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Abstract

This document describes the studies performed to select the most performant tools for
the classification and regression problems arising in the search for H → bb̄ and H → ττ
decays in Higgs pair production processes at the LHC.
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1 Introduction

The 2012 discovery of the Higgs boson by the ATLAS and CMS collaborations opens up a new
era for particle physics. The characterisation of that particle, the comparison of its measured
properties to theory predictions, and the search for non-standard-model effects involving its
phenomenology are now the highest priority of the LHC experiments.

Among the most important open questions, the measurement of the Higgs coupling pa-
rameters is of paramount importance. Only through a detailed comparison of predicted and
measured couplings of the new-found particle to all matter and interaction fields can we ascer-
tain its true nature, and verify whether new physics hides in the newly opened Higgs sector.

One of the Higgs coupling parameters, the “self-coupling” λ parameter, can best be mea-
sured by studying the process of Higgs boson pair-production. We focus our attention to that
process in the studies within AMVA4NewPhysics. In particular, members from INFN and Ox-
ford concentrate on the hh→ b b̄ b b̄ decay mode, and members of LIP concentrate on the mixed
hh → τ τ̄ b b̄ decay mode. This document describes the studies of multivariate analysis tech-
niques aimed at selecting those signals amidst the very large backgrounds, as well as regressing
measured signal parameters such that their estimate can be improved as much as possible. A
different final state of interest of the AMVA4NewPhysics network, the tt̄h associated produc-
tion process of single Higgs bosons and top quark pairs, is under study by CERN, Louvain, and
Oviedo members; although it is not discussed in this document, the techniques described here
will eventually be tested on that final state, too.

It should be borne in mind that the preliminary studies documented here aimed to examine
what the potential is for machine learning in the abstract problem of discrimination of Higgs
pair production from backgrounds and related variable regression problems, without reference to
direct experimental detail, and as such our aim was to develop the most performant algorithms
possible. This means that less consideration was paid to the number of input features used,
and other items which in practice might propagate systematic uncertainties into the algorithms’
outputs. Having established an upper limit of performance in the abstract setup, it will of course
be necessary to balance the benefits of including more input features against the increased
uncertainties that they might bring in a real data analysis.

2 Datasets

A range of Monte Carlo (MC) samples were produced within the AMVA4NewPhysics ITN.
The studies performed here only consider standard model (SM) di-Higgs production and the
dominant backgrounds for each decay channel investigated. These are fully-leptonic t t̄ and
b b̄ b b̄ QCD, for hh → τ τ̄ b b̄ and hh → b b̄ b b̄, respectively. It should be noted that here
“fully-leptonic” is defined according to the decays of the W bosons, which may decay only to
leptons, ` ∈ {e, µ, τ}. The semi-leptonic decay mode is expected to be a significant source of
background for the hh→ τ τ̄ b b̄ search, and this will be considered in further investigations.

2.1 Signal

A sample of 107 events was generated with Matrix-Elements (MEs) at leading order using
MadGraph 5 [1], for the SM process p p→ hh at

√
s = 13 TeV. The four-flavour scheme was

used, with incoming partons being sampled from the nn23lo1 [2] parton density function (PDF).
The parton showering, hadronisation, and decays were handled by Pythia 8 [3]. Pythia 8
is applied twice, separately, to produce hh → τ τ̄ b b̄ and hh → b b̄ b b̄ samples. In the b b̄ b b̄
case the decays channels for Higgs bosons are restricted to h → b b̄. In the τ τ̄ b b̄ case, the
h→ τ τ̄ channel is added, with a branching ratio forced to be equal to that of the h→ b b̄. A
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subsequent MC-truth cut is then used to select events in which the Higgs-boson-pair decays to
the τ τ̄ b b̄ final state (half of the events).

The following ME requirements are modified from the MadGraph 5.2.4.2 default values
(at the parton level):

• b-jets: pT ≥ 20 GeV

• jets and b-jets: |η| ≤ 3

• distance between two jets: ∆Rjj ≥ 0.1

• distance between two b-jets: ∆Rbb ≥ 0.1

The ME production cross section reported by MadGraph 5 is 14.518± 0.001 fb. Using next-
to-next-to-leading-log (NNLL) calculations matched to next-to-next-to-leading-order (NNLO)
and accounting for top-quark mass effects to next-to-leading-order (NLO), the LHC Higgs
Cross-Section Working Group [4] calculates that the production cross section for g g → hh at√
s = 13 TeV is 33.5+1.8

−2.3fb, for mh = 125 GeV, and that the branching ratios for h → b b̄ and
h→ τ τ̄ are 0.5824+0.0072

−0.0074 and 0.062 72± 0.0010, respectively. The theoretical production cross
sections are therefore 2.45+0.14

−0.17fb and 11.37+0.64
−0.80fb for the hh→ τ τ̄ b b̄ and hh→ b b̄ b b̄ samples,

respectively.

2.2 QCD background

A sample of 107 events were generated with leading-order MEs using MadGraph 5, for the SM
process p p→ b b̄ b b̄. The four-flavour scheme was used, with incoming partons being sampled
from the nn23lo1 PDF. The parton showering, hadronisation, and decays were handled by
Pythia 8.

The ME requirements are the same as those used for the production of the signal sample.
The production cross section reported by MadGraph 5 is 1.7471± 0.0001 nb. Applying a

LO→NLO rescaling factor calculated from Ref. [1] of 1.73+1.13
−0.73, the theoretical cross section for

p p→ b b̄ b b̄ is 3.0+2.0
−1.3nb. It should mentioned that the rescaling factor was calculated without

consideration of generation phase-space, and its use here is purely to indicate the differences in
scale of production cross section between signal and background; we recommend that a more
accurate value be calculated for analyses sensitive to its value.

2.3 Fully-leptonic t t̄ background

The production of background events follows the prescription and settings specified in Ref. [5].
A sample of 107 events with NLO MEs was generated in Powheg Box 2 [6, 7, 8] using the
hvq process [9] for the SM process p p → t t̄ at

√
s = 13 TeV, in which the t t̄ pair is forced to

decay to a di-leptonic final state, including the τ lepton. Incoming partons are sampled from
the CT10 PDF [10], included via Lhapdf 5 [11]. Parton showering, hadronisation, and unstable
decays were handled by Pythia 8.

The production cross section reported by Powheg Box is 73.04 ± 0.06 pb. Using NNLL
matched to NNLO calculations and assuming a top-quark mass of 173.2 GeV, the production
cross section for p p→ t t̄ at

√
s = 13 TeV is 816.0+39.5

−44.7pb [12]. The branching ratio for W → `ν
is 0.3272±0.0030 [12], for ` ∈ e, µ, τ . The theoretical production cross section for fully-leptonic
t t̄ is therefore 87.4+4.4

−4.9pb.

3



2.4 Detector simulation

The simulation applied to both signal and background samples using Delphes [13, 14, 15]
was configured to produce a response in between the ATLAS [16] and CMS [17] detectors.
This choice was dictated by the need to allow researchers that belong to the two collaborations
to profit equally from those studies. A middle-ground between CMS and ATLAS also allows
results to be obtained which are not too dependent on experimental detail.

Delphes uses parametrised responses to allow the quick simulation of a real detector-
environment by reconstructing final-state objects with given efficiencies, applying resolution
effects, and simulating pile-up contributions. Whilst it is not expected to provide a simulation
as accurate as that of Geant 4 [18, 19], it is expected to be sufficiently accurate to validate
the proofs-of-concepts addressed, and the comparisons made, in this document.

3 Event selection and feature definition

3.1 τ τ̄ b b̄ selection

3.1.1 Selection and categorisation

The samples are analysed in Root [20]. Sequential attempts are made to accept events into
exclusive final state categories in the following order: µ τh b b, e τh b b, τh τh b b, µµ b b, e e b b, and
e µ b b, where τh indicates a resolved τ -tagged jet, and b indicates a resolved b-tagged jet.

Tables 1, 2, and 3 detail the selection requirements for light leptons, τ jets, and b jets,
respectively. These cuts aim to reflect an example of the acceptance that would be achievable
at a particle detector like CMS. The values themselves were based on those used in Ref. [21],
which describes a previous investigation by CMS into hh→ τ τ̄ b b̄. Jets are reconstructed using
the anti-kt algorithm [22] with an R parameter of 0.5. In case of ambiguity in the selection,
the following choices are made:

• When the selected event contains more than the required number of acceptable τ -jets,
the hardest τ jets which satisfy the charge requirements are chosen.

• When the selected event contains more than two acceptable b-jets, the pair whose invariant
mass is closest to 125 GeV (i.e. the Higgs-boson mass) is chosen.

Signal events passing the final selection cuts undergo an additional check using information
from the MC generator (MC-truth) by setting a flag according to whether the selected final

Primary lepton Secondary lepton
Lepton type e µ e µ
pT > 24 GeV 19 GeV 10 GeV 10 GeV
|η| < 2.1 2.1 2.4 2.5
Irel < 0.1 0.1 0.3 0.3
Lepton multiplicity
` τh b b 1 0
τ τ̄ b b̄ 0 0
` ` b b 2 of opposite charge 0

Table 1: Selection requirements on light leptons (` ∈ e, µ). Lepton-multiplicity requirements are
exclusive, e.g. in the case of the ` τh b b final state if a secondary e or µ were present, the event
would be rejected.
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Final state ` τh b b τ τ̄ b b̄ ` ` b b
at least 1 OS at least 1 OS pair none

pT > 20 GeV 45 GeV 10 GeV
|η| < 2.3 2.1 2.5

Table 2: Selection requirements on τ jets. Delphes uses a parametrised tagging algorithm with
a Boolean output. In the ` τh b b category, the τ jet must have a charge opposite to that of the
primary lepton, while for τ τ̄ b b̄ candidate events must contain an oppositely charged pair of τ
jets. In the case of ` ` b b final state, the event is rejected if any τ jets with pT > 10 GeV and
|η| < 2.5 are present.

At least 2 b-jets
pT > 30 GeV
|η| < 2.4

Table 3: Selection requirements on b jets. Delphes uses a parametrised tagging algorithm with
a Boolean output.

states correspond to the true decay products of both Higgs bosons. For the b-jets, this requires
the generator-level b-quarks produced by the decay of a generator-level Higgs boson to be
within 0.5 rad of the selected b-jets. For hadronically decaying τ leptons, the generator-level
τ lepton coming from the decay of a Higgs boson must be within 0.5 rad of the selected τ -
jet. For leptonically decaying τ leptons, the generator-level light-lepton, corresponding to the
reconstruction-level selected light-lepton, must have been produced by the decay of a generator-
level τ -lepton which was produced by the decay of a generator-level Higgs boson. If all four
final states are correctly selected, the event is flagged as passing the MC-truth match.

3.1.2 Acceptance

Table 4 gives the acceptance values for signal and background events into the six final state
categories. Table 5 details the acceptance of signal and background events into the six final
state categories times the production cross section of the sample. “Signal MM” indicates the
mismatched events, i.e. the accepted events from the signal sample which failed the MC-truth
match.

