dimensional model parameter ω = {ω0} given some observed data. Be given
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a summary statistic s and a statistical procedure to obtain an unbiased interval estimate of
the parameter of interest which accounts for the effect of nuisance parameters. The resulting
interval can be characterised by its width ∆ω0 = ω̂+

0 − ω̂−0 , defined by some criterion so as to
contain on average, upon repeated samping, a given fraction of the probability density, e.g. a
central 68.3% interval. The expected size of the interval depends on the summary statistic
s chosen: in general, summary statistics that are more informative about the parameters of
interest will provide narrower confidence or credible intervals on their value. Under this figure
of merit, the problem of choosing an optimal summary statistic can be formally expressed as
finding a summary statistic s∗ that minimises the interval width:

s∗ = argmins∈S∆ω0 (4)

where the minimisation argmins∈S refers to finding the summary statistic s∗ within the set of
possible summary statistics S, that minimises the interval width ∆ω0. The above construction
can be extended to several parameters of interest by considering the interval volume or any
other function of the resulting confidence or credible regions.

3.3 Method

In this section, the INFERNO machine learning technique, that can used to learn non-linear
sample summary statistics is described in detail. The method seeks to minimise the expected
variance of the parameters of interest obtained via a non-parametric simulation-based synthetic
likelihood. A graphical description of the technique is depicted on Fig. 9. The parameters of a
neural network are optimised by stochastic gradient descent within an automatic differentiation
framework, where the considered loss function accounts for the details of the statistical model
as well as the expected effect of nuisance parameters.

The family of summary statistics s(D) considered in this work is composed by a neural net-
work model applied to each dataset observation f(x;φ) : X ⊆ Rd → Y ⊆ Rb, whose parameters
φ will be learned during training by means of stochastic gradient descent, as will be discussed
later. Therefore, using set-builder notation the family of summary statistics considered can be
denoted as:

s(D,φ) = s ( { f(xi;φ) | ∀ xi ∈ D } ) (5)

g θs

x0 x1 ... xg

y0 y1 ... yg

f φ

softmax

∑

ŝ0

ŝ1

ŝ2

...

ŝb log L̂A

− ∂2

∂θi∂θj

U

I−1

simulator or
approximation

neural
network

summary
statistic

inference-aware
loss

compute via automatic differentiation

stochastic gradient update φt+1 = φt + η(t)∇φU

Figure 9: Learning inference-aware summary statistics (see text for details).
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where f(xi;φ) will reduce the dimensionality from the input observations space X to a
lower-dimensional space Y . The next step is to map observation outputs to a dataset sum-
mary statistic, which will in turn be calibrated and optimised via a non-parametric likelihood
L(D;θ,φ) created using a set of simulated observations Gs = {x0, ...,xg}, generated at a
certain instantiation of the simulator parameters θs.

In experimental high energy physics experiments, histograms of observation counts are the
most commonly used non-parametric density estimator because the resulting likelihoods can be
expressed as the product of Poisson factors, one for each of the considered bins. A naive sample
summary statistic can be built from the output of the neural network by simply assigning each
observation x to a bin corresponding to the cardinality of the maximum element of f(x;φ), so
each element of the sample summary will correspond to the following sum:

si(D;φ) =
∑

x∈D

{
1 i = argmaxj={0,...,b}(fj(x;φ))

0 i 6= argmaxj={0,...,b}(fj(x;φ))
(6)

which can in turn be used to build the following likelihood, where the expectation for each
bin is taken from the simulated sample Gs:

L(D;θ,φ) =
b∏

i=0

Pois

(
si(D;φ) |

(
n

g

)
si(Gs;φ)

)
(7)

where the n/g factor accounts for the different number of observations in the simulated
samples. In cases where the number of observations is itself a random variable providing
information about the parameters of interest, or where the simulated observation are weighted,
the choice of normalisation of L may be slightly more involved and problem specific, but
nevertheless amenable.

In the above construction, the chosen family of summary statistics is non-differentiable due
to the argmax operator, so gradient-based updates for the parameters cannot be computed. To
work around this problem, a differentiable approximation ŝ(D;φ) is considered. This function
is defined by means of a softmax operator, which is a generalisation of the logistic function
returns a transformation so all operands add up to on, thus can be used to represent a categorical
probability distribution:

ŝi(D;φ) =
∑

x∈D

efi(x;φ)/τ

∑b
j=0 e

fj(x;φ)/τ
(8)

where the temperature hyper-parameter τ will regulate the softness of the operator. In
the limit of τ → 0+, the probability of the largest component will tend to 1 while others to
0, and therefore ŝ(D;φ) → s(D;φ). Similarly, let us denote by L̂(D;θ,φ) the differentiable
approximation of the non-parametric likelihood obtained by substituting s(D;φ) with ŝ(D;φ).
Instead of using the observed data D, the value of L̂ may be computed when the observation
for each bin is equal to its corresponding expectation based on the simulated sample Gs, which
is commonly denoted as the Asimov likelihood [46] L̂A:

L̂A(θ;φ) =
b∏

i=0

Pois

((
n

g

)
ŝi(Gs;φ) |

(
n

g

)
ŝi(Gs;φ)

)
(9)

for which it can be easily proven that argmaxθ∈θ(L̂A(θ;φ)) = θs, i.e. the parameter vector
θ ∈ θ that minimises the likelihood is the one used for generating the data. Therefore, the
maximum likelihood estimator (MLE) for the Asimov likelihood is the parameter vector θs used
to generate the simulated dataset Gs. In Bayesian terms, if the prior over the parameters is flat
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in the chosen metric, then θs is also the maximum a posteriori (MAP) estimator. By taking
the negative logarithm and expanding in θ around θs, we can obtain the Fisher information
matrix [47] for the Asimov likelihood:

I(θ)ij =
∂2

∂θi∂θj

(
− log L̂A(θ;φ)

)
(10)

which can be computed via automatic differentiation if the simulation is differentiable and
included in the computation graph or if the effect of varying θ over the simulated dataset Gs

can be effectively approximated. While this requirement does constrain the applicability of
the proposed technique to a subset of likelihood-free inference problems, it is quite common
for e.g. physical sciences that the effect of the parameters of interest and the main nuisance
parameters over a sample can be approximated by the changes of mixture coefficients of mixture
models, translations of a subset of features, or conditional density ratio re-weighting.

If θ̂ is an unbiased estimator of the values of θ, the covariance matrix fulfils the Cramér-Rao
lower bound [48, 49]:

covθ(θ̂) ≥ I(θ)−1 (11)

and the inverse of the Fisher information can be used as an approximate estimator of the
expected variance, given that the bound would become an equality in the asymptotic limit for
MLE. If some of the parameters θ are constrained by independent measurements characterised
by their likelihoods {L0

C(θ), ...,LcC(θ)}, those constraints can also be easily included in the
covariance estimation, simply by considering the augmented likelihood L̂′A instead of L̂A in
Eq. 10:

L̂′A(θ;φ) = L̂A(θ;φ)
c∏

i=0

LiC(θ). (12)

In Bayesian terminology, this approach is referred to as the Laplace approximation [50]
where the logarithm of the joint density (including the priors) is expanded around the MAP to
a multi-dimensional normal approximation of the posterior density:

p(θ|D) ≈ Normal(θ; θ̂, I(θ̂)−1) (13)

which has already been approached by automatic differentiation in probabilistic program-
ming frameworks [51]. While a histogram has been used to construct a Poisson count sample
likelihood, non-parametric density estimation techniques can be used in its place to construct
a product of observation likelihoods based on the neural network output f(x;φ) instead. For
example, an extension of this technique to use kernel density estimation (KDE) should be
straightforward, given its intrinsic differentiability.

