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Abstract

This document describes studies performed within the AMVA4NewPhysics network
to identify performant methods for the modeling of background processes to new physics
signals of interest. We focus our attention on the background arising from QCD multijet
production, and the specific use case of modeling that process in the search for a small
signal from Higgs boson pair-production and decay to two b-quark pairs. We consider
three different methods for the task at hand, and discuss in detail the most promising one:
a novel technique called “hemisphere mixing”, which is shown to allow a precise modeling
and offers several benefits with respect to competing methods. A set of detailed statistical
tests proves the value of the algorithm, which is shown to provide a suitable background
modeling for the hh→ bb̄bb̄ signal search.
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1 Introduction

Processes mediated by Quantum Chromodynamics (QCD), which often yield multijet final state
topologies, constitute a problematic background to searches for rare phenomena in hadron-
hadron collisions. Even when Monte Carlo generators can be trusted to produce a reliable
modeling of the final state under investigation, the issue is usually the huge cross section of the
involved processes, which calls for very large simulations. Computational limitations typically
end up preventing analysts from using QCD Monte Carlo samples for modeling purposes, or
limit the statistical accuracy of the measurements. One example of the above situation is the
search for non-resonant pair production of Higgs bosons in the 4-b-quark final state, hh→ bb̄bb̄,
of interest to Work Package 1 of the AMVA4NewPhysics network. The data sample on which
that search is based is collected by hadronic triggers, and is dominated by QCD processes.
Monte Carlo simulations are usually unable to cope with the large required cross sections of
the involved processes, such that when modeling multi-inverse-femtobarn datasets like those
available in Run 2 at the LHC, they are not useful tools for anything other than coarse checks.

QCD multijet final states are also very complex. Not only is the QCD matrix element of the
hard subprocess complicated by itself: to that one must add the presence of multiple parton
scattering reactions, pileup effects, and multiple emission of initial and final state radiation
following non-trivial color coherence patterns. Modeling in detail all the above features is a
quite demanding task. In fact, Monte Carlo simulations can be trusted to produce a reason-
able representation of real data only in the bulk of the phase space, and much less so in the
unexplored corners where new physics signals are most frequently sought after.

In this document we describe a novel technique which we specifically designed to address
the above problem. We also study its performance and its applicability to the search for pair
production of Higgs bosons with a decay to two pairs of b-quark jets.

1.1 Plan of this document

Section 2 discusses methods we developed in the attempt of modeling the QCD background
using estimates of the rate at which jets are found to contain a signal of b-quark hadronization.
These methods are assessed as not sufficient for the complex task of identifying a small signal
of hh pairs in LHC collider data; the following sections therefore focus on a different, more
promising method, called hemisphere mixing. In Sec. 3 we describe in detail how the hemisphere
mixing technique works. The data used for studies of the proposed algorithm are described
in Sec. 4. Section 5 describes a number of statistical tests that we performed to verify the
soundness of the method and its applicability to our considered use case. We draw some
conclusions in Sec. 6.
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2 Methods based on data-driven estimates of the b-tagging

probability

2.1 Matrix-based methods

Historically, hadron collider experiments faced with the task of modeling the difficult QCD back-
ground in multijet final states have tried with mixed success both data-driven and simulation-
based techniques. The seminal example –the first one where a parametrization of the b-quark
tagging probability was studied– is the analysis which led to the discovery of the top quark
in data collected by the CDF experiment at the Fermilab Tevatron in the nineties [3]. There,
two methods were devised to estimate the rate of “W plus jets” events (which could hide the
signature of single-lepton top-pair decays) due to QCD radiation off electroweak-produced W
bosons. A “method 1” relied on a data-driven estimate of the rate at which jets were identi-
fied to contain a signal of b-quark hadronization (called b-tagging), carried out on independent
samples of inclusive jets. An alternative “method 2” relied on Monte Carlo simulations of the
background processes to estimate the same quantity.

While hadron collider searches studying final states that include real leptons (which originate
from electroweak processes) benefit from the fact that the contributing background processes
have a relatively small cross section, searches in fully-hadronic final states have to cope with
QCD-driven processes, whose huge cross section makes a full simulation impractical. There, the
technique most frequently deployed to estimate the rate of final states rich of b-quark jets (such
as the ones we are focusing on in our activities within Work Package 1 of AMVA4NewPhysics)
is a method-1-like one, in the jargon above; it has come to be called more frequently “matrix
method”. In it, the probability that a jet contains a b-quark tag is parametrised, in control
samples of data designed to be poor in terms of signal contribution, as a function of the most
relevant observable characteristics of the jet and of the event containing it. This probability
can then be used to work out estimates of the number of b-tagged jets in an independent signal
sample. Similar methods have been extensively used, e.g. in the publication that provided
evidence for the first time an all-hadronic top-antitop signal in CDF data [2].