Acceptance [%]
Sample µ τh b b e τh b b τh τh b b
Signal 1.228 ± 0.005 1.044 ± 0.005 1.150 ± 0.005
Signal MM 0.204 ± 0.002 0.174 ± 0.002 0.218 ± 0.002
Bkg. 1.037 ± 0.003 0.925 ± 0.003 0.0550 ± 0.0007

e µ b b µ µ b b e e b b
Signal 0.250 ± 0.002 0.131 ± 0.002 0.124 ± 0.002
Signal MM 0.0373 ± 0.0009 0.0196 ± 0.0006 0.0156 ± 0.0006
Bkg. 2.225 ± 0.005 1.169 ± 0.003 1.058 ± 0.003

Table 4: Acceptance of events (in %) for each final state category. “Signal MM” indicates
events from the signal sample which failed the MC-truth match.
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Acceptance × cross-section [pb]
Sample µ τh b b e τh b b τh τh b b
Signal (3.0+0.2

−0.2)× 10−5 (2.6+0.1
−0.2)× 10−5 (2.8+0.2

−0.2)× 10−5

Signal MM (5.0+0.3
−0.4)× 10−6 (4.3+0.2

−0.3)× 10−6 (5.3+0.3
−0.4)× 10−6

Bkg. 0.91+0.05
−0.05 0.81+0.04

−0.05 0.048+0.002
−0.003

e µ b b µ µ b b e e b b

Signal (3.2+0.2
−0.2)× 10−6 (6.1+0.4

−0.4)× 10−6 (3.0+0.2
−0.2)× 10−6

Signal MM (4.8+0.3
−0.4)× 10−7 (9.1+0.6

−0.7)× 10−7 (3.8+0.3
−0.3)× 10−7

Bkg. 1.02+0.05
−0.06 1.9+0.1

−0.1 0.92+0.05
−0.05

Table 5: Acceptance times production cross-section for each final-state category. “Signal MM”
indicates events from the signal sample which failed the MC truth match.

3.1.3 Event reconstruction

Once the event is selected, the two Higgs bosons are reconstructed from the selected final states.
First, the two τ -leptons are defined: In the case of a hadronically decaying τ lepton, the

4-momentum of the τ -tagged jet is used; for leptonically decaying τ leptons, the 4-momentum
of the light lepton is used. The 4-momentum of the parent Higgs-boson (hτ τ̄ ) is then recon-
structed from the vectorial sum of the 4-momenta of the two τ leptons and the vector of missing
momentum projected in the plane transverse to the beam axis. Next, the 4-momentum of the
Higgs boson which decays to b b̄ (hb b̄) is reconstructed from the vectorial sum of the 4-momenta
of the two selected b-tagged jets. Finally, the combined 4-momentum of the two Higgs bosons
is calculated (the di-Higgs).

3.1.4 Final-state features

18 low-level final state features are calculated during the event selection process: pT , η, and φ
for each selected final state, the magnitude of missing transverse momentum (−→p miss

T ), and the
azimuthal angle of the vector of the missing momentum (φ−→p miss

T
). We label the harder of the

two b-jets as ‘0’ and the other as ‘1’. The τ leptons are labelled thusly: in the τh τh b b and
` ` b b categories the harder of the two τ leptons is labelled ‘0’ and the other as ‘1’; in the ` τh b b
categories the ‘0’ indicates the τ -jet and ‘1’ indicates the lepton.

Twelve reconstructed features are also calculated: pT , η, φ, and the invariant masses of the
three systems which correspond to: the Higgs boson which decays to b b̄ (hb b̄); the Higgs boson
which decays to τ τ̄ (hτ τ̄ ); and the di-Higgs-boson system (hh). The transverse mass (mT ) is
also calculated in the case of ` τh b b final states, according to Eq. 1:

mT =

√
2pT,` ×−→p miss

T ×
(

1− cos ∆φ`,−→p miss
T

)
. (1)

Example distributions of these features are shown in Figs. 1 to 5 in the form of kernel density-
estimations [23, 24] (KDE). Similar to histograms, these are an estimation of the probability-
density function for a random variable, however they demonstrate quicker convergence to the
true density [25]. They also have the advantage of providing a smooth estimation of densities.
Rather than binning data and letting each data point contribute a given area to its bin, the
KDE method centres a kernel function (in our case a Gaussian function) at each data point,
sums their contributions, and then normalises the area to one. The variance of the Gaussian
kernel is a free parameter which can either be set by hand, or estimated by methods such as
Silverman’s rule of thumb [26].
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Feature distributions for selected b-jets for signal and background events in the µ τh b b
category. b0 is the harder of the two jets. Both samples are normalised to one
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(a) (b)

(c) (d)

(e)

Figure 2: Feature distributions for selected τ -leptons for signal and background events in the
µ τh b b category. τ0 corresponds to the τh and τ1 corresponds to the muon. Both samples are
normalised to one
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Feature distributions for hb b̄ and hτ τ̄ systems for signal and background events in the
µ τh b b category. Both samples are normalised to one
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(a) (b)

(c)

Figure 4: Feature distributions for di-Higgs system for signal and background events in the
µ τh b b category. Both samples are normalised to one

(a) (b)

Figure 5: Feature distributions for the magnitude of missing transverse momentum and MT for
signal and background events in the µ τh b b category. Both samples are normalised to one
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3.2 bb̄bb̄ selection

3.2.1 Selection and reconstruction

The data sample is analysed in ROOT [20]. The selection begins with the requirement that the
events contain at least 4 b-tagged jets with pT > 30 GeV, located in the central rapidity region
with |η| < 2.5. The b jets are tagged with the anti-kT reconstruction algorithm [27] and with a
jet size of R = 0.5. As mentioned in Sec. 2, at the matrix element level all the final state jets
must also be separated by ∆R > 0.1. The loose selection criteria applied to the bb̄bb̄ final state
events are summarized in Tab. 6.

Table 6: Selection requirements on bb̄bb̄ final state.

At least 4 b-jets

pT > 30 GeV
|η| < 2.5
∆R > 0.1

Once the cut based selection has been applied, the four jets with the highest pT are paired to
construct two Higgs boson candidates. All possible jet pair combinations are considered and
then the configuration that minimises the relative difference of di-jet masses is chosen. This
combination represents the choice most consistent with the decays of two particles of equal
mass. The leading Higgs boson candidate is defined to be the candidate with the highest pT .
Consequently, the remaining Higgs candidate is called sub-leading.

Once the Higgs boson candidates have been identified, their invariant mass is required to be
close to the nominal Higgs boson mass of mh = 125 GeV. In particular we require the following
condition:

|mh − 125 GeV| < 40 GeV. (2)

Here, mh is the invariant mass of each of the two Higgs candidates. For the signal process we
expect a clear enhancement in the mass distribution of the reconstructed Higgs boson around
the nominal value of the mass (125 GeV), while we do not expect any particular structure for
the background. Indeed, with this cut we retain the 60% of the signal candidates which have
passed the previous loose cuts, while we keep just the 26% of the main background considered.
The previous consideration can be inferred from Tab. 7.

3.2.2 Acceptance

In Tab. 7 the acceptance values for signal and background events before and after applying
the cut defined in Eq. 2 are reported. Note that the acceptance values are given here as a
percentage of the total number of generated events (107 for each sample as described in Sec. 2).
The values obtained for the acceptance of the background samples justify the choice to keep
only the most prominent background pp → bb̄bb̄ in the following studies of classification and
regression.

3.2.3 Final-state features
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Table 7: Acceptance in percentage for each signal and background process before (second column)
and after (third column) the requirement in Eq. 2.

Process Acceptance before mh cut [%] Acceptance after mh cut [%]

hh→ bb̄bb̄ 13.142± 0.012 7.909± 0.009

pp→ bb̄bb̄ 0.762± 0.003 0.203± 0.001
pp→ jjjj 0.0008± 0.0001 0.0002± 0.0001
pp→ bbjj 0.0278± 0.0005 0.0059± 0.0002
pp→ tt̄→ bb̄jjjj 0.519± 0.002 0.204± 0.001

The event selection returns 16 kinematic variables describing the final state event. For
each of the four selected b-jets, the components of the four-vector are given: the transverse
momentum pT , the energy E and the angular variables η and φ. These variables represent the
low level features used as input to the classification of signal versus background process. The
low level features of the b-jet with highest momentum in the leading Higgs candidate are shown
in Fig. 6.
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Figure 6: Low level features associated to the b-jet with the highest momentum, coming from
the leading Higgs.

We observe that the distributions of the jet pT and E fall off more rapidly for background
events than the di-Higgs signal. The pseudorapidity distribution shown in Fig. 6c is slightly
different in the two cases, suggesting that the production is more central in the case of signal
events. As expected, background and signal events display a uniform distribution for the jet φ.

In order to improve the classification performance, we calculate the following high level
features: pT , E, η and φ for each of the two Higgs boson candidates. The relative distribu-
tions for the leading Higgs candidate are illustrated in Fig. 7. We observe a trend similar to
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the one noticed in Fig. 6, but for the signal of the reconstructed Higgs boson we obtain, as
expected, a harder pT spectrum and a stronger difference in the η distribution with respect to
the background.
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Figure 7: Low level features associated to the Higgs boson candidate with the highest momentum.

In addition, we have studied the variables ∆η and ∆φ, i.e. the angular distance between
the two jets coming from the same Higgs candidate, and the invariant mass of the two Higgs
candidates, defined as

Minv =
√
E2 − p2

T (1 + sinh η2). (3)

In summary we have studied 30 features that can be used to classify signal and background
events. The high level features ∆η, ∆φ and Minv of the leading Higgs candidate are sketched
in Fig. 8. We notice that these distributions are the most discriminating between signal and
background. In particular, while the invariant mass presents the expected enhancement at
the nominal Higgs mass (125 GeV), the background distribution does not present a specific
structure.
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Figure 8: High level features associated to the leading Higgs boson candidate.

4 Feature regression in τ τ̄ b b̄

4.1 Initial state

Figure 9 shows a comparison between the true distribution of the di-Higgs mass and that which
is obtained from the reconstructed final states in the µ τh b b category.

From these results, we can see that the reconstructed masses overestimate the low mass
region, resulting in large, negative means in the delta distribution. Additionally, the delta
distribution is very wide, indicating that there is not just a systematic offset in the estimation,
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(a) Di-Higgs mass distributions.

(b) Delta distribution of di-Higgs mass.

Figure 9: Comparison between distributions of “true” and “reconstructed” di-Higgs mass for
the µ τh b b category.

but that the estimation process itself carries a lot of imprecision. Most likely, the inaccuracy
and imprecision are due to the energies carried by the neutrinos in the τ -lepton decays not
being correctly accounted for.

By using some regression tool, the accuracy and resolution of the di-Higgs mass estimation
might be improved.

4.2 The regressor

Multi-layer feed-forward artificial neural-networks (NNs) are used for the regression, with the
same basic layout being adopted for all applications.

Keras [28] is used to implement a NN which consists of three hidden layers, containing
150, 120, and 100 nodes, respectively. All layers are initialised according to He-normal initial-
isation [29] to help propagate gradients. All nodes (except output nodes) use parametrised,
rectified linear-unit activation functions [29], which prevent gradients becoming saturated in
the network. Output nodes use linear activation, since the regressor target-features are in
the region [−∞,∞]. All layers (except the output) are batch-normalised [30] to account for
differences in scale between input features, and to speed up training.

During training, drop-out is applied to nodes (except output nodes) with a probability of
0.1 [31]. In some architectures, Gaussian noise is applied throughout the network (except in
output layer) in order to corrupt signals and reduce the possibility of over-fitting by forcing the
network to generalise to the training data.