The loss function used for stochastic optimisation of the neural network parameters φ can
be any function of the inverse of the Fisher information matrix at θs, depending on the ultimate
inference aim. The diagonal elements I−1

ii (θs) correspond to the expected variance of each of
the φi under the normal approximation mentioned before, so if the aim is efficient inference
about one of the parameters ω0 = θk a candidate loss function is:

U = I−1
kk (θs) (14)

which corresponds to the expected width of the confidence interval for ω0 accounting also for
the effect of the other nuisance parameters in θ. This approach can also be extended when the
goal is inference over several parameters of interest ω ⊆ θ (e.g. when considering a weighted
sum of the relevant variances). A simple version of the approach described above to learn a
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neural-network based summary statistic employing an inference-aware loss is summarised in
Algorithm 1.

Algorithm 1 Inference-Aware Neural Optimisation (INFERNO).

Input 1: differentiable simulator or variational approximation g(θ).
Input 2: initial parameter values θs.
Input 3: parameter of interest ω0 = θk.
Output: learned summary statistic s(D;φ).

1: for i = 1 to N do
2: Sample a representative mini-batch Gs from g(θs).
3: Compute differentiable summary statistic ŝ(Gs;φ).
4: Construct Asimov likelihood LA(θ,φ).
5: Get information matrix inverse I(θ)−1 = H−1

θ (logLA(θ,φ)).
6: Obtain loss U = I−1

kk (θs).
7: Update network parameters φ→ SGD(∇φU).
8: end for

3.4 Related Work

Classification or regression models have been implicitly used to construct summary statistics
for inference in several scientific disciplines. For example, in experimental particle physics, the
mixture model structure of the problem makes it amenable to supervised classification based
on simulated datasets [52, 53]. While a classification objective can be used to learn powerful
feature representations and increase the sensitivity of an analysis, it does not take into account
the details of the inference procedure or the effect of nuisance parameters like the solution
proposed in this work.

The first known effort to include the effect of nuisance parameters in classification and
explain the relation between classification and the likelihood ratio was by Neal [54]. In the
mentioned work, Neal proposes training of classifier including a function of nuisance parameter
as additional input together with a per-observation regression model of the expectation value
for inference. Cranmer et al. [41] improved on this concept by using a parametrised classifier
to approximate the likelihood ratio which is then calibrated to perform statistical inference.
At variance with the mentioned works, we do not consider a classification objective at all and
the neural network is directly optimised based on an inference-aware loss. Additionally, once
the summary statistic has been learnt the likelihood can be trivially constructed and used for
classical or Bayesian inference without a dedicated calibration step. Furthermore, the approach
presented in this work can also be extended, as done by Baldi et al. [55], by considering a subset
of the inference parameters to obtain a parametrised family of summary statistics with a single
model.

Recently, Brehmer et al. [56, 57, 58] further extended the approach of parametrised clas-
sifiers to better exploit the latent-space space structure of generative models from complex
scientific simulators. Additionally they propose a family of approaches that include a direct
regression of the likelihood ratio and/or likelihood score in the training losses. While extremely
promising, the most performing solutions are designed for a subset of the inference problems
at the LHC and they require considerable changes in the way the inference is carried out. The
aim of this work is different, as we try to learn sample summary statistics that may act as a
plug-in replacement of classifier-based dimensionality reduction and can be applied to general
likelihood-free problems where the effect of the parameters can be modelled or approximated.
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Within the field of Approximate Bayesian Computation (ABC), there have been some at-
tempts to use neural network as a dimensionality reduction step to generate summary statistics.
For example, Jiang et al. [59] successfully employ a summary statistic by directly regressing the
parameters of interest and therefore approximating the posterior mean given the data, which
then can be used directly as a summary statistic.

A different path is taken by Louppe et al. [60], where the authors present a adversarial
training procedure to enforce a pivotal property on a predictive model. The main concern of
this approach is that a classifier which is pivotal with respect to nuisance parameters might not
be optimal, neither for classification nor for statistical inference. Instead of aiming for being
pivotal, the summary statistics learnt by our algorithm attempt to find a transformation that
directly reduces the expected effect of nuisance parameters over the parameters of interest.

3.5 Experiments

In this section, we first study the effectiveness of the INFERNO technique in a synthetic mixture
problem where the likelihood is known. We then compare our results with those obtained by
standard classification-based summary statistics. All the code needed to reproduce the results
presented the results presented here is available in an online repository [61], extensively using
TensorFlow [62] and TensorFlow Probability [51, 63] software libraries.

3.5.1 3D Synthetic Mixture

In order to exemplify the usage of the proposed approach, evaluate its viability and test its per-
formance by comparing to the use of a classification model proxy, a three-dimensional mixture
example with two components is considered. One component will be referred to as background
fb(x|λ) and the other as signal fs(x); their probability density functions are taken to correspond
respectively to:

fb(x|r, λ) = N
(

(x0, x1)

∣∣∣∣ (2 + r, 0),

[
5 0
0 9

])
Exp(x2|λ) (15)

fs(x) = N
(

(x0, x1)

∣∣∣∣ (1, 1),

[
1 0
0 1

])
Exp(x2|2) (16)

so that (x0, x1) are distributed according to a multivariate normal distribution while x2

follows an independent exponential distribution both for background and signal, as shown in
Fig. ??. The signal distribution is fully specified while the background distribution depends
on r, a parameter which shifts the mean of the background density, and a parameter λ which
specifies the exponential rate in the third dimension x2 of the background distribution. These
parameters will be the treated as nuisance parameters when benchmarking different methods.
Hence, the probability density function of observations has the following mixture structure:

p(x|µ, r, λ) = (1− µ)fb(x|r, λ) + µfs(x) (17)

where µ is the parameter corresponding to the mixture weight for the signal and conse-
quently (1 − µ) is the mixture weight for the background. The low-dimensional projections
from samples from the mixture distribution for a small µ = 50/1050 is shown in Fig. ??.