We studied the b-tag matrix approach as a preliminary investigation of the analysis strategy
for the hh→ bb̄bb̄ search in CMS. The starting point consists in pre-selecting data which have a
signal-like topology, i.e. events with at least four energetic jets; a requirement is made that at
least three of the jets be tagged by the b-tagging algorithm, mimicking a pre-selection already
applied by the CMS trigger used for the hh→ bb̄bb̄ search. Starting with this selected dataset
B, which due to the huge rate of QCD processes is still dominated by background processes,
one proceeds by identifying the variables characterizing the fourth jet (in order of the b-tag
discriminator value) whose value is most strongly correlated with the relative rate at which
the jet is labeled as b-tagged. The method does not attempt a distinction of jets that contain
real b-quark decay products from jets that are incorrectly b-tagged by the secondary-vertex
finding algorithm; rather, the inclusive rate of real and spurious b-tags is considered. The set
of variables most likely connected with the relative b-tagging rate (which is effectively a b-tag
probability) depends only mildly on the details of the data selection, and usually includes the
jet transverse momentum and the jet pseudorapidity.

Once the variables most strikingly affecting the b-tag probability are sorted out, one may
proceed to bin them in intervals small enough that within the bin support the probability can
be considered costant. If one is, for example, considering three jet-related variables together,
then depending on the size of the background-rich dataset B available one may decide what
is the total number of bins that produces a detailed enough mapping of the b-tag probability,
while keeping the statistical uncertainty in the individual estimates small enough. For example,

3



a one-million-jet sample divided into a three-dimensional feature space produces an average of
1000 events per bin if each variable has been divided in 10 bins. This may be appropriate if
the shape of the b-tag probability as a function of the considered variables is smooth, while a
finer division is required for more rapidly varying functions. One sees that already a 10x10x10
division of the data causes the typical relative statistical uncertainty in the binomial ratio of
tagged over total jets to surpass the value of 3%, which seriously limits the usefulness of the
approach; the typical variance-bias tradeoff is at work here, as a coarser binning reduces the
variance at the expense of a potential systematic bias due to the approximation of a varying
function with its mean value within each bin.

In our application we found it possible to attempt a reduction of the variance, by operating
with only two variables: the jet pT and pseudorapidity. Hence let us consider below the
mathematical formulation of the matrix in the two-dimensional case. Under the assumption
that we operate on a signal-free dataset (where it is understood that the signal would affect the
probability estimates, as the b-tag probability of its jets would be higher), we may construct
the matrix as follows:

P (i, j) =
N b−tag(i, j)B
Nall(i, j)B

(1)

where N b−tag(i, j)B is the number of b-tagged jets contained in bin i, j in dataset B, and
Nall(i, j)B is the total number of jets in the same bin of B; i, j are identifiers of the bins for
the two considered variables over which the b-tag probability is parametrized by the matrix P .
Once the matrix is constructed using the background-rich sample B, one may turn one’s at-
tention to a subsample of data S (independent from the previous one) selected in such a way
that the signal component might be visible there. A prediction of the number of background-
contributed b-tags in the signal sample S can be obtained as follows:

NS
bgr b−tags,exp =

∑
i

∑
j

P (i, j)N(i, j)S (2)

where N(i, j)S is the number of jets in bin (i, j) found in the data sample S. Since the above
procedure can be applied to any subset of the signal-enriched dataset S, one may obtain with it
a quantitative estimate of the number of background-produced b-tags integrated over all space
or, which is even more proficuous, differentially as a function of whatever interesting variable
one wishes to study. One common choice for the latter is a signal-discriminating variable. In
the case of our interest, we have two discriminating variables of interest: the invariant mass
of the first and the second dijet pair, once the four selected jets have been effectively paired
to reconstruct the hh decay topology (the pairing algorithm is described below). In that case,
one may verify whether the background prediction agrees with the observed data in regions
where the signal is not expected to contribute; this is useful in order to confirm the soundness
of the procedure and to provide an estimate of the systematic uncertainty on the background
prediction.

In Fig. 2 we show how the b-tag parametrization, obtained using data in a control region
devoid of signal, can faithfully reproduce the density of one-dimensional distributions of relevant
kinematical variables. In Fig. 3 (left) we show how the number of events with four b-tags in a
sample of pure background events, divided in the two-dimensional plane of the two reconstructed
dijet masses, is well predicted by the matrix method. The same procedure evidences instead
an excess of events over background predictions when the procedure is run on a mixed sample
of background and signal (Fig. 3, right).

The overall evaluation of the matrix method for the search of non-resonant Higgs pair
production is that it reliable, as it produces the expected results. However, there are two
issues with the studied application. The first one is the need to rely on an insufficient base
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Figure 1: Example of parametrization of the b-tagging probability as a function of the pT (horizontal
axis) and absolute value of jet pseudorapidity (vertical axis) of the fourth jet (ordered by the b-tag
discriminator value). Here is shown the result of the exercise on a Monte Carlo simulation of tt̄ decays.
The binning in the two variables has been chosen as a compromise of two different requirements: to try
and optimize the relative population, obtaining a roughly constant variance of the resulting probability
estimates, and to prevent the b-tag probability from varying too much within single bins. The left
graph on the top row shows the distribution of b-tagged jets, the right graph shows the distribution of
all considered jets in the B sample. The graph in the second row shows instead the estimated b-tag
probability, obtained as the ratio of the two previous distributions.