Each regressor is trained in batches of 32 events of signal data, for a maximum limit of 10 000
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epochs. The Nesterov-Adam optimiser [32] is used to minimise the mean squared-error (MSE)
of predictions (the loss function). Training can finish early if the MSE does not decrease for
ten epochs and, invariably, the upper limit of 10 000 is never reached. The mean square-error
is calculated according to Eq. 4:

MSE =
1

N

N∑
n=1

(ŷn − yn)2 , (4)

where N is the number of predictions, ŷn is a vector of predictions, and yn is a vector of true
values. The MSE quantises the difference between the regressor’s predictions and the true
momenta, i.e. lower values indicate better performance.

For development, five-fold cross-validation is used and architectures are compared by their
mean final MSE values, i.e. the arithmetic mean of the MSE values of each of the five regressors
is calculated. The method of k-fold cross-validation involves splitting the data into five equal-
sized portions. The regressor is then trained and tested five times from scratch, each time
using a different portion for testing and the remaining four for training. This method shows
the general response of the regressor, rather than how it happened to respond to a particular
set of data.

For training for application, data are split into ‘training’ and ‘validation’ samples, with 80 %
of the data being used for training and the remaining 20 % being reserved for validation.

Regressors are then trained and tested ten times on the entirety of the training data, and
the most performant NNs are selected. For regressors aiming to output the di-Higgs mass,
these are:

1. The one with the lowest absolute mean pull on the di-Higgs mass;

2. the one with the lowest standard deviation for the pull on the di-Higgs mass;

3. and the one with the lowest MSE for the di-Higgs mass.

The selected NNs are combined into an ensemble by equally-weighting their outputs to produce
a mean response, which is then used to calculate the regressed feature(s). The response of the
regressor ensemble is then confirmed on the validation data.

Note that the validation sample is not used to make any selection or comparison of ar-
chitectures or training cycles; it is a pure hold-out sample. The same split into training and
validation samples is made for each regressor. Whilst this may lead to regressors acting on re-
gressed inputs showing greater response on the training data than they show on the validation
data, it is assumed that the response on the validation data is still greater than it would be if
the data were instead split more times such that no data were reused, due to the larger data
samples.

Also note that hyperparameter optimisation is not the focus of this preliminary study, so
only two models will be considered:

• Model 0: The basic layout described above with no Gaussian noise;

• Model 1: The basic layout described above with Gaussian noise at σ = 0.5 for the first
hidden layer, and σ = 0.2 for the other two hidden layers.

Model 1 aims to test whether corrupting network signals forces the network to better generalise
to the data. Model 0 will show what the ‘natural’ response of the network is. If Model 1
demonstrates the best performance, then it is possible Model 0 over fits to the data. If Model 0
demonstrates the best performance, then the Gaussian noise was not necessary and was im-
peding the function of the network.
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Since this is a preliminary investigation aiming to validate the use of neural-networks for
regression tasks in particle physics, only the µ τh b b final-state category is investigated. This
was chosen because it contains both hadronic and leptonic decays for the τ leptons, and has a
higher acceptance than the e τh b b category.

4.3 Single-stage regression

Initially, a single-stage regression approach is employed. Here, input features are used to regress
directly to the di-Higgs mass.

4.3.1 Feature sets

The following input features are used: Reconstructed 3-momenta and mass of both b-quarks,
both τ leptons, both Higgs bosons and their vectorial sum (di-Higgs vector); pT and φ of the
missing momentum vector; and mT . The total number of features included is thus 31.

4.3.2 Development results

The results of training the two models on the development dataset are shown in Tab. 8. We
can see that Model 0 demonstrates the best performance, by having the lowest mean squared-
error, and so will be trained for application. The fact that Model 0 demonstrates the best
performance indicates that the Gaussian noise in Mode 1 is not required.

Architecture Mean MSE [GeV2] NFeatures

Model 0 1870± 70 31
Model 1 2000± 200 31

Table 8: Summary of the mean MSE values for single-stage regression to the di-Higgs mass,
for various architectures during development. Lower values are better.

4.3.3 Application of single-stage di-Higgs regression

Model 0 is trained for application according to the methodology in Sec. 4.2. Fig. 10 illustrates
the response of the single-stage regressor on the di-Higgs mass. Fig. 10a shows that the regressor
removes the low-mass overestimation of the reconstructed mass in favour of a closer match
to the true (generator-level) mass-distribution. Fig. 10b re-illustrates this and quantifies the
improvement: a 76 % reduction in the mean of the delta distribution, and a 56 % reduction in
its width.
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(a) Di-Higgs-mass distribution

(b) Delta distribution of di-Higgs mass.

Figure 10: Comparison between distributions of “true”, “reconstructed”, and “single-stage”
regression di-Higgs mass for the µ τh b b final state.

4.4 b-quark regression

A possible way of improving regression performance would be to incorporate a greater amount
of generator-level information into input features. This can be achieved by first regressing to
the 4-momenta of the decay products of the two Higgs-bosons (hb b̄ and hτ τ̄ ), and then using
the regressed features as inputs to the di-Higgs-mass regressor. Due to the missing energy in
τ lepton decays, it is likely that the reconstructed 4-momenta of the b-jets is closer to the true
4-momenta of the b-quarks than the reconstructed 4-momenta of the τ lepton decay products is
to the 4-momenta of the τ leptons, therefore it makes sense to perform regression on the b-jets
first in order to aid the τ regressor as much as possible.

In order to regress the b-jets, the generator-level 3-momenta of the b-quarks resulting from
the hb b̄ decays are used as target features.

4.4.1 Feature sets

It was quickly found that regressing to the azimuthal angle is non-trivial, due to its closed
boundaries (−π = +π). Several attempts were made to map the feature into a space in which
the regressor could interpret it correctly, however it proved easier to move instead the features
into a Cartesian coordinate system (i.e. px, py, pz).

Four sets of features are considered:

• Set 0: Cartesian 3-momenta and mass of both b-jets and both τ -leptons, plus px and py
of missing momentum vector; 18 features in total.
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• Set 1: Set 0 plus magnitude of 3-momenta and energy of both b-jets and both τ -leptons;
26 features in total.

• Set 2: Set 0 plus Cartesian 3-momenta and mass of both reconstructed Higgs bosons and
their vectorial sum (di-Higgs vector), plus mT in the case of ` τh b b final states; 31 features
in total.

• Set 3: Set 0 plus Set 1 plus Set 2; 45 features in total.

4.4.2 Development results

The development results for the various combinations of models and feature sets are recorded
in Tab. 9. We see that the architecture consisting of Set 3 and Model 0 demonstrates the best
performance (has the lowest MSE).

Architecture Mean MSE [GeV2] NFeatures

Set 0 Model 0 750± 60 18
Set 0 Model 1 670± 20 18
Set 1 Model 0 650± 20 26
Set 1 Model 1 660± 10 26
Set 2 Model 0 700± 30 31
Set 2 Model 1 620± 10 31
Set 3 Model 0 580± 20 45
Set 3 Model 1 590± 20 45

Table 9: Summary of the mean MSE values for b-regression response, for various architectures
during development. Lower values are better.

4.4.3 Application of the b-quark regression

The architecture consisting of Set 3 and Model 0 is trained for application, and Fig. 11, Fig. 12
and Fig. 13 illustrate the distributions of true and regressed b-quark momenta, the delta dis-
tributions of the b regressor on the b-quark momenta, and the reconstructed and b-regressed
Higgs-mass distributions, respectively, for the µ τh b b final state.

We can see from Fig. 11 that the reconstructed distributions tend to overestimate the
regions of low absolute-momenta. Applying the b regressor moves the distributions to more
closely match the true distributions in the regions of higher absolute-momenta, though at the
expense of now slightly underestimating the regions of low absolute-momenta. From the delta
distributions in Fig. 12 we observe that applying the b regressor increases the absolute value of
the mean, indicating a decrease in estimation accuracy, but it also serves to reduce the width
of the distribution, meaning that the precision of the estimation is increased.

Since the plots in Fig. 12 focus on the low to medium delta values, it might be difficult to see
how the regressor increases the precision of the momenta estimates, when the plots show that
the reconstructed distributions all peak at higher values than the regressed ones. Checking the
extreme values of the delta distributions we find that the reconstructed estimates occasionally
produce very high values, which the regressor helps to improve, at the cost of reduced precision
in the low-delta regions. Effectively: the reconstruction method either functions very well
(narrow peak in low delta-regions) or very poorly (delta distributions extend out to high values);
the regressor aims for balanced precision by focussing on improving the poor estimates and
concentrating less on the good estimates.
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Indeed, by checking the invariant-mass distributions for the b-jet pairs in signal (Fig. 13),
we see that the b regressor causes a decrease in the low-mass region, and a centring and sym-
metrising of the distribution about a mass close to that of the Higgs boson. For signal, this
distribution should be a Delta function at the Higgs mass, so the decrease in the width of the
distribution is encouraging. This also means that regardless of the reduced precision in the
low-delta regions of Fig. 12, applying the regressor considerably improves the mass estimation
for hb b̄.

(a) (b)

(c) (d)

(e) (f)

Figure 11: True and regressed b-quark momenta distributions for signal events in the µ τh b b
category.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Delta distributions for b-regressor response on b-quark momenta for signal events in
the µ τh b b category.
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Figure 13: Reconstructed and regressed b-jet pair invariant-mass distributions for signal events
in the µ τh b b final state.

4.5 τ-lepton regression

Next, we apply regression to the τ -lepton momenta.

4.5.1 Feature sets

Eight sets of features are considered:

• Set 0: Reconstructed Cartesian 3-momenta and mass of both b-jets and both τ -leptons,
plus px and py of the missing momentum vector; 18 features in total.

• Set 1: Set 0 plus magnitude of reconstructed 3-momenta and energy of both b-jets and
both τ -leptons, using 26 features;

• Set 2: Set 0 plus reconstructed Cartesian 3-momenta and mass of both reconstructed
Higgs bosons and their vectorial sum (di-Higgs vector), plus mT in the case of ` τh b b final
states; 31 features in total;

• Set 3: Set 0 plus Set 1 plus Set 2; 45 features in total.

• Set 4: Set 0, but using b-regressed momenta for both b-jets and using Pythia 8’s b-quark
mass instead of the reconstructed b-jet masses; 18 features in total.

• Set 5: Set 1, but using b-regressed momenta and energy for both b-jets and using
Pythia 8’s b-quark mass instead of the reconstructed b-jet masses; 26 features in to-
tal;

• Set 6: Set 2, but using b-regressed momenta for both b-jets, using Pythia 8’s b-quark
mass instead of the reconstructed b-jet masses, and b-regressed momenta and massed for
hb b̄ and di-Higgs; 31 features in total.

• Set 7: Set 4 plus Set 5 plus Set 6, using 45 features.