Let us assume that we want to carry out inference based on n i.i.d. observations, such
that E[ns] = µn observations of signal and E[nb] = (1 − µ)n observations of background are
expected, respectively. While the mixture model parametrisation shown in Eq. 17 is correct as
it is, the underlying model could also give information on the expected number of observations
as a function of the model parameters. In this toy problem, we consider a case where the
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Figure 10: Projection in 1D and 2D dimensions of 50000 samples from the synthetic problem
considered. Each mixture component is shown separately (left, a) while samples from the mixture
are also shown (right, b). The background distribution nuisance parameters used for generating
data correspond to r = 0 and λ = 3. For samples of the mixture distribution, the coefficients
s = 50 and b = 1000 were used, hence the mixture coefficient is µ = 50/1050.

underlying model predicts that the total number of observations are Poisson-distributed with a
mean s+b, where s and b are the expected number of signal and background observations. Thus
the following parametrisation will be more convenient for building sample-based likelihoods:

p(x|s, r, λ, b) =
b

s+ b
fb(x|r, λ) +

s

s+ b
fs(x). (18)

This parametrisation is common for physics analyses at the LHC, because theoretical cal-
culations provide information about the expected number of observations. If the probability
density is known, but the expectation for the number of observed events depends on the model
parameters, the likelihood can be extended [64] with a Poisson count term as:

L(s, r, λ, b) = Pois(n|s+ b)
n∏
p(x|s, r, λ, b) (19)

which will be used to provide an optimal inference baseline when benchmarking the differ-
ent approaches. Another quantity of relevance is the conditional density ratio, which would
correspond to the optimal classifier (in the Bayes risk sense) separating signal and background
events in a balanced dataset (equal priors):

s∗(x|r, λ) =
fs(x)

fs(x) + fb(x|r, λ)
(20)

noting that this quantity depends on the parameters that define the background distribution
r and λ, but not on s or b that are a function of the mixture coefficients. It can be proven
(see Appendix A ) that s∗(x) is a sufficient summary statistic with respect to an arbitrary
two-component mixture model if the only unknown parameter is the signal mixture fraction µ
(or alternatively s in the chosen parametrisation). In practise, the probability density functions
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of signal and background are not known analytically, and only forward samples are available
through simulation, so alternative approaches are required.

While the synthetic nature of this example allows to rapidly generate training data on
demand, a training dataset of 200,000 simulated observations has been considered, in order to
study how the proposed method performs when training data are limited. Half of the simulated
observations correspond to the signal component and half to the background component. The
latter has been generated using r = 0.0 and λ = 3.0. A validation holdout from the training
dataset of 200,000 observations is only used for computing relevant metrics during training and
to control over-fitting. The final figures of merit that allow to compare different approaches
are computed using a larger dataset of 1,000,000 observations. For simplicity, mini-batches for
each training step are balanced so the same number of events from each component is taken
both when using standard classification or inference-aware losses.

An option is to pose the problem as one of classification based on a simulated dataset. A
supervised machine learning model such a neural network can be trained to discriminate signal
and background observations, considering a fixed parameters r and λ. The output of such a
model typically consist in class probabilities cs and cb given an observation x, which will tend
asymptotically to the optimal classifier from Eq. 20 given enough data, a flexible enough model
and a powerful learning rule. The conditional class probabilities (or alternatively the likelihood
ratio fs(x)/fb(x)) are powerful learned features that can be used as summary statistic; however
their construction ignores the effect of the nuisance parameters r and λ on the background
distribution. Furthermore, some kind of non-parametric density estimation (e.g. a histogram)
has to be considered in order to build a calibrated statistical model using the classification-based
learned features, which will in turn smooth and reduce the information available for inference.

To exemplify the use of this family of classification-based summary statistics, a histogram of
a deep neural network classifier output trained on simulated data and its variation computed for
different values of r and λ are shown in Fig. 11a. The details of the training procedure will be
provided later in this document. The classifier output can be directly compared with s(x|r =
0.0, λ = 3.0) evaluated using the analytical distribution function of signal and background
according to Eq. 20, which is shown in Fig. 11b and corresponds to the optimal classifier.
The trained classifier approximates very well the optimal classifier. The summary statistic
distribution for background depends considerably on the value of the nuisance parameters both
for the trained and the optimal classifier, which will in turn cause an important degradation
on the subsequent statistical inference.

The statistical model described above has up to four unknown parameters: the expected
number of signal observations s, the background mean shift r, the background exponential rate
in the third dimension λ, and the expected number of background observations. The effect of
the expected number of signal and background observations s and b can be easily included in
the computation graph by weighting the signal and background observations. This is equivalent
to scaling the resulting vector of Poisson counts (or its differentiable approximation) if a non-
parametric counting model as the one described in Sec. 3.3 is used. Instead the effect of r
and λ, both nuisance parameters that will define the background distribution, is more easily
modelled as a transformation of the input data x. In particular, r is a nuisance parameter
that causes a shift on the background along the first dimension and its effect can accounted for
in the computation graph by simply adding (r, 0.0, 0.0) to each observation in the mini-batch
generated from the background distribution. Similarly, the effect of λ can be modelled by
multiplying x2 by the ratio between the λ0 used for generation and the one being modelled.
These transformations are specific for this example, but alternative transformations depending
on parameters could also be accounted for as long as they are differentiable or substituted by
a differentiable approximation.

For this problem, we are interested in carrying out statistical inference on the parameter of
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Figure 11: Histograms of summary statistics for signal and background (top) and variation for
different values of nuisance parameters compared with the expected signal relative to the nominal
background magniture (bottom). The classifier was trained using signal and background samples
generated for r = 0.0 and λ = 3.0.

interest s. In fact, the performance of inference-aware optimisation as described in Sec. 3.3 will
be compared with classification-based summary statistics for a series of inference benchmarks
based on the synthetic problem described above that vary in the number of nuisance parameters
considered and their constraints:

• Benchmark 0: no nuisance parameters are considered, both signal and background
distributions are taken as fully specified (r = 0.0, λ = 3.0 and b = 1000.).

• Benchmark 1: r is considered as an unconstrained nuisance parameter, while λ = 3.0
and b = 1000 are fixed.

• Benchmark 2: r and λ are considered as unconstrained nuisance parameters, while
b = 1000 is fixed.

• Benchmark 3: r and λ are considered as nuisance parameters but with the following
constraints: N (r|0.0, 0.4) and N (λ|3.0, 1.0), while b = 1000 is fixed.

• Benchmark 4: all r, λ and b are all considered as nuisance parameters with the following
constraints: N (r|0.0, 0.4), N (λ|3.0, 1.0) and N (b|1000., 100.) .

When using classification-based summary statistics, the construction of a summary statistic
does depend on the presence of nuisance parameters, so the same model is trained indepen-
dently of the benchmark considered. In real-world inference scenarios, nuisance parameters
have often to be accounted for and typically are constrained by prior information or auxiliary
measurements. For the approach presented in this section, inference-aware neural optimisation,
the effect of the nuisance parameters and their constraints can be taken into account during
training. Hence, 5 different training procedures for INFERNO will be considered, one for each
of the benchmarks, denoted by the same number.