of “control region” data, which results in the matrix-based probability estimate being affected
by a significant statistical uncertainty, even when only a two-dimensional parametrization is
used; the second is the fact that, at least for what concerns the search performed with the
CMS experiment, the data used for the parametrization (named B sample) already contains
three b-tagged jets because of the trigger requirements applied by the experiment’s online data
acquisition system, and thus is not completely signal-free; the signal contamination is small, but
it is not negligible with respect to the signal contamination of whatever signal-rich region one
may define once a selection of four-b-tagged events is applied. This relative non-negligible nature
of the signal contamination in the control region affects the estimated b-tagging probability with
a positive bias, which results in a negative bias on the extractable signal component in the signal
region. This is a common issue of matrix-based methods, which is indeed usually corrected by
an iterative procedure. However, in our case the contamination cannot be reduced to a level
small enough that the resulting systematic uncertainties on the strength of the extractable
signal be acceptably small. For these reasons, we conclude that we need to try and devise
an algorithm which offers greater sensitivity to the modeling of the QCD backgrounds for the
hh→ bb̄bb̄ search.

5



leading dijet invariant mass
80 100 120 140 160 180

ev
en

t c
ou

nt
s

0

100

200

300

400

500

600

700

800

900

bkg truth

bkg est.

trailing dijet invariant mass
80 100 120 140 160 180

ev
en

t c
ou

nt
s

0

100

200

300

400

500

600

700

800

900

bkg truth

bkg est.

four jet invariant mass
200 300 400 500 600 700 800

ev
en

t c
ou

nt
s

0

200

400

600

800

1000

1200

bkg truth

bkg est.

Figure 2: Top row, left: Distribution of the leading dijet mass in background-pure data compared to the
background prediction; right: distribution of the trailing dijet mass. Bottom row: distribution of the
di-Higgs mass. In all graphs, the original simulated data is in blue, and the matrix-based background
prediction is in green.

2.2 The nearest-neighbor approach

A variant, and a possible improvement, of the matrix method described in the previous subsec-
tion is constituted by nearest-neighbor-based parametrizations of the b-tagging probability, in
the feature space of kinematical observables correlated to the b-tag rate from spurious as well
as real b-quarks. Rather than estimating the b-tagging rate in fixed intervals of the variables, as
the matrix method does, nearest-neighbor estimates operate a continuous interpolation of the
same quantity. Although the “curse of dimensionality” is not really reduced by the continuous
estimate of the rate, the method does improve over matrix approaches, especially since it can
easily handle situations where the b-tagging rate depends non trivially on more than three or
four variables at the same time. A demonstration of the viability of this approach has been
obtained by members of the network in the search for Higgs decays to b-quark pairs associated
to additional, QCD-produced b-quark pairs [16], a signature of relevance for Supersymmetric
models. This is exactly the same final state as the one considered in the hh→ bb̄bb̄ search we
are focusing on here, so the conclusions one may draw from those studies apply here as well.

In the article cited above an adaptive definition of the distance metric was implemented,
which optimized it as a function of the parameter space point where the probability estimate
was to be evaluated. More details of the procedure are provided in Appendix A A.

Although the nearest-neighbor method remains viable and promising, we decided after some
preliminary studies to not implement it for our Higgs pair production searches. The reason
for our decision is again that its application requires the availability of large samples of data
with a small number of b-tags (e.g. two, with respect to the four b-tags required to the data in
the signal region). The trigger selections have become more strict as the LHC instantaneous
luminosity grew from Run 1 to Run 2, and the data on which we are performing our searches
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Figure 3: Left: Distribution of the residuals (see text) in the plane constructed with the reconstructed
dijet invariant masses, for a background-pure sample. Right: residuals in the same plane, when the
used sample includes a significant signal fraction. The accumulation of red and brown bins in the
region between 100 and 150 GeV of the two dijet masses indicates that an excess of b-tagged jets is
present there, betraying the presence of a hh signal component in the tested dataset.

today must pass tighter level of selection with respect to those collected in 2011 (which were
the basis of the above cited article). This caveat applies in particular to the CMS experiment,
which at the time of writing has not deployed an improved pixel detector in its tracking, and has
therefore a harder task than ATLAS at rejecting events with light-flavoured jets at trigger level.
The tighter selection means that the statistical precision of nearest-neighbor estimates of the
b-tag probability would be seriously degraded, at least in the case of CMS. We therefore decided
to move to an entirely different concept for a background modeling: one not connected with
the quantitative estimate of the number of b-tagged jets as a function of the event kinematics,
but rather aiming at a modeling of the background density by exploiting the specificities of
QCD multijet production. Such a method can offer benefits to both LHC experiments in their
searches for Higgs pair production. It is called “hemisphere mixing” and is introduced in the
next section.
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3 Hemisphere mixing

Event mixing techniques are not a novelty in experimental particle physics: they were used
with success in many instances in the past. The setting was in almost all instances that
of electron-positron collisions, where both the initial and the final state of the collision is
relatively clean, and when