4.5.2 Development results

Development results for the eight feature-sets are shown in Tab. 10. We see that the architecture
of Set 7 and Model 1 demonstrates the lowest MSE. Here we see that including Gaussian noise
allows the regressor to better generalise to the data.
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Architecture Mean MSE [GeV2] NFeatures

Set 0 Model 0 860± 20 18
Set 0 Model 1 980± 30 18
Set 1 Model 0 980± 20 26
Set 1 Model 1 910± 30 26
Set 2 Model 0 870± 50 31
Set 2 Model 1 860± 20 31
Set 3 Model 0 900± 70 45
Set 3 Model 1 860± 10 45
Set 4 Model 0 1000± 30 18
Set 4 Model 1 950± 40 18
Set 5 Model 0 960± 20 26
Set 5 Model 1 930± 20 26
Set 6 Model 0 910± 60 31
Set 6 Model 1 880± 20 31
Set 7 Model 0 860± 20 45
Set 7 Model 1 840± 30 45

Table 10: Summary of the mean MSE values for τ -regression response for various architectures
during development. Lower values are better.

4.5.3 Application of τ-lepton regression

The architecture consisting of Set 7 and Model 1 is trained for application, and Fig. 14, Fig. 16,
and Fig. 15 illustrate the distributions of true and regressed τ -lepton momenta, the delta
distributions of the τ regressor on the τ -lepton momenta, and the reconstructed and τ -regressed
Higgs-mass distributions, respectively, for the µ τh b b final state.

The results mirror those seen for the b regression in Sec. 4.4, except that in Fig. 14 we
see an even more extreme overestimation of the low absolute-momenta in the reconstructed
distributions. This can be explained by the fact that the neutrinos resulting from the decays
of that τ leptons are not accounted for, so it is to be expected that the reconstructed momenta
are lower than the true values; indeed τ1 is actually just a muon in this final-state category (see
Sec. 3.1.4). As before, however, we see that applying the regressor moves the distributions to
more closely match the true ones.

In Fig. 15 we see that, as before, the regressor causes increases in the absolute values of the
means of the delta distributions, but large decreases in their widths.

From the estimations of the di-τ -lepton invariant-masses we see that the regressed distri-
bution is centred close to the Higgs mass and has a smaller width than the reconstructed
distribution. It should be remembered from Sec. 3.1.3 that the reconstructed distribution is
the invariant mass of the τ jet, the muon, and the missing transverse-momentum. We can see
from the overestimation of the high-mass region that including all of the missing energy in the
τ leptons is too crude an approximation, and some of this should have been included in the
b-jet pair, which exhibited an underestimation of the Higgs mass. The regressors, however, pro-
vide an increase in both the accuracy and the precision of the Higgs-mass estimations without
requiring us to correctly distribute the missing energy amongst the final-states.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: True and regressed τ -lepton momenta distributions for the µ τh b b category.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Delta distributions for τ -regressor response on τ -lepton momenta for the µ τh b b
category.
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Figure 16: Reconstructed and τ -regressed distributions for the hτ τ̄ mass for the µ τh b b final
state.

4.6 Di-Higgs regression

Having regressed the 3-momenta of both the b jets and both the τ leptons, we can try feeding in
the regressed features into a regressor to the di-Higgs mass, and check whether this three-stage
regression offers any advantage over the single-stage regression performed in Sec. 4.3.

4.6.1 Feature sets

Two sets of features are considered:

• Set 0: b-regressed Cartesian 3-momenta, energy, and absolute momenta of both b jets,
plus Pythia 8’s b-quark mass, plus b-regressed Cartesian 3-momentum, energy, mass, and
absolute momenta of hb b̄, plus, τ -regressed Cartesian 3-momenta, energy, and absolute
momenta of both τ leptons, plus the PDG τ -lepton mass of 1.776 86 GeV [12], plus mT ,
plus τ -regressed Cartesian 3-momenta, energy, mass, and absolute momenta of hτ τ̄ and
di-Higgs, plus px and py of the missing momentum vector; 45 features in total.

• Set 1: Set 0, but using reconstruction-level features for all features: 45 features in total.

Although Set 1 contains no regressed features (similar to the single-stage regression performed
earlier), it does contain extra features which were not previously used. This should make a
comparison between three- and single-stage regression focus only on the effect of pre-regression
by accounting for the fact that the three-stage regression uses more input features.

4.6.2 Development results

Tab. 11 shows the results for development testing of three-stage regression to the di-Higgs
mass. We see that the architecture consisting of Set 0 and Model 1 demonstrates the best
performance.
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Architecture Mean MSE [GeV2] NFeatures

Set 0 Model 0 1070± 20 45
Set 0 Model 1 1040± 30 45
Set 1 Model 0 1730± 70 45
Set 1 Model 1 1760± 70 45

Table 11: Summary of the mean MSE values for three-stage regression to the di-Higgs mass for
various architectures during development. Lower values are better.

4.6.3 Application of three-stage di-Higgs regression

Having trained the di-Higgs regressor for application, we can see from the results shown in
Fig. 17a, that applying the regressor improves the estimation of the di-Higgs mass by correcting
the overestimation of the low-mass region, which was presumably caused by mistreatment of
the missing energy. From the delta distribution in Fig. 17b, we see that the regressor results
in improvements to both the mean and the width of the distribution.

(a) Di-Higgs-mass distributions.

(b) Delta distribution of di-Higgs mass.

Figure 17: Comparison between distributions of true, reconstructed, and three-stage (3S) re-
gression di-Higgs mass for the µ τh b b final state.

4.7 Background response

Having developed regressors for signal, it is important to check their responses when fed non-
signal data, in order to make sure that the responses are different, in other words, that the
regressed features are still usable for classification tasks. Fig. 18 compares the responses of the
three regressors on signal, mismatched signal (signal events where incorrect final-states were
selected), and background data.
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In Fig. 18a we see that both the b-regressed mismatched signal (orange) and the background
(grey) distributions peak close to the Higgs mass, but show asymmetric distributions and
suppressed peaks. Fig. 18b shows a smaller difference between signal and mismatched signal
for τ -regressed data. This is because it is normally the miss-selection of b jets which causes
signal events to fail the MC-truth check. The background distribution is seen to have a very
wide peak around 150 GeV. In Fig. 18c we see that the three-stage di-Higgs-mass regressor
has a similar response for both signal and mismatched signal data, but background data is
concentrated in a region of lower mass than the signal data, thereby providing separation
between signal and background.

(a) b-regressed data.

(b) τ -regressed data.

(c) Three-stage-regressed di-Higgs invariant-mass
distribution.

Figure 18: Comparison between responses of regressors on signal, mismatched (MM) signal,
and background for the µ τh b b final state.
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4.8 Summary of hh→ τ τ̄ b b̄ regression studies

Fig. 19 concludes the regression study in τ τ̄ b b̄ events. From Fig. 19a we see that each the
three-stage di-Higgs mass regressor provides the most precise response and great improvements
in both accuracy and precision over the use of reconstructed features. In Fig. 19b we see that
applying the three-stage regressor di-Higgs mass regressor not only improves the estimate of di-
Higgs mass, but also increases the separation between the signal and background distributions,
which should increase the discriminating power of the feature in classification.

(a) Comparison between delta distributions of di-Higgs mass
for all regressors on signal data in the µ τh b b category.

(b) Response of the three-stage di-Higgs-mass regressor on
signal and background data compared to the generator-level
di-Higgs mass, in the µ τh b b category.

Figure 19: Overall performance of regression in hh→ τ τ̄ b b̄ events.

5 Classification of hh signal in τ τ̄ b b̄

5.1 The classifier

A multi-layer feed-forward artificial neural-network (NN) is used for the classification, with the
same basic layout being adopted for all applications:

Keras [28] is used to implement a NN which consists of seven hidden layers, each containing
100 nodes. All layers are initialised according to He-normal initialisation [29] to help propagate
gradients. All nodes (except output nodes) use parametrised, rectified linear-unit activation
functions [29], which prevent gradients becoming saturated in the network. Output nodes use
sigmoid activation, since the classification targets are either zero (background) or one (signal).
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All layers (except the output) are batch-normalised [30] to account for differences in scale
between input features, and to speed up training.

During training, drop-out is applied to nodes (except output nodes) with a probability of
0.2 [31]. In some architectures, Gaussian noise is applied throughout the network (except in
output layer) in order to corrupt signals and reduce the possibility of over-fitting by forcing the
network to generalise to the training data.

Each classifier is trained in batches of 32 events of signal data, for a maximum limit of 10 000
epochs. The data are weighted such that the sum of weights for both signal and background are
equal. The Nesterov-Adam optimiser [32] is used to minimise the binary cross-entropy (BCE)
of predictions (the loss function). Training can finish early if the BCE does not decrease for ten
epochs and, invariably, the upper limit of 10 000 is never reached. The binary cross-entropy is
calculated according to Eq. 5:

BCE = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)] , (5)

where N is the number of predictions, ŷn is a vector of predictions (in our case the prediction of
event class, ŷ ∈ [0, 1]), and yn is a vector of true values (here, the actual event class, y ∈ {0, 1}).
It quantises the difference between the classifier’s prediction and the true class, i.e. lower values
indicate better performance.

All formal comparisons between architectures will be made using their BCE values, but the
accuracy of the classifiers will also be reported in order to provide a performance metric which
is more easily understood by humans. The accuracy is calculated according to Eq. 6:

ACC =
NTP +NTN

N
, (6)

where NTP is the number of true-positive predictions (correctly identified signal events), NTN

is the number of true-negative predictions (correctly identified background events), and N is
the number of predictions; it is the fraction of correct predictions. The classifier categorises
events with an output value greater than or equal to 0.5 as signal and those with a value less
than 0.5 as background, e.g a signal event with a value of 0.7 would be a true-positive result
and a background even with a value of 0.1 would be a true-negative result.

For development, stratified five-fold cross-validation is used and architectures are compared
by their mean final BCE values, i.e. the arithmetic mean of the BCE values of each of the five
classifiers is calculated. Stratified, k-fold cross-validation is similar to standard k-fold cross-
validation (Sec. 4.2) except that each portion of the data set contains approximately the same
fraction of classes as the full data set. This ensures that balance between classes is propagated
to each training set such that each classifier might train optimally.

For training for application, data are split into ‘training’ and ‘validation samples’, with
80 % of the data being used for training and the remaining 20 % being reserved for validation.
Since signal events which failed the MC-match check (referred to ‘signalMM’ in Sec. 4.2) are
effectively another source of background to the search, these events will not be considered at
this stage and are removed from the training and validation data.

Classifiers are then trained and tested ten times on the entirety of the training data, and
the most performant NNs are selected. The response of the classifier is then confirmed on the
validation data.

Note that the validation sample is not used to make any selection or comparison of ar-
chitectures or training cycles; it is a pure hold-out sample. The same split into training and
validation samples is made for each classifier, and for signal data it is the same split as was
used for the regressor validation in Sec. 4.2.
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Also note that hyperparameter optimisation is not the focus of this preliminary study, so
only two models will be considered:

• Model 0: The basic layout described above with no Gaussian noise;

• Model 1: The basic layout described above with Gaussian noise with σ = 0.5 for applied
at the first hidden layer.

Model 1 aims to test whether corrupting network signals forces the network to better generalise
to the data. Model 0 will show what the ‘natural’ response of the network is. If Model 1
demonstrates the best performance, then it is possible Model 0 over fits to the data. If Model 0
demonstrates the best performance, then the Gaussian noise was not necessary and was im-
peding the function of the network.

Since this is a preliminary investigation aiming to validate the use of neural-networks for
regression tasks in particle physics, only the µ τh b b final-state category is investigated. This
was chosen because it contains both hadronic and leptonic decays for the τ leptons, and has a
higher acceptance than the e τh b b category.