The same basic network architecture is used both for cross-entropy and inference-aware
training: two hidden layers of 100 nodes followed by ReLU activations. The number of nodes

33



0 25 50 75 100 125 150 175 200
training epoch

16

18

20

22

24

26

va
lid

at
io

n-
se

t i
nf

er
en

ce
-a

wa
re

 lo
ss

(a) inference-aware training loss

20 30 40 50 60 70 80
s parameter of interest

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

pr
of

ile
d 

lik
el

ih
oo

d 
(

ln
)

cross-entropy
inference-aware

(b) profile-likelihood comparison

Figure 12: Dynamics and results of inference-aware optimisation: (a) square root of inference-
loss (i.e. approximated standard deviation of the parameter of interest) as a function of the train-
ing step for 10 different random initialisations of the neural network parameters; (b) profiled
likelihood around the expectation value for the parameter of interest of 10 trained inference-
aware models and 10 trained cross-entropy loss based models. The latter are constructed by
building a uniformly binned Poisson count likelihood of the conditional signal probability out-
put. All results correspond to Benchmark 2.

on the output layer is two when classification proxies are used, matching the number of mixture
classes in the problem considered. Instead, for inference-aware classification the number of
output nodes can be arbitrary and will be denoted with b, corresponding to the dimensionality
of the sample summary statistics. The final layer is followed by a softmax activation function
and a temperature τ = 0.1 (see Eq. 8 and corresponding explanation) for inference-aware
learning to ensure that the differentiable approximations are closer to the true expectations.
Standard mini-batch stochastic gradient descent (SGD) is used for training and the optimal
learning rate is fixed and decided by means of a simple scan; the best choice found is specified
together with the results.

In Fig. 12a, the dynamics of inference-aware optimisation are shown by the validation loss,
which corresponds to the approximate expected variance of parameter s, as a function of the
training step for 10 random-initialised instances of the INFERNO model corresponding to
Benchmark 2. All inference-aware models were trained during 200 epochs with SGD using
mini-batches of 2000 observations and a learning rate γ = 10−6. All the model initialisations
converge to summary statistics that provide low variance for the estimator of s when the
nuisance parameters are accounted for.

To compare with alternative approaches and verify the validity of the results, the profiled
likelihoods obtained for each model are shown in Fig. 12b. The expected uncertainty if the
trained models are used for subsequent inference on the value of s can be estimated from
the profile width when ∆L = 0.5. Hence, the average width for the profile likelihood using
inference-aware training, 16.97 ± 0.11, can be compared with the corresponding one obtained
by uniformly binning the output of classification-based models in 10 bins, 24.01 ± 0.36. The
models based on cross-entropy loss were trained during 200 epochs using a mini-batch size of
64 and a fixed learning rate of γ = 0.001.

A more complete study of the improvement provided by the different INFERNO training
procedures is provided in Tab. 14, where the median and 1-sigma percentiles on the expected
uncertainty on s are provided for 100 random-initialised instances of each model. In addi-
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Table 14: Expected uncertainty on the parameter of interest s for each of the inference bench-
marks considered using a cross-entropy trained neural network model, INFERNO customised for
each problem as denoted by the succeeding ordinal index, the optimal classifier (see Eq. 20) and
the results using the true analytical likelihood. The results for INFERNO matching each prob-
lem, i.e. where the set of nuisance parameter and their constraints for the specific benchmark
are included in the procedure, are shown with bold characters.

Benchmark 0 Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4

NN classifier 14.99+0.02
−0.00 18.94+0.11

−0.05 23.94+0.52
−0.17 21.54+0.27

−0.05 26.71+0.56
−0.11

INFERNO 0 15.51+0.09
−0.02 18.34+5.17

−0.51 23.24+6.54
−1.22 21.38+3.15

−0.69 26.38+7.63
−1.36

INFERNO 1 15.80+0.14
−0.04 16.79+0.17

−0.05 21.41+2.00
−0.53 20.29+1.20

−0.39 24.26+2.35
−0.71

INFERNO 2 15.71+0.15
−0.04 16.87+0.19

−0.06 16.95+0.18
−0.04 16.88+0.17

−0.03 18.67+0.25
−0.05

INFERNO 3 15.70+0.21
−0.04 16.91+0.20

−0.05 16.97+0.21
−0.04 16.89+0.18

−0.03 18.69+0.27
−0.04

INFERNO 4 15.71+0.32
−0.06 16.89+0.30

−0.07 16.95+0.38
−0.05 16.88+0.40

−0.05 18.68+0.58
−0.07

Optimal classifier 14.97 19.12 24.93 22.13 27.98
Analytical likelihood 14.71 15.52 15.65 15.62 16.89

tion, results for 100 random-initialised cross-entropy trained models and the optimal classifier
and likelihood-based inference are also included for comparison. The confidence intervals ob-
tained using INFERNO-based summary statistics are considerably narrower than those using
classification and tend to be much closer to those expected when using the true model like-
lihood for inference. Much smaller fluctuations between initialisations are also observed for
the INFERNO-based cases. The improvement over classification increases when more nuisance
parameters are considered. The results also seem to suggest the inclusion of additional infor-
mation about the inference problem in the INFERNO technique leads to comparable or better
results than its omission.
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Figure 13: Expected uncertainty when the value of the nuisance parameters is different for 10
learnt summary statistics (different random initialisation) based on cross-entropy classification
and inference-aware technique. Results correspond to Benchmark 2.

Given that a certain value of the parameters θs has been used to learn the summary statistics
as described in Algorithm 1 while their true value is unknown, the expected uncertainty on s
has also been computed for cases when the true value of the parameters θtrue differs. The
variation of the expected uncertainty on s when either r or λ is varied for classification and
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inference-aware summary statistics is shown in Fig. 13 for Benchmark 2. The inference-aware
summary statistics learnt for θs work well when θtrue 6= θs in the range of variation explored.

This synthetic example demonstrates that the direct optimisation of inference-aware losses
as those described in the Sec. 3.3 is effective. The summary statistics learnt accounting for the
effect of nuisance parameters compare very favourably to those obtained by using a classifi-
cation proxy to approximate the likelihood ratio. Of course, more experiments are needed to
benchmark the usefulness of this technique for real-world inference problems as those found in
High Energy Physics analyses at the LHC.
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4 Matrix Element Method for tt̄H

4.1 Introduction

As described in section 1.1, the tt̄H process is extremely interesting to study in detail with the
data available from the LHC. It will be discussed in more detail in this section, including an
overview of a powerful multivariate analysis technique to help identify it.