5.1.1 Feature definitions

In order to train a classifier, we consider sets of features which describe the events and the final-
states. For ease of reading, we collectively refer to the b jets and τ leptons as ‘the low-level
objects’, and the Higgs bosons and their vector sum (the di-Higgs vector) as ‘the high-level
objects’. The sets of features are defined below.

Low-level features 17 features which characterise the basic final-states in the events.

• The momenta of the low-level objects, which may be considered in the reconstructed and
regressed regimes using the regressors developed in Sec. 4.2; 12 features.

• The reconstructed px and py of the missing momentum vector; 2 features.

• The reconstructed masses of both b-jets and the τ -jet; 3 features.

High-level features 13 features which characterise the high-level objects in the events.

• The momenta of the high-level objects, which may be considered in the reconstructed
and regressed regimes; 9 features.

• The masses of the high-level objects, which may be considered in the reconstructed and
regressed regimes; 3 features.

• mT ; 1 feature.

Momenta and energy features 14 features which offer more compact information on the
kinematics of objects in the events. All of these may be considered in both the reconstructed
and regressed regimes.

• The absolute momenta (|p|) of the low-level objects; 4 features.

• The absolute momenta (|p|) of the high-level objects; 3 features.

• The absolute energy (E) of the low-level objects; 4 features.

• The absolute energy (E) of the high-level objects; 3 features.
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Final-state momenta-difference features 50 features which relate the momenta of objects
to one another. We consider the addition of the element-wise difference in pairs of objects’ 3-
momenta and the twist of pairs of objects. The twist between objects i and j is calculated
according to Eq. 7:

τi,j = tan−1 ∆φi,j
∆ηi,j

, (7)

where ∆φi,j and ∆ηi,j are the difference in φ and η between objects i and j, respectively [33].
Again, these may be considered in both the reconstructed and regressed regimes.

• The difference in momenta for all combinations of low-level objects and −→p miss
T ; 26 features.

• The difference in momenta for all combinations of high-level objects and −→p miss
T ; 15 fea-

tures.

• The twist for all combinations of low-level objects; 6 features.

• The twist for all combinations of high-level objects; 3 features.

Multiplicity features 4 features which help characterise global event by returning the mul-
tiplicity of physics objects.

• Njets, the number of jets in the event.

• Nb−jets, the number of b-tagged jets in the event.

• Nτ−jets, the number of τ -tagged jets in the event.

• Nγ, the number of photons in the event.

Global kinematic-features 13 features which help characterise global event by returning
the kinematics of physics objects.

• Min (pT ), pT , and Max (pT ), the event-wise minimum, mean, and maximum pT of jets,
respectively; 3 features.

• Min (η), η, and Max (η), the event-wise minimum, mean, and maximum η of jets, respec-
tively; 3 features.

• Min (M), M , and Max (M), the event-wise minimum, mean, and maximum invariant
mass of jets, respectively; 3 features.

• HT , the scalar sum of the transverse energy of all jets.

• sT , the scalar sum of −→p miss
T , light-lepton pT , photon pT , and HT .

• Evis, the sum of visible energy.

• Centrality, the scalar sum of the pT of all objects divided by Evis.
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Event-shape features Up to 12 features which characterise the shape of events, defined
using the eigenvalues of the following tensors:

sphericity tensor =
1∑
i |
−→pi |

2

∑
i

pi,xpi,x pi,xpi,y pi,xpi,z
pi,ypi,x pi,ypi,y pi,ypi,z
pi,zpi,x pi,zpi,y pi,zpi,z

 , (8)

and

spherocity tensor =
1∑
i |
−→pi |
∑
i

 1

|−→pi |

pi,xpi,x pi,xpi,y pi,xpi,z
pi,ypi,x pi,ypi,y pi,ypi,z
pi,zpi,x pi,zpi,y pi,zpi,z

 , (9)

where
∑

i is a summation over either all objects in the event or just the low-level objects. The
eigenvalues of the tensors are then calculated, ordered, and normalised such that: λ1 ≥ λ2 ≥ λ3

and λ1 + λ2 + λ3 = 1. The following features are then calculated according to Ref. [34]:

• Sphericity and spherocity: S = 3
2

(λ2 + λ3).

• Aplanarity and aplanority: A = 3
2
λ3.

• Υ of sphericity: Υ =
√

3
2

(λ2 − λ3).

• Shape of spherocity: D = 27λ1λ2λ3

5.2 Feature selection

In this section we aim to decide on which features from Sec. 5.1.1 should be used as inputs to
our classifier in order to get the greatest performance for the fewest number of input features.
Tab. 12 lists the results for all development tests, and in the remainder of the section we aim to
lead readers through the tests which were performed. Since these tests involve a large number
of features, there is the possibility that the classifier might over fit to the data. Because of
this we initially only consider Model 1, since the Gaussian noise should force the network to
generalise to the data. Having selected the smallest, most performant feature set we will then
test the response of Model 0, to see whether the Gaussian noise is necessary.

In order to help highlight the significance of results, we perform hypothesis tests and report
the p-values. The exact statement of the hypotheses varies from stage to stage, and will be
described in the documentation of each stage.
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Architecture Mean BCE Mean Accuracy [%] Nfeatures P-value
First stage: Coordinate system

Set 0 0.199± 0.004 91.9± 0.2 17 -
Set 1 0.1371± 0.0009 94.71± 0.07 17 -

Second stage: All features
Set 2 0.107± 0.001 95.81± 0.06 123 -
Set 3 0.1123± 0.0007 95.60± 0.04 123 -
Set 4 0.119± 0.002 95.2± 0.1 123 -
Set 5 0.111± 0.0011 95.64± 0.05 123 -

Third stage: Removal of momenta and energy features
Set 6 0.115± 0.002 95.52± 0.07 116 0.00
Set 7 0.110± 0.001 95.72± 0.06 113 0.13

Fourth stage: Removal of final-state momenta-difference features
Set 8 0.1087± 0.0009 95.71± 0.04 97 0.21
Set 9 0.108± 0.001 95.76± 0.08 108 0.35
Set 10 0.1097± 0.0006 95.72± 0.04 117 0.06
Set 11 0.107± 0.001 95.82± 0.05 120 -

Fifth stage: Removal of global and shape features
Set 12 0.110± 0.002 95.66± 0.06 114 0.12
Set 13 0.1094± 0.0004 95.70± 0.04 114 0.10
Set 14 0.1088± 0.0003 95.75± 0.05 107 0.18
Set 15 0.109± 0.001 95.70± 0.03 116 0.17

Final stage: Model selection
Set 11 Model 0 0.119± 0.003 95.4± 0.1 120 -
Set 11 Model 1 0.107± 0.001 95.82± 0.05 120 -

Table 12: Summary of classifier-development tests.

5.2.1 First stage: Coordinate system

In Sec. 4 the 3-momenta were transformed into a Cartesian coordinate system. These first tests
aim to decide on whether to use 3-momenta in terms of pT , η, and φ or px, py, and pz. In
order to accentuate the effect of altering the coordinate system, we will just consider low-level
features.

With this in mind, we consider two sets of features:

• Set 0: Reconstructed pT , η, and φ of the low-level objects, reconstructed pT and φ of
the missing momentum vector, and reconstructed masses of both b-jets and the τ -jet; 17
features in total.

• Set 1: Set 0, but using Cartesian coordinates for 3-momenta (px, py, and pz); 17 features
in total.

Due to both coordinate systems being equally complex, no justification for picking one over
the other is required other than performance, so we will not perform hypothesis tests at this
point.

From the results in Tab. 12, we see that Set 1 (Cartesian coordinates) outperforms Set 0
(pT , η, and φ), so we will proceed to use momenta in the Cartesian coordinate system.
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5.2.2 Second stage: All features

The classification power of neural networks stems from their ability to discover high-dimensional
patterns in data. In order to ensure that the classifier is a powerful as possible, we will feed
in all available features and then proceed to remove sets of features if it is shown that doing
so does not significantly reduce the classifier’s performance. We consider the follow sets of
features:

• Set 2: All features, working in the Cartesian system with regressed momenta and recon-
structed masses; 123 features in total.

• Set 3: All features, working in the Cartesian system with regressed momenta and regressed
masses; 123 features in total.

• Set 4: All features, working in the Cartesian system with reconstructed momenta and
reconstructed masses; 123 features in total.

• Set 5: All features, working in the Cartesian system with reconstructed momenta and
regressed masses; 123 features in total.

From Tab. 12 we see that Set 2 (regressed momenta and reconstructed masses) demonstrates
the greatest classification power (has the lowest BCE).

5.2.3 Third stage: Removal of momenta and energy features

We will now proceed to attempt to remove sets of features from Set 2 in order to report the
smallest, most performant set of features. Feature sets will be removed if it is shown that
doing so results in no significant drop in performance. We define ‘significant’ by performing a
one-tailed t-test at a significance level of 0.9 for the null hypothesis that the loss of the proposed
set is greater than the loss of Set 2, against the alternative hypothesis that the loss of Set 2
and the proposed set are equal. In the case that the loss of the proposed set is less than the
loss of Set 2, we will proceed to accept that as the null set. Whilst this test induces a high
probability of type-I errors (retention of features which do not aid classification), we believe
that the occurrence of a type-II error (removal of discriminant features) is a risk worth taking
measures to avoid.

• Set 6: Set 2 minus |p| of the regressed low-level objects, and the regressed high-level
objects; 116 features in total.

• Set 7: Set 2 minus E of the regressed low-level objects, and the regressed high-level
objects; 113 features in total.

From Tab. 12 we see that removal of the features results in a significant drop in performance,
therefore we will continue to use them.

5.2.4 Fourth stage: Removal of final-state momenta-difference features

Continuing our attempts to reduce the number of features in the most performant set, we now
examine the removal of the momenta difference and twist features.

• Set 8: Set 2 minus the difference in momenta for all combinations of regressed low-level
objects and −→p miss

T ; 97 features in total.
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• Set 9: Set 2 minus the difference in momenta for all combinations of regressed high-level
objects and −→p miss

T ; 108 features in total.

• Set 10: Set 2 minus the twist for all combinations of regressed low-level objects; 117
features in total.

• Set 11: Set 2 minus the twist for all combinations of regressed high-level objects; 120
features in total.

We see, in Tab. 12, that Sets 8, 9 and 10 demonstrate significant drops in performance,
however Set 11 demonstrated better performance than Set 2, and contains fewer features,
therefore we proceed to accept Set 11 as the most performant set.

5.2.5 Fifth stage: Removal of global and shape features

In the final attempt to reduce the number of features in the most performant set, we now
consider the removal of the global and shape features. We update our hypothesis test to use
Set 11 as the null set.

• Set 12: Set 11 minus the shape features for the entire event; 114 features in total.

• Set 13: Set 11 minus the shape features for the low-level objects; 114 features in total.

• Set 14: Set 11 minus the global kinematic features; 107 features in total.

• Set 15: Set 11 minus the multiplicity features; 116 features in total.

Tab. 12 shows that all the new sets demonstrate significant drops in performance, therefore
we proceed to keep Set 11 as the most performant set.

5.2.6 Final stage: Model selection

Having established the smallest, most performant set of features, we proceed to choose between
the two models: Model 1 the model tested so far, which applies Gaussian noise to help force
the classifier to generalise to the data; and Model 0 the basic model, which does not apply
Gaussian noise. From the comparison in Tab. 12, we see that Model 1 outperforms Model 0,
therefore the final architecture for application is Model 1 and Set 11.

5.3 Application

It should be reported that in the development section (Sec. 5.2), the intention had been to
balance the training samples such that the summed weights of signal and background were
equal. This was to be achieved by weighting each background event by the reciprocal of the
number of background events, and by weighting each signal event by the reciprocal of the
number of signal events. By accident, however, each sample was weighted by the reciprocal of
the size of the other, increasing the imbalance between classes in the data. It is assumed that
conclusion of Sec. 5.2 (that Model 1 Set 11 is the optimal architecture) would remain unchanged
if the intended weighting had been implemented, and that the classifiers would simply have
received a slight increase in performance. Indeed, by checking a weighting-independent metric
(the area under ROC curve) for Model 1 Set 11 we find that both schemes result in similar
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performance: 0.9928± 0.0001 (intended scheme) versus 0.9927± 0.0002 (development scheme).
The authors feel that due to this similarity, the development tests in Sec. 5.2 do not need to be
repeated. In training the classifier for application we will move to using the intended weighting
scheme.

As described Sec. 5.1, the architecture consisting of Model 1 and Set 11 is trained and
tested ten times on the training data. We then form an ensemble of the three networks which
demonstrated the lowest BCE values on the training data. The outputs are weighted according
to one minus their BCE values. The ensemble prediction is then the weighted sum of each
networks’ output divided by the sum of weights. This method of ensembling allows the most
performant network to have the strongest influence over the final prediction, but to be supported
by less-performant networks in hard-to-classify events. Indeed, by comparing the ROC integrals
on training data for each classifier and the ensembled classifier in Tab. 13 we see that the
ensemble outperforms any of the its sub-components.

Classifier ROC integral
1st classifier 0.9954
2nd classifier 0.9952
3rd classifier 0.9951
Ensembled classifier 0.9958

Table 13: Performance of the top three most performant classifiers on training data, and their
weighted ensemble. Performance measured by the ROC integral; values closest to one are better.

The ensembled classifier is then applied to the validation data in order to predict the class of
each event; signal or background. The distribution of the classifier output is shown in Fig. 20.
We observe that signal and background are well clustered towards one and zero, respectively,
indicating that the classifier is able to separate well the classes of events. In Fig. 21 we plot
the receiver operating characteristic (ROC) curve. This illustrates the trade-off between signal
acceptance against background acceptance. The area of under the ROC curve should be as close
to one as possible; this would correspond to perfect separation between signal and background.
We report an area of 0.993 66± 0.000 03 on the validation data.

Figure 20: Class predictions of the classifier on validation data. 0 indicates ‘background-like’
and 1 indicates ‘signal-like’. Both signal and background are normalised to one.
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Figure 21: ROC curve for the classifier on both training and validation data.

5.4 Summary of hh→ τ τ̄ b b̄ classification studies

From the studies performed in this section, we find that neural networks are highly applicable
to the separation of signal (hh → τ τ̄ b b̄) and background (fully-leptonic t t̄) contributions in
the µ τh b b final state. Taking Fig. 20 and normalising signal and background to their cross-
section times event acceptance, we find in Fig. 22 that the background still contributes heavily
at even high values of the class prediction. An important process, which was not considered in
this preliminary study, is hyper-parameter optimisation (number of layers, number of nodes,
et cetera). Perhaps by adjusting these in a dedicated study, the separation between signal and
background might be further improved and the number of required input-features reduced.

Since the fine-tuning of the classifier parameters is likely to be extremely sensitive to the
accuracy of the simulated data, these studies should be performed on data which has been
passed through a full detector-simulation, such as Geant 4 [18, 19]. The switch to fully
simulated data is expected to cause a drop in the baseline performance of the classifier This,
however, will leave room for measurable improvements in classification power since, as seen
from the results here, the ROC curve is already close to saturation.

It is important to remember that fully-leptonic t t̄ is not the only source of background in
our search, and that other sources will contribute significantly. These must also be investigated.
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Figure 22: Class predictions of the classifier on validation data. 0 indicates ‘background-like’
and 1 indicates ‘signal-like’. Both signal and background are normalised to their respective
values of cross-section times event acceptance. The background distribution is stacked on top
of the signal distribution.

6 Classification of hh signal in b b̄ b b̄

In the following, the study of different multivariate analyses (MVA), used for the classification
of the hh→ bb̄bb̄ signal among the most prominent background, is reviewed.

6.1 Deep Neural Network classifier (SGD)

The first attempt at classifying the signal process versus background is performed by applying a
multi-layer feed-forward artificial neural-network (NN). In particular, this is a deep NN which
uses a stochastic gradient descent (SGD) algorithm to minimise the objective function J(θ)
parameterized by a model’s parameters, θ, by updating the parameters in the opposite direction
of the gradient of the objective function ∇θJ(θ) with respect to the parameters. The learning
rate η determines the size of the steps we take to reach a local minimum. The NN is implemented
with Keras [28], a high-level neural networks library written in Python.

The NN uses the 30 features identified in Sec. 3.2.1 as input. For the sake of clarity, these
features are listed below.

For each of the four selected b-jets:

• the transverse momentum pT ;

• the energy E;

• the angular variables η and φ.

For each of the two Higgs boson candidates:

• the transverse momentum pT ;

• the energy E;

• the angular variables η and φ;
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• ∆η and ∆φ, the angular distances between the two jets forming the reconstructed Higgs
boson;

• the invariant mass Minv.

The dataset is split into training and validation samples, composed by 80% and 20% of total
events, respectively. The first step is the standardisation of the features, in such way that they
are centered around zero with a standard deviation of one. This procedure is important for the
comparison of measurements which have different units, and it is also a general requirement
for many machine learning algorithms which might behave incorrectly if the individual features
are not normally distributed. Once the features have been standardised, a statistical procedure
called principal component analysis (PCA) is applied with the aim of detecting the correlation
between variables. The PCA uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables.

We define the NN using a sequential model: a linear stack of five hidden layers, each
containing 100 nodes. The initialization defines the way to set the initial random weights of
Keras layers. For all the nodes, with the exception of the output node, we use a Parametric
Rectified Linear Unit (PReLU) [29] as the activation function, which adaptively learns the
parameters of the rectifiers and prevents the saturation of the gradients in the network. The
output nodes use the logistic sigmoid function which allows binary outputs, 0 for the background
and 1 for the signal. The activations are normalised throughout Batch Normalisation which is
a transformation that maintains the mean activation close to zero and the activation standard
deviation close to one. We also apply an additive, zero-centered Gaussian noise with standard
deviation 0.5 to the input. This procedure is useful to mitigate overfitting. Dropout is also
applied to nodes (except output nodes) with a probability of 0.2 [31]. Dropout is a popular
regularisation technique with deep networks, where network units are randomly masked during
training.

The NN is trained for 50 epochs in batches of 32 events. Because of sample unbalance, the
background events have been weighted with the number of signal events in order to have an
equal sum of weights in both cases. Finally, we use the logarithmic loss function or binary cross-
entropy (BCE) during training, the preferred loss function for binary classification problems
defined in Eq. 10. The model also uses the efficient Nesterov-Adam optimisation algorithm to
minimise the BCE and the accuracy metrics will be collected when the model is trained.

BCE = − 1

N

N∑
i=1

[yn log ŷn + (1− yn) log (1− ŷn)] , (10)

In Eq. 10, N is the number of samples, ŷn is a vector of predictions, and yn is a vector of true
values. In Fig. 23 the output scores of the NN run over the validation data are reported. Intu-
itively, the more differentiated the distribution of the NN output is for signal and background
events, the more efficient the discrimination will be.
We observe a good discrimination between signal and background obtained with the NN. The
result can be quantified by making use of the ROC (Receiver Operating Characteristic) curve
in Fig. 24. The ROC curve illustrates the performance of a binary classifier system as its
discrimination threshold is varied. The curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings. The best way to summarize
ROC performance in a single number is its Area Under the Curve (AUC). Hypothetically, a
unitary value of the ROC AUC would represent a perfect discrimination of the signal among
background. The ROC AUC obtained with the NN is:

ROC AUC = 0.92130. (11)
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Figure 23: Output scores of the NN classification over the validation data.
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Figure 24: The ROC curve summarising the performance of the NN.

6.2 Boosted Decision Tree classifier

To benchmark the result obtained with the NN we also trained a XGBoost (eXtreme Gradient
Boosting [35]) algorithm, which is an implementation of gradient-boosted decision-trees in
Python. We run the XGBoost over the same features selected for the NN and defined in
Sec. 3.2.1 and Sec. 6.1. The dataset is split into a training set (80%) and a validation set
(20%). Before training the XGBoost, we standardise and decorrelate the features following the
same procedure used in Sec. 6.1. We then tune some fundamental parameters which define the
gradient-boosted decision-tree model. We set the number of boosting stages to perform the
XGBoost to 1000 and the learning rate of the algorithm to 0.1. Gradient boosting is fairly
robust to over-fitting so a large number usually results in better performance. The maximum
depth limits the number of nodes in the tree, the best value depends on the interaction of the
input variables. We set this parameter to 5. We specify the learning task and the corresponding
learning objective as “binary:logistic”. This means that the output predictions are probability
confidence scores in the [0,1] interval, corresponding to the probability that the event originates
from the signal process.
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In Fig. 25 the result of the XGBoost in terms of the multivariate analysis (MVA) output is
illustrated.
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Figure 25: Output scores of the XGBoost classification over the validation data.

As in the case of the NN we evaluate the performance of the XGBoost classifier by plotting the
ROC reported in Fig. 25.
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Figure 26: The ROC curve summarising the performance of the XGBoost.

The value of the ROC AUC is now

ROC AUC = 0.93482. (12)

6.3 Deep Neural Network classifier (Genetic Algorithm)

A second neural network (NN) has been evaluated to discriminate between the signal and the
background. In this NN the minimisation of the objective function is achieved using a Genetic
Algorithm (GA), which is a non-deterministic minimisation strategy suitable for the solution
of complex optimization problems, for instance when a very large number of quasi-equivalent
minima are present [36]. The neural network is characterized by 17 input variables and two

42



hidden layers of 5 and 3 nodes respectively. In every node, a sigmoid activation function
evaluates the inputs of the previous layer and provides an output in the range [0, 1] that can
be interpreted as the probability of having a signal event. The input variables of the neural
network are:

• the transverse momenta of the reconstructed Higgs candidates;

• the transverse momentum of the reconstructed Higgs pair.

• the invariant masses of the reconstructed Higgs candidates;

• the invariant mass of the reconstructed Higgs pair;

• the energies of the reconstructed Higgs candidates;

• the separation in the φ−η plane between the two reconstructed Higgs: ∆R =
√

∆η2 + ∆φ2;

• the transverse momenta of the four b-jets coming from the decays of the two Higgs;

• the separation in η (∆η) between the two b-jets inside every reconstructed Higgs;

• the separation in φ (∆φ) between the two b-jets inside every reconstructed Higgs.