4.1.1 The tt̄H process

The two top quarks produced in tt̄H decay into a W boson and a bottom quark 1 (other top
quark decays are so rare that we can safely ignore them here). The Higgs boson predominantly
decays into a pair of bottom quarks, bb̄ (58% of all Higgs decays, this decay mode was recently
observed by both the ATLAS [65] and CMS [66] collaborations). There are two options for the
further decay of the W bosons:

• leptonic: The W decays into leptons W− → l−ν̄l, where l = e, µ, τ

• hadronic: The W decays into a quark-antiquark pair qq̄′

Leptonic decays happen roughly one third of the time, while the remaining decays are
hadronic. The decay widths to different quark combinations are determined by the CKM
matrix coefficients, and thus almost all hadronic decays are to ”light” quarks u, d, c, s. Jets
originating from these will be called light jets. In order to distinguish between these light
jets and jets originating from bottom quarks, so-called b-tagging algorithms are used. These
multivariate algorithms exploit characteristic features of b-jets. Due to the comparatively long
lifetime of b-hadrons, b-jets tend to originate from vertices slightly displaced from the original
proton-proton interaction. Other differences between b-jets and light jets include the jet shape,
charged particle multiplicity and presence of low-energy leptons. Light jets are unlikely to be
b-tagged. The b-tagging algorithm therefore can help discriminate between jets originating
from W boson decays and jets from top and Higgs decays. Two W bosons are expected in a
tt̄H collision event. Both preferentially decay hadronically, but the analysis of this topology is
challenging [67] due to the overwhelming QCD background.
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Figure 14: The tt̄H process [68] (edited)

1For simplicity, the anti-particle analogue will not always be explicitly given, here for example t → W+b,
t̄→W−b̄, compare also Figure 14.
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The case where at least one W decays leptonically reduces the amount of jets expected
in such tt̄H events in favor of leptons, which are more precisely measured by detectors and
simplify the analysis. Both the dileptonic (both W decay leptonically) and the semileptonic
(one W decays leptonically, the other hadronically) topology have been considered and analyzed
with 36.1 fb−1 of data collected at the ATLAS detector at 13 TeV collisions [69] (an analysis
was also performed at 8 TeV [70]). This document concentrates on the semileptonic case; a
representative lowest order Feynman diagram is shown in Figure 14.

The tt̄H process has been observed for the first time at both the ATLAS and CMS ex-
periments in 2018 ([71, 72]). The best-fit tt̄H signal strength µtt̄H (which is the ratio of the
observed cross-section to the theoretical prediction µ = σobs./σtheo.) measured at ATLAS is [71]

µtt̄H = 1.32+0.28
−0.26 (21)

This result takes additional analyses that examine Higgs decays besides H → bb̄ into ac-
count.

The measurement of µtt̄H can be translated into a measurement of yt. Determining yt
experimentally to high precision in order to verify agreement with the SM prediction requires
improved sensitivity of the tt̄H analyses.

4.1.2 Analysis details and challenges: tt̄H, H → bb̄

A major complication for tt̄H analyses where the Higgs decays to a bottom quark pair (H → bb̄)
is the existence of another SM process producing identical final state objects with a much larger
cross-section. This process is t t̄ production with an additional gluon splitting into a bottom
quark pair. The Feynman diagram looks almost identical to Figure 14, with just the Higgs
boson H is replaced by a gluon g. Unfortunately, the kinematic differences between this tt̄+ bb̄
”background” process and the tt̄H ”signal” process are very small. The spin difference of H
and g results in different angular distribution of the decay products bb̄, and the invariant mass
of the decay products is close to the Higgs mass mH in the signal case (and more broadly
distributed for the background). The QCD colour flow via the gluon in the background process
can cause small differences as well.

Further background processes need to be considered in an analysis, but they are subdom-
inant and will not be discussed here. Figure 15 shows various analysis regions considered in
the recent ATLAS search for tt̄H with H → bb̄, using 36.1 fb−1 of data [69]. Each pie chart
corresponds to one region in the semileptonic channel. SR denotes regions enriched in signal,
and in particular the most powerful signal region is SR≥6j

1 . This region is defined by requiring
at least six jets, out of which at least four are b-tagged. The pie charts show the relative
contributions of various background processes to the region, and SR≥6j

1 is dominated by tt̄+ bb̄
production, with only minor non-t t̄ backgrounds.
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Figure 15: Breakdown of background contributions to the analysis regions considered in the
semileptonic channel of the tt̄H, H → bb̄ ATLAS analysis[69]

Figure 16 presents the signal and background contributions to the various analysis regions
considered. It underlines the power of the SR≥6j

1 region.
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The determination of µtt̄H requires the comparison of an expected number of identified
signal-like collision events to a prediction made by the SM. Due to the similarity of the dom-
inant t t̄ background, it is difficult to select a region of high signal purity with a sufficient
selection efficiency (a high selection efficiency is mandatory due to the low signal cross-section,
so the usage of additional techniques to separate the signal from background contributions is
mandatory). This is further complicated by the large uncertainties on the predicted background
distribution shapes and yields. The approach chosen to remedy these issues is a simultaneous
profile likelihood fit of the measured data to Monte Carlo generated predictions in multiple
regions. The regions are defined by the number n of identified jets and b-tag requirements.
Regions with many jets and tight b-tagging requirements contain most of the signal and as
such are called ”signal regions”. Multivariate techniques are used in these regions to build
discriminants, which aim to separate signal from background. The remaining ”control regions”
allow constraining backgrounds and systematic uncertainties when fitted together with the
signal regions. A lot of the dominant systematic uncertainties concern the modelling of t t̄
with additional jets, and the respective fractions of different jet flavors. The t t̄ +c and t t̄ +b
fractions are used as unconstrained parameters in the fit; additional uncertainties due to the
choice of Monte Carlo generator, parton shower, hadronization model, detector effects, etc., are
implemented as Gaussian or log-normal priors.

Even though the signal process of interest is expected to have exactly 6 jets and 4 b-tags,
several things can change this:

• jets with |η| > 2.5 or transverse momentum pT < 25 GeV are not considered in the
analysis due to detector limitations,

• additional interactions in a proton-proton collision (so-called ”pileup”) can result in more
jets being reconstructed,

• the processes can happen at a higher order in QCD, producing initial and final state
radiation, which can also result in more jets being reconstructed,

• the b-tagging algorithm can mistakenly identify a light jet as originating from a b-hadron
decay, or can fail to b-tag a jet originating from a b-hadron,

• top quarks at very high momenta can appear as a single, large jet in the detector instead
of being resolved into multiple objects.

4.2 The Matrix Element Method

The Matrix Element Method (MEM) provides a powerful way of discriminating tt̄H from the
tt̄ + bb̄ background, and had already been used in the Run-1 ATLAS analysis of tt̄H [70].
It provides a way to calculate the likelihood of an event originating from a given production
mechanism, by calculating probability densities via Fermi’s golden rule and making use of the
SM predictions for these processes. Of particular interest here is distinguishing between tt̄H
and tt̄+ bb̄. The MEM is thus used to calculate the two likelihoods LS and LB:

• LS: signal likelihood, likelihood of the event having been produced via a tt̄H Feynman
diagram

• LB: background likelihood, likelihood of the event having been produced via a tt̄ + bb̄
Feynman diagram
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These likelihoods are defined below:

Li =
∑∫

f1 (x1, Q
2) f2 (x2, Q

2)

|~q1||~q2|
|Mi (Y)|2 T (X; Y) dΦn (Y) (22)

The likelihood is a sum over different possible initial states (quarks or gluons from within
the colliding protons) and over multiple jet-parton assignments. It contains a product of parton
distribution functions f1f2, which are probability distribution functions for a certain parton with
momentum ~qj to carry energy fraction xj of the proton in a collision at scaleQ (for the two initial
states j = 1, 2). The matrix element (ME) Mi is calculated for a phase space configuration Y
at parton level, where the index i refers to either signal or background Feynman diagrams
(which typically are evaluated only at leading order). The transfer function T represents
the probability for a given jet measured on reconstruction level X to be originating from a
certain parton level configuration Y. In an analysis, only the reconstruction level information
X is available (provided by a detector measurement of the collision remnants). All unknown
parameters needed to fully specify the event are integrated out via the phase space factor dΦn.
This integration includes the neutrino expected in semileptonic tt̄H events, which escapes the
detector unmeasured. The transfer function T is used to constrain the size of the phase space
significantly contributing to the likelihood Li, and therefore limits the integration range.