The training of the neural network is performed on half of the MC samples that have passed
the selection described in Sec. 3.2.1. The other half of the MC samples have been used to cross-
validate the training in order to avoid over-training. The algorithm exploited for the training
of the neural network is a Genetic Algorithm (GA), which minimises a cross-entropy function.
This type of algorithm is based on the theory of evolution and natural selection [37].
In order to have an equal sum of weights, the number of background events have been rescaled
to the number of signal events. The scaled distribution of signal and background events as
function of the NN response is reported in Fig. 27.

Figure 27: Output scores of the NN classification over the validation data.
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Figure 28: The ROC curve summarising the performance of the neural network (GA).

The ROC curve providing the graphical representation of the performance of the NN is shown
in Fig. 28. For this NN, the area under the ROC curve is:

ROC AUC = 0.90696 (13)

6.4 Summary of hh→ b b̄ b b̄ classification studies

By looking at the previous results in terms of ROC AUC, we can compare the performances of
the classifiers. In general, all the reviewed MVA provide good results, with the BDT outper-
forming the two neural networks.

The GA-based NNs are more robust with respect to the potential issue of getting stuck
in local minima but they cannot be applied to minimisation problems with a large number of
parameters, as the deep neural network model considered in Sec. 6.1. In particular, the SGD
NN uses O(105) free parameters, which makes it more complex than the GA which only uses
O(102) free parameters.

Tab. 14 summarises the results provided by the three classifiers used for our hh → b b̄ b b̄
studies, in terms of ROC AUC value and complexity. For the NNs the complexity is defined by
the number of free parameters, while for the BDT classifier the complexity is specified by the
number of boosting stages (number of trees) needed to perform it and the number of nodes in
the trees (max depth).

Table 14: MVA results in terms of ROC AUC (second column). In the table is also indicated
the complexity of the MVA architecture, in terms of free parameters for the NNs and .

Classifier ROC AUC Complexity

SGD NN 0.92130 105 free parameters
BDT XGBoost 0.93482 1000 estimators, depth 5
GA NN 0.90696 102 free parameters
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7 Feature regression in b b̄ b b̄

Motivated by the results obtained when regressing generator level observables for the τ τ̄ b b̄
final state, here we extend those studies to the hh → b b̄ b b̄ process. The main goal will be to
verify whether the regressed variables can outperform those estimations obtained by classical
event reconstruction techniques.

Given the great similarities between this problem and one discussed in Sec. 4, instead
of repeating the studies comparing different strategies and models, only the best performing
approach and model for that scenario will be considered here. Therefore, a three-stage regression
procedure will also be carried out, analogous to the best performing approach for hh→ τ τ̄ b b̄
regression. However, is relevant to point out that in this case the two initial stages both
correspond to b b̄ regression, for the b-quark pairs decaying from each of the Higgs bosons.

In the following subsection, a more detailed description of the research problem that we
are trying to solve and the proposed approach which will be followed are included. Then, the
procedure and results obtained for each stage and the effect of these techniques on background
events will be discussed before summarizing the conclusions obtained and possible future work
in Sec. 7.7.

7.1 Research problem and proposed solution

Modern general purpose collider experiments, such as CMS and ATLAS at the LHC, have
in place a sequence of complex algorithms in order to analyze the low-level detector response
for each event acquired and generate a compact but much higher level representation through
a process referred to as event reconstruction. At the end of this hierarchical procedure, all
event information is reduced to a set of physics objects (i.e. data structures) of different
types: electrons, muons, taus, jets, photons and MET. The variables associated with each of
these physics objects include a four-vector (pT , η, φ and E in hadron collider coordinates)
and possibly some type-dependent features (e.g. charge sign or number of tracks). This event
representation is preferred for carrying out data analyses because it represents directly the final
state particles produced in the event and therefore is much easier to map to the underlying
theoretical physical processes.

However, some useful information can potentially be lost and a few reconstructed objects can
be artificially created (i.e. fake, not matching the true particles) through the mentioned data
reduction algorithms. In addition, a large calibration effort, based on simulation and verified
with collider data, is usually required in the experiments to adjust the reconstructed-object
variables such that they are as close as possible to the generator-level quantities. Then, the
whole event reconstruction process is the combination of some physically motivated algorithms
with extensive parametric calibration. Therefore, when only the simulation-based calibration is
considered, the event reconstruction problem can also be thought of as a supervised machine-
learning regression-problem for predicting the high-level generator object variables given the
lower-level detector information.

The advantage of using flexible machine-learning regression-techniques, such as gradient
boosting or multilayer neural-networks, instead of simpler parametric-fitting techniques is that
given enough training data they could use non-linear relationships between input variables to
improve the prediction accuracy. In particular, deep neural networks (DNN) seem to be a
good family of regression models for this problem, given the outperforming results observed in
a diverse range of regression tasks during the last few years. The usefulness of these kinds of
models for high-energy-physics data stems from their ability to learn high-level representations
directly from low-level features [38] and that they can also deal with heterogeneous and variably
sized input data (e.g. tracks, calorimeter deposits) [39, 40].
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Because in the studies presented for this report neither experiment data nor complete detec-
tor simulation is used, but a simplified simulation framework as described in Sec. 2.4, detailed
detector-level information cannot be produced. Until we can openly use full-detector simula-
tions for publicly accessible studies, we have decided to simplify our research problem to the
regression of generator level variables using relevant reconstructed event variables. By using
not only the reconstructed variable corresponding to the generator-level variable to be modelled
but also additional variables potentially correlated, we aim to obtain regressed variables which
can more accurately represent generator-level behaviour and likely be used to perform more
powerful statistical inference.

We want to study the applicability of these techniques to the hh→ b b̄ b b̄ analysis, therefore
we are going to use as a training sample the signal dataset presented in Sec. 2. The selection
is analogous to the one described in Sec. 3.2.1, the only differences being that not only the
combination of the four highest pT jets but all of those that are b-tagged are used in the Higgs-
pairing algorithm and that the Higgs-candidate invariant-mass cut is removed. Because the
generator-level object variables of the b-quark and derived variables will be the target of the
regressions, they have to be uniquely specified and in a consistent order. This is done by first
matching (i.e. ∆R ≤ 0.5) reconstructed jets with the partons coming from the Higgs decays
(before Pythia hadronization), then an event will only be used for training and testing if each
pair of jets from each Higgs candidate is uniquely matched with their gen-level hadrons and
the rest of events are filtered out.

At the end of the selection, pairing, and matching mentioned before, each event will be
composed of two pairs of jets at reconstruction level and two pair of b-quarks at generator level,
one pair from each Higgs boson in both cases. Generator level and reconstruction level for
each Higgs-boson candidate can be then easily computed and compared. The same applies to
the kinematic observables of the four-body (i.e. hh) object. The Higgs candidates’ invariant
masses and the hh invariant mass are three simple variables that can provide, by themselves,
good signal and background separation for hh and are thoroughly used in most published CMS
and ATLAS analyses to date [41, 42]. However, especially when the hh final state includes
jets or missing energy, reconstruction-level distributions of those variables are smeared out and
those differences are due to detector-resolution effects and imperfect calibration.

In this section, the regression of the three variables mentioned before will be studied. This
will be done in three stages, somewhat in line with the best result in Sec. 4. Firstly, a mul-
tivariate regression of the kinematic variables of the b-quarks originating from the decay of
the leading Higgs-boson (i.e. highest reconstructed pT ) will be carried out. The advantage of
regressing the b-quark kinematics instead of the mass directly is that the generator-level mass
is a very peaky feature (delta-like) which causes complications when training, while the b-quark
features follow a smooth distribution. The second stage will consist on a similar approach but
for the b-quarks from the trailing Higgs-boson. The regressed variables can be used to have an
alternate estimation of the Higgs invariant-mass which will only depend on reconstruction-level
information. Finally, the hh invariant-mass will be directly regressed, re-using all the features
engineered in the previous steps.

7.2 Regression model and training details

A multi-layer feed-forward neural-network, implemented using Keras an with a layout anal-
ogous to the one described in Sec. 4.2 (three hidden layers of 150, 130 and 100 units with
He-normal inilialization and PReLU activation functions [29]) will be used for all regression
problems addressed in this section. The input and output node size depends on the number of
input features and regression targets.

Batch normalization [30] is added to every layer to speed up training. The loss function
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to be minimized using Nesterov-Adam optimizer [32] is the mean squared error (MSE) for a
mini-batch of samples of size M :

MSE =
1

M

M∑
m=1

(ŷm − ym)2 , (14)

where ŷ is a vector of predictions and y is a vector of true values. After experimentation
with stochastic mini-batches of different sizes, larger batch sizes where found to achieve better
performance and be more stable during training, so m = 256 was used for all the models shown
in this work.

A total of 1M events from the original sample were available after selection and generator-
level matching, which were randomly split in a training set with 80% of the samples and test
set including the remaining. Given the large amount of training data, it is possible that larger
models (more layers or units) could achieve better performance at a higher computational cost,
which could be studied as an extension of this work.

7.3 1st step: leading h→ b b̄ kinematic regression

For this regression, the generator-level 3-momenta in Cartesian coordinates of each the b-quarks
which are the decay products of the leading Higgs-boson are used as target features. A total
of 44 input features were used, composed of the following reconstructed event-variables:

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of every
jet selected after pairing (4 jets, 24 features).

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of each
reconstructed Higgs candidate (2 Higgs candidates, 12 features).

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of the
reconstructed hh candidate (6 features).

• The transverse momenta in Cartesian coordinates of the missing transverse energy of the
event (2 features).

After training the regression model described in 7.2 for 200 epochs in mini-batches of 256
samples, the distributions of the regressed targets are shown together with the generator-level
truth and the corresponding reconstructed features for the test set in Fig. 29. The target feature
behaviour is well captured by the regressed features. For the second b-quark, ordered according
to the pT of the matched reconstructed object so it can be applied to data, the probability
density is clearly better reproduced by the regressed kinematic variables.

For easier comparison between the regressed and reconstructed features, the distributions of
their differences with respect to the generator-level target are shown in Fig. 30. The coordinates
px and pz of both b-quarks are well modelled, outperforming the corresponding reconstructed
variables. However small, but significant, biases are observed for pz, especially for the first
b-quark. This might indicate that the model chosen is not flexible enough or that it could
potentially converge to a better minimum. While this will likely not represent a problem for
the study presented here, it should be examined in greater detail in future work.
Using the regressed px, py, and pz and using the b-quark invariant-mass for each jet we can
compute all relevant kinematics for the regressed Higgs-boson candidate and compare against
its reconstructed equivalent. The regressed and reconstructed invariant-mass obtained with
this procedure is shown at Fig. 31. The generator-level mass cannot be displayed displayed in
the same representation because is effectively a delta-function at 125 GeV (the total width of
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Figure 29: Reconstructed, regressed, and gen-level b-quark momenta from the decay of the
leading Higgs-boson for hh→ b b̄ b b̄ test events.
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Figure 30: Differences between reconstructed and regressed momenta and the gen-level b-quark
momenta from the decay of the leading Higgs-boson for hh→ b b̄ b b̄ test events.
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Figure 31: Reconstructed and regression-based invariant mass of the leading Higgs-boson for
hh → b b̄ b b̄ events. The gen-level corresponding variable is not displayed but consists of a
delta-like peak at 125 GeV.