The most powerful test statistic to discriminate between signal- and background-like events
is given according to the Neyman-Pearson lemma by the likelihood ratio LS/LB, which will be
referred to as MEMD1:

MEMD1 = log10 (LS)− log10 (LB) (23)

4.2.1 Challenges

Before going into the MEM implementation in more detail, here is a quick description of some
challenges in practice.

Even though the MEM can make use of a complete physics description of the dominant
signal and background processes at leading order (LO), the discrimination power achieved is
limited by various complications.

Detector-related Challenges:

• Imperfect object reconstruction in the detector can lead to jets being mis-measured or
not identified at all,

• When there are more jets present in a collision event than the six expected from the LO
Feynman diagram, a selection has to be made to calculate the likelihoods, this selection
may be wrong,

• It is unclear from which quark on the Feynman diagram level each reconstructed jet origi-
nated from, and hence multiple assignments (including wrong ones) need to be considered.

Computing-related Challenges:

• The MEM likelihood calculations take extremely long, and consequently significant ap-
proximations need to be used,

• Detailed sampling of the full integration phase space is not possible in a reasonable amount
of time, hence peaks in the matrix elements may be missed during integration.
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4.3 Approximations and integration strategy

4.3.1 Integration strategy

A full integration over the phase space Φn is not feasible in practice. The most important
assumption made is that the measured jet direction in the detector corresponds exactly to the
direction of the quarks on parton (Feynman diagram) level Y. This reduces the amount of
integration dimensions from 24 (8 final state particles with three degrees of freedom each, they
are assumed to be on-shell) to 12 (6 jets with one degree of freedom, 2 leptons with three degrees
of freedom). The charged lepton is assumed to be well-measured by the ATLAS detector and
not integrated over (reducing the integration dimensions by 3 degrees of freedom). Lastly, the
incoming proton beams are assumed to be exactly aligned with the beam axis, such that the
total momentum transverse to this axis of all final state particles should vanish (

∑
pT = 0) by

momentum conservation. With these assumptions, the neutrino has only one degree of freedom
remaining, which can be chosen as its momentum along the z-axis. Seven degrees of freedom
then remain to be integrated over.

Additional simplifications are possible:

• The Higgs boson propagator largely suppresses any configuration where the Higgs boson
is far off-shell. This means that large parts of the Φn phase space contain negligible
contributions to the full integral in (22), and only configurations where the invariant
mass of the quarks from the Higgs decay is close to mH need to be considered in the
evaluation of the tt̄H likelihood LS. It is then possible to treat the Higgs decay like a
Dirac δ and reduce the amount of integration dimensions by one. The Dirac δ is a good
approximation of the very narrow Higgs width, which is significantly below the detector
resolution.

• A similar argument can be made for the decays of the W boson. When forcing the
leptonically decaying W boson to be exactly on mass-shell in the matrix element (ME)
calculation, the resulting second order polynomial can be solved for the neutrino mo-
mentum pz. Instead of integrating over this neutrino momentum, both solutions of the
resulting second order polynomial may be summed in the evaluation of LS and LB. It
should be noted that this approximation is worse than in the Higgs case, as the width of
the W boson is significantly larger.

Both of these additional approximations were tested, but found to not improve the perfor-
mance of the method in practice and are thus not used. Simplification or approximations do
not render the method invalid, but rather imply that the information in the data is not used in
the most optimal way, which limits the overall performance (while in turn drastically speeding
up the processing).

4.3.2 Integration variables

The phase space integrals are performed by integrating over the following 7 variables:

• energy of bottom quark from leptonic top decay

• energy of bottom quark from hadronic top decay

• energy of bottom quark (leading in pT ) from Higgs decay (if signal hypothesis) or gluon
splitting (if background)

• energy of bottom quark (subleading in pT ) from Higgs decay (if signal hypothesis) or
gluon splitting (if background)
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• energy of light quark (leading in pT ) from hadronic W decay

• energy of light quark (subleading in pT ) from hadronic W decay

• z momentum pz of the neutrino from the leptonic W decay

The integration ranges for jets are centered around the measured jet energy Ej, and determined
from transfer function distributions. See the section on transfer functions for details. The
neutrino pz integration is done over the interval [-1 TeV, 1 TeV].

4.3.3 Jet-parton assigments and permutations

The MEM is only used in an analysis region with at least 6 jets and 4 b-tags. 6 quarks are
expected for the LO ME evaluation, so for events with n > 6 jets, two methods are possible:

• consider all possible 6-jet subsets of the whole n jet set, sum up the corresponding likeli-
hoods

• select only one subset to evaluate the likelihood and ignore the other possible assignments

The first approach is computationally expensive and thus not chosen here. Instead, the subset
choice to select the 6 jets describing the configuration X used in the likelihood evaluation is
done in two steps:

• Consider all jets that were b-tagged at the highest criteria, and select the top 4 ordered
by their pT . These will be referred to as ”b-jets”.

• Evaluate the invariant masses mjj of all possible 2-jet pairs, not including the 4 jets
selected as b-jets in the first step. Pick the pair that minimizes |mW −mjj| (for W mass
mW = 80.4 GeV), these jets will be referred to as ”light jets”.

This algorithm selects two light jets, which will always be assigned to the hadronic W decay in
the MEM calculation. From the four b-jets, two need to be assigned to the Higgs decay, one
to the leptonic top decay, and one to the hadronic top decay. This results in 4!

2
= 12 different

jet-parton assignements, also called ”permutations”, which are being considered.

4.4 Technical implementation

The likelihood calculation is implemented in a framework based on the results of [73]. The VE-
GAS algorithm [74] is used to carry out the phase space integration. An interface to LHAPDF
[75] provides the parton distribution function information, while MadGraph5 aMC@NLO [76]
is used for the matrix element evaluation.

4.4.1 Framework

The MEM calculations are steered by a python framework. In order to speed up the computa-
tionally costly integration process, the integrand is implemented to be usable with CUDA [77]
or OpenCL [78]. The framework can thus run on many CPU cores or GPUs in parallel. When
running on a Intel Xeon E5-2650 CPU, one event is processed in 1.8 seconds.
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4.4.2 Integration process

The integration is performed using importance sampling with the VEGAS algorithm. The
process is tuned for performance, while trying to limit the cost to separation power as much
as possible. Each permutation is integrated separately, and the evaluation of signal and back-
ground likelihoods are done separately as well. The approach is described below, and consists
of multiple integration rounds. At each integration round, VEGAS evaluates the integrand at
up to 1024 phase space points. After each integration round, VEGAS updates the grid used to
sample the phase space and to evaluate the phase space integral.

• adaption phase: The first round of integration is used for VEGAS to very roughly map
out the phase space, and adjust its integration grid. Integration results from this round
are not included in the MEM calculation, but the adjusted grid is used for the consecutive
rounds.

• main integration: After the initial grid adaption, three rounds of integration are per-
formed. The grid is updated after every round, and the integral estimate is calculated
combining all integration rounds in this main integration step. In case that the reported
uncertainty on the integral is already below 1%, the process stops here and the calculated
result is reported.

• pruning: After the main integration round, the likelihoods calculated for all permutations
are compared. No further integration refinement is performed for permutations that are
smaller than 1% of the likelihood in the largest permutation. The total likelihood at
the end will be a sum over the likelihoods of all permutations, so it is most important
to correctly evaluate the permutations that contribute most to this sum. Typically the
likelihoods of different permutations range over multiple orders of magnitude, and thus
several permutations contribute a negligible amount to the final result (and do not need
to be calculated to high accuracy).

• refinement: Another set of three integration rounds is performed for all permutations
unaffected by the previous step. The integration grid is still allowed to adjust after each
round, and the integration is stopped if the reported uncertainty drops below 1%.

After this process, the signal and background likelihoods are calculated as a sum over all 12
permutations.

4.4.3 Parton distribution functions

The CT10 pdf set is used and obtained by interfacing to LHAPDF. The pdf information is
saved to a grid, enabling fast look-up. The chosen factorization scale is dynamic:

Q2 =

(∑

i

Ei

)2

−
(∑

i

pz,i

)2

(24)

where i runs over all 8 final state partons.

4.4.4 Matrix Elements

The ME evaluation is done via standalone code exported from MadGraph5 aMC@NLO. For
the signal hypothesis, leading order top quark pair production with a Higgs boson decaying to
a bottom quark pair is considered. The top quarks are each forced to decay to W boson and
b quark, one W is forced to decay leptonically, while the other one decays hadronically. This
can be generated with the following string in MadGraph5 aMC@NLO:
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• generate p p > t t˜h, h > b b˜, (t > w+ b, w+ > l+ vl), (t˜> w- b˜, w- > p p)

For the background hypothesis, only top quark pair production with an additional bottom
quark pair is considered. The system of top quarks is forced to decay the same way as for the
signal hypothesis. The process can be generated with the following string:

• generate p p > t t˜b b˜, (t > w+ b, w+ > l+ vl), (t˜> w- b˜, w- > p p)

All (non-physical) helicity combinations with no contributions to the ME are removed from the
calculation by hand in order to speed up the evaluation. The Feynman diagrams contributing
to the ME calculation can be split up into two classes, those describing gg interactions and
those produced by qq̄ interactions:

Figure 17: Representative ttH Feynman diagrams of the gg (left) and qq̄ kind (right)

The gg diagrams dominate in the cross-section calculation, especially at low Q2. By default,
qq̄ diagrams are thus not considered, resulting in a moderate speed improvement of roughly
30%, while no impact on the separation power of the MEM was observed.

4.4.5 Transfer functions

Transfer functions serve to constrain the phase space integration volume, and at the same time
provide an approximate model for the reconstruction level energy Ej dependence on the parton
level configuration Ep. Two functional forms are used to describe light and b-jets. Light jets
are described by a double Gaussian:

W light
jet (Ej, Ep) =

1√
2π (σ1 + Aσ2)

[
exp

(
− (Ep − Ej − µ1)2

2σ2
1

)
+ A exp

(
− (Ep − Ej − µ2)2

2σ2
2

)]

(25)
An example of double Gaussian transfer functions for various jet energies is shown in Figure

18. The transfer functions become increasingly wide for higher jet energies.
The b-jet parametrization is done via a crystal ball function [79, 80]:

W b
jet (Ej, Ep) =




N · exp

(
− (Ep−Ej−µ)2

2σ2

)
,
Ep−Ej−µ

σ
< α

N · A ·
(
B +

Ep−Ej−µ
σ

)−n
,
Ep−Ej−µ

σ
≥ α

(26)

which has parameters as given by
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Figure 18: Exemplary transfer function distributions using the double Gaussian functions, show-
ing the parton energy dependence for various measured jet energies

A =

(
n

|α|

)n
· exp

(
−(|α|)2

2

)
(27)

B =
n

|α| − |α| (28)

C =
n

|α| ·
1

n− 1
· exp

(
−(|α|)2

2

)
(29)

D =

√
π

2
·
(

1 + erf

( |α|√
2

))
(30)

N =
1

σ (C +D)
(31)

An example for crystal ball transfer functions is shown below in Figure 19. Compared to
the double Gaussian case, the power law tail behavior at high parton energy values is visible
for the crystal ball functions here.

In order to limit the phase space volume for the MEM integration, tails in the TF distri-
butions of possible Ep values (given a measured Ej) are truncated. This allows for quicker
integral convergence, without compromising separation power. These regions in the TF tails
are drastically suppressed by the TF and thus do not contribute significantly to the overall
likelihood. The jet integration ranges are defined symmetrically like

Ep ∈ [Ej · (1−R) , Ej · (1 +R)] (32)

for integration range parameter R. These parameters can be derived separately for light
and b-jets and depend on the measured jet energy.

46



0 50 100 150 200 250
parton energy [GeV]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

tra
ns

fe
r f

un
ct

io
n 

va
lu

e

50 GeV jet energy
75 GeV jet energy
100 GeV jet energy
125 GeV jet energy
150 GeV jet energy

Figure 19: Exemplary transfer function distributions using the crystal ball functions, showing
the parton energy dependence for various measured jet energies

4.5 Results

The final results achieved with the MEM implementation described in this document are pre-
sented here. They are taken from an ATLAS analysis of 36.1 fb−1 of data collected at

√
s = 13

TeV at the LHC [69]. The MEM discriminant, calculated according to equation 23, is shown
below in Figure 20 for the SR≥6j

1 region. A sigmoid function is used to map it into the interval
[0, 1] for presentation purposes: [1 + exp (−MEMD1 − 4)]−1.

-4))
D1

1 / (1 + exp(-MEM
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Figure 20: Final MEM discriminant used in the analysis in the SR≥6j
1 region, distribution after

profile likelihood fit to data [69]

In the upper panel, the stacked filled histograms show the predicted distribution of simu-
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lated data, after a profile likelihood fit to the data measured by the ATLAS detector (shown
with the black points) has been performed. The prediction is in good agreement with the
measured data, and the MEM distribution is modelled well. The dashed red line shows the
relative distribution of the tt̄H signal, normalized to the total background contribution. The
signal distribution peaks towards high values of MEMD1 as expected, while the background is
predominantly located at the other end of the distribution. The MEM calculation thus provides
strong separation between the tt̄H signal and the background processes, which are dominated
by tt̄+bb̄ shown in dark blue. The lower panel of the plot shows the ratio of data and simulation,
and confirms the good agreement within the associated uncertainties.