Variable m̄ [GeV] σm [GeV]
Reconstructed 118.62± 0.04 18.5± 0.6
Regressed 124.81± 0.02 10.8± 0.1

Table 15: Summary of the mean and standard deviation for the reconstructed and regressed
leading Higgs boson candidate invariant mass.

the Higgs boson is 4 MeV in the standard model). While the reconstructed leading Higgs-boson
invariant mass is smeared out and heavy tailed at lower masses, the regressed-mass distribution
is more peaked and symmetrical. This can also be seen by computing the mean and standard
deviation for each variable, which are summarized in Tab. 15. The regressed Higgs-boson
mass is much closer to the expected generator-level value and its standard deviation is greatly
reduced. While naively one could say that will likely translate to better differentiation from
background it is still to be seen the effect of the regressor on background events, which will
studied in Sec. 7.6.

7.4 2nd step: trailing h→ b b̄ kinematic regression

Similarly to the previous step, the generator-level 3-momenta in Cartesian coordinates of each
the b-quarks which are the decay products of the trailing Higgs-boson are used as target features.
A total of 55 input features are used, composed by the same 44 variables described in the first
step, plus the following 11 reconstructed event variables:

• The 3-momenta in Cartesian coordinates of the regressed b-quarks from the decay of the
leading Higgs-candidate from the previous regression stage (6 features).

• The 3-momenta in Cartesian coordinates, energy, and mass of the leading Higgs-candidate
created using the regressed b-quarks from the decay of the leading Higgs-candidate from
the previous regression stage (5 features).

After training the regression model described in 7.2 for 50 epochs in mini-batches of 256 samples,
the distributions of the regressed targets are shown together with the generator-level truth and
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Figure 32: Reconstructed, regressed and gen-level b-quark momenta from the decay of the trailing
Higgs candidate for hh→ b b̄ b b̄ test events.

Variable m̄ [GeV] σm [GeV]
Reconstructed 114.17± 0.04 20.6± 0.9
Regressed 122.57± 0.02 9.35± 0.04

Table 16: Summary of the mean and standard deviation for the reconstructed and regressed
trailing Higgs-boson invariant-mass.

the corresponding reconstructed features in Fig. 32 for the test set. The target feature behaviour
is better captured by the corresponding reconstructed features. This can be confirmed by
studying the distribution of the per jet differences with respect to the generator-level provided
in Fig. 33. The coordinates px and pz of both b-quarks are very well modelled, outperforming
the corresponding reconstructed variables. Small biases are observed for the pz, especially
for the first b-quark, which were also seen in Sec. 7.3, where their origin and importance are
discussed.
As in the previous step, using the regressed px, py and pz along with the b-quark invariant mass
for each jet we can compute all relevant kinematics for the regressed Higgs-boson candidate and
compare against its reconstructed equivalent. The regressed and and reconstructed invariant-
masses obtained with this procedure is shown at Fig. 34. Again, we observe that the regressed
distribution is more peaked and symmetrical than the reconstructed distribution of the trailing
Higgs invariant mass. A summary of the results is provided in Tab. 16, evidencing that again
the regressed Higgs-boson mass is closer to the generator-level value and its standard deviation
is greatly reduced. The same caveat discussed supra applies here: the improvement does not
directly traslate in a better separation of signal and background, which is discussed in Sec. 7.6.
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Figure 33: Differences between reconstructed and regressed momenta and the gen-level b-quark
momenta from the decay of the trailing Higgs candidate for hh→ b b̄ b b̄ test events.
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Figure 34: Reconstructed and regression-based invariant mass of the trailing Higgs-boson for
hh → b b̄ b b̄ events. The corresponding gen-level variable is not displayed but consists of a
delta-like peak at 125 GeV.
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Figure 35: Reconstructed, regressed, and gen-level hh system invariant-mass.

7.5 3rd step: hh mass regression

For this regression, the problem is simplified to univariate regression because only the generator-
level hh invariant mass is the target. A total of 71 input features were used, composed of the
following reconstructed event variables:

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of every
jet selected after pairing (4 jets, 24 features).

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of each
reconstructed Higgs-candidate (2 Higgs candidates, 12 features).

• The 3-momenta in Cartesian coordinates, energy, mass, and momenta modulus of the
reconstructed hh-candidate (6 features).

• The transverse momenta in Cartesian coordinates of the missing transverse energy of the
event (2 features).

• The 3-momenta in Cartesian coordinates of the regressed b-quarks from the decay of the
Higgs candidate from the previous two regression stages (12 features).

• The 3-momenta in Cartesian coordinates, energy, and mass of the Higgs candidate cre-
ated using the regressed b-quarks variables from the two previous regression stages (10
features).

• The 3-momenta in Cartesian coordinates, energy, and mass of the hh candidate created
using the regressed b-quarks variables from the two previous regression stages (5 features).

After training the regression model described in 7.2 for 50 epochs in mini-batches of 256
samples, the distribution of the regressed target is shown together with the generator-level
truth and the corresponding reconstructed feature in Fig. 35 for the test set. The target-
feature behaviour is much better captured by the regressed feature than the corresponding
reconstructed feature. This can be confirmed by studying the hh invariant-mass differences
with respect to the generator-level in Fig. 36.
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Figure 36: Differences of the reconstructed and regressed hh invariant-masses with respect to
the generator-level value.

7.6 Background regression response

For training and testing the regressor in the previous studies we have only dealt with generator-
matched events from the hh → b b̄ b b̄ process. However, if this regressors where going to be
applied to experimental data it is important to check the regressor response over background
events. In this section, the regressed distributions for the main analysis-background, b b̄ b b̄ via
QCD, will be studied and compared with the reconstructed variables.

The reconstructed and regressed Higgs invariant masses for the hh→ b b̄ b b̄ and b b̄ b b̄ QCD
background are shown in Fig. 37 and Fig. 38, for the leading and trailing candidate respectively.
In both cases, the reconstructed background density is soft and with very long tails. Instead,
the distribution of the regressed invariant masses are strongly altered, behaving similarly to the
hh→ b b̄ b b̄ events by peaking around 125 GeV. This would affect the performance if we were
to use directly the regressed variables instead the reconstructed for doing statistical inference
based solely on the shape of their distributions. Nevertheless, these variables could potentially
be useful as features of a machine learning classifier which discriminates signal from different
backgrounds, as demonstrated for τ τ̄ b b̄ in Sec. 5.

The extreme morphing of the background invariant-masses could be explained by the fact
that the model has only be trained with a sample for which the generator-level Higgs-boson
invariant-masses were constant at 125 GeV. Even though the px, py, and pz of the b-quarks
were the regression targets, rather than the Higgs-boson invariant-mass, it is very likely that
an approximation of the implicit relation:

(E0 + E1)2 − (p0
x + p1

x)
2 − (p0

y + p1
y)

2 − (p0
z + p1

z)
2 = m2

h, (15)

where the 0 and 1 super-indices correspond to each b-quark coming from the decay of the Higgs
boson, was learned during the training process. If an approximate internal representation as
such has been learned, that would help improving the performance but could result in the
observed effect when computing the Higgs-candidate invariant-mass. In a sense, the model
has learned a physics-based relation between the variables present in the training data which
is assumed and applied during evaluation even if the data is different from the one used for
training.
The regressed and reconstructed hh invariant-mass using the model trained in Sec. 7.5 was
evaluated for background events and the resulting distribution are shown in Fig. 39. The
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Figure 37: Reconstructed and regression-based invariant mass of the leading Higgs-candidate
for hh→ b b̄ b b̄ and background b b̄ b b̄ events.
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Figure 38: Reconstructed and regression-based invariant mass of the trailing Higgs-candidate
for hh→ b b̄ b b̄ and background b b̄ b b̄ events.
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Figure 39: Reconstructed and regression-based invariant mass of hh system for hh → b b̄ b b̄
and background b b̄ b b̄ events. The generator-level distribution for signal is also shown.

regressed-background distribution also differs importantly from the reconstructed, the low-mass
tail being greatly reduced and the main peak increased and shifted towards higher energies.
Separation of signal from background is not clearly improved, but nevertheless the regressed
variables might also be useful for future classification-studies.

7.7 Summary of hh→ b b̄ b b̄ regression studies

In this study the generator-level variables for the b-quarks and hh candidates have been re-
gressed using deep neural-networks trained on a large, fast-simulation data-sample of events
for the hh → b b̄ b b̄ decay channel. While the regression was able to model very accurately
hh → b b̄ b b̄ events, the regressed features will likely not help to distinguish signal and back-
ground by themselves but could be of used as inputs for another machine-learning classifier.
One interesting challenge for the future would be to process the event reconstruction problem
in a process-independent way from a supervised machine-learning perspective. One of the still
unsolved difficulties is how to successfully deal with type heterogeneity for both input (tracks,
calorimeter towers and other variable sized low-level detector information) and targets (type
and measurable properties of all final state particles, which is also of a variable size set).

8 Conclusions

In this document we present the results of studies performed with advanced multi-variate
algorithms applied to the problem of improving our sensitivity to the rare process of Higgs-
boson pair-production at the LHC. The studies concentrated on two decay channels of interest
to the AMVA4NewPhysics institutions: the one involving two tau-leptons and two bottom-
quark jets, and the one involving four bottom-quark jets.

In both cases we studied the regression of quantities derived from detector measurements
to target features of relevance to the analyses: the kinematic variables of the Higgs-boson
decay-products and the invariant-mass of the hh system. Significant improvements were found
in both considered decay channels: mass-resolution increases of 50 % and 60 % for the Higgs
boson in the b b̄ and τ τ̄ decay channels, respectively; and di-Higgs-mass resolution increases of
60 % in both the b b̄ b b̄ and τ τ̄ b b̄ decay channels.
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We also studied the classification problem of distinguishing di-Higgs events from the main
background, obtaining very promising performances with the complex deep neural-networks
employed in the τ τ̄ b b̄ study, and with an advanced BDT implementation in the b b̄ b b̄ study,
which was found to outperform an earlier attempt with a deep neural-network.

In the case of the τ τ̄ b b̄ decay channel we also examined the benefits of employing the
regressed variables in the classification problem. Doing so, we were able to achieve a 10%
percent improvement in classifier performance.

Due to the fact that the generation of the datasets made use of a quick, but potentially
inaccurate, detector simulation (Delphes), and that the detector geometry corresponded to
something in between the ATLAS and CMS detectors, the studies presented in this document
cannot be used in their current forms for experimental searches at ATLAS or CMS. However,
they provide a strong foundation for the application of advanced machine-learning technology
to fully simulated datasets, and eventually to real collider data. We intend to now proceed
in that direction but will be unable to document in public reports the results of those further
investigations, due to the restrictive rules of the experimental collaborations.
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A Software details

Software Version References Use/Notes
Keras 1.05 [28] Implementing neural networks
Root 6.06/04 [20] Analysis of Monte Carlo data
MadGraph 5.2.4.2 [1] MC generation
Pythia 8.219 [3] MC generation
Powheg Box 2 [6, 7, 8, 9] MC generation
Lhapdf 5.9.1 [11] PDFs for MC generation
Delphes 3.3.2 [13, 14, 15] Detector simulation
FastJet 3.1.3 [43] Jet clustering
Scikit-Learn various [44] Cross-validation
Matplotlib various [45] Plot production
Seaborn various [46] Plot production
Theano various [47] Keras back-end
NumPy various [48] Data analysis and computation
Pandas various [49] Data analysis and computation
Statsmodels 0.6.1 [50] Kernel density-estimation
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