For the final signal extraction in this tt̄H analysis, the Matrix Element Method likelihood
ratio is combined with additional techniques in a boosted decision tree classifier. The output
of this classifier is ultimately used in the statistical analysis. Figure 21 shows the distribution
of this classifier in the SR≥6j

1 region. When comparing the normalized tt̄H distribution (dashed
red line) to the background shape, this classifier performs better than the MEM likelihood
ratio by itself. The additional inputs to the classifier improve performance lost due to some
of the approximations that had to be done in the MEM calculation due to the associated
computational cost.
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Figure 21: Boosted decision tree distribution in most sensitive signal region, post-fit [69]
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5 Conclusions

In the present document we describe the construction of three different ML-driven solutions
to specific problems of data analysis in HEP arising in the search for the Higgs boson and the
measurement of its properties.

5.1 h→ τ τ̄ classification

In Sec. 2 we examined the potential improvements of several new methods in deep learning.
Whilst these methods had been developed outside of HEP, they were still found to bring benefits
when applied to a well established example of a common HEP problem; the Higgs ML Kaggle
challenge.

Starting from a single, simple DNN model which achieves a score of 3.419 - 886th out of
1786, we found that ensembling brought a 6 % score improvement - 507th. Moving to a more
modern activation function brought a 0.6 % improvement - 304th. Scheduling the learning rate
improved further the score by 0.8 % - 140th. Finally, by introducing data augmentation at both
train and test time we improved by and additional 4 % - 1st. Overall, these constitute a total
improvement of 12 % over the baseline, however this is bought at the cost of a 450 % increase
in training time, and a 25 000 % increase in inference time.

The final solution achieves effectively the same level of performance as the winning solution,
but with the advantage that it can be trained (evaluated) in less than 10 % (70 %) of the time
using consumer-grade hardware.

5.2 INFERNO: Inference-aware Neural Optimisation

Classification-based summary statistics for mixture models often suffer from the need of speci-
fying a fixed model of the data, thus neglecting the effect of nuisance parameters in the learning
process. The effect of nuisance parameters is only considered downstream of the learning phase,
resulting in sub-optimal inference on the parameters of interest.

In Section 3 of the present document we have described a new approach for building non-
linear summary statistics for likelihood-free inference that directly minimises the expected
variance of the parameters of interest, which is considerably more effective than the use of
classification surrogates when nuisance parameters are present.

The results obtained for the synthetic experiment considered clearly demonstrate that ma-
chine learning techniques, in particular neural networks, can be adapted for learning summary
statistics that match the particularities of the inference problem at hand, greatly increasing
the information available for subsequent inference. The application of INFERNO to non-
synthetic examples where nuisance parameters are relevant, such as the systematic-extended
Higgs dataset [81], are left for future studies.

The technique presented can be applied to arbitrary likelihood-free problems as long as the
effect of parameters over the simulated data can be implemented as a differentiable transforma-
tions. As a possible extension, alternative non-parametric density estimation techniques such
as kernel density could very well be used in place Poisson count models.

5.3 Matrix Element Method

The Matrix Element Method offers itself as a powerful tool to distinguish between different
physics production processes. By design, it makes use of the whole event kinematics on parton
level, including all correlations between particles. It is an extremely useful tool in complex
analysis like the tt̄H case described in this document. At the same time, the method comes
at a high computational cost. Section 4 of this report summarized steps taken to mitigate
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this cost, with the aim of minimal impact to the MEM separation power. Nevertheless, some
approximations certainly are overly simple, and with more computation power available in the
future, the method is likely to continue to shine. Three promising avenues are:

• extending the description to next-to-leading order matrix element (extreme computational
cost, only slowly starting to become possible),

• finding better ways of jet-parton matching, and relax some assumptions on the transfer
functions,

• enhancing the method with machine learning techniques.

The use of advanced machine learning developments combined with the ideas behind the MEM
are likely to ensure that this analysis technique will retain its relevance in the future.
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A Sufficient Statistics for Mixture Models

Let us consider the general problem of inference for a two-component mixture problem, which
is very common in scientific disciplines such as High Energy Physics. While their functional
form will not be explicitly specified to keep the formulation general, one of the components
will be denoted as signal fs(x|θ) and the other as background fb(x|θ), where θ is are of all
parameters the distributions might depend on. The probability distribution function of the
mixture can then be expressed as:

p(x|µ,θ) = (1− µ)fb(x|θ) + µfs(x|θ) (33)

where µ is a parameter corresponding to the signal mixture fraction. Dividing and multi-
plying by fb(x|θ) we have:

p(x|µ,θ) = fb(x|θ)

(
1− µ+ µ

fs(x|θ)

fb(x|θ)

)
(34)

from which we can already prove that the density ratio ss/b = fs(x|θ)/fb(x|θ) (or alterna-
tively its inverse) is a sufficient summary statistic for the mixture coefficient parameter µ. This
would also be the case for the parametrization using s and b if the alternative µ = s/(s + b)
formulation presented for the synthetic problem in Sec. 3.5.1.

However, previously in this work (as well as for most studies using classifiers to construct
summary statistics) we have been using the summary statistic ss/(s+b) = fs(x|θ)/(fs(x|θ) +
fb(x|θ)) instead of ss/b. The advantage of ss/(s+b) is that it represents the conditional probability
of one observation x coming from the signal assuming a balanced mixture, and hence is bounded
between zero and one. This greatly simplifies its visualisation and non-parametric likelihood
estimation. Taking Eq. 34 and manipulating the subexpression depending on µ by adding and
subtracting 2µ we have:

p(x|µ,θ) = fb(x|θ)

(
1− 3µ+ µ

fs(x|θ) + fb(x|θ)

fb(x|θ)

)
(35)

which can in turn can be expressed as:

p(x|µ,θ) = fb(x|θ)

(
1− 3µ+ µ

(
1− fs(x|θ)

fs(x|θ) + fb(x|θ)

)−1
)

(36)

hence proving that ss/(s+b) is also a sufficient statistic and theoretically justifying its use for
inference about µ. The advantage of both ss/(s+b) and ss/b is they are one-dimensional and do not
depend on the dimensionality of x hence allowing much more efficient non-parametric density
estimation from simulated samples. Note that we have been only discussing sufficiency with
respect to the mixture coefficients and not the additional distribution parameters θ. In fact, if
a subset of θ parameters are also relevant for inference (e.g. they are nuisance parameters) then
ss/(s+b) and ss/b are not sufficient statistics unless the fs(x|θ) and fb(x|θ) have very specific
functional form that allows a similar factorisation.

B Software details

The investigation performed in Sec. 2 made use of several packages, which are detailed in
Tab. 15. The framework and notebook experiments are made available at https://github.

com/GilesStrong/QCHS-2018.
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Software Version References Use/Notes
Keras 2.1.6 [82] Implementing neural networks
Tensorflow 1.8.0 [83] Keras back-end
Scikit-Learn 0.19.1 [84] Cross-validation and pre-processing
Matplotlib 2.1.2 [85] Plot production
Seaborn 0.8.1 [86] Plot production
NumPy 1.14.0 [87] Data analysis and computation
Pandas 0.22.0 [88] Data analysis and computation

Table 15: Software used for the investigation performed in Sec. 2.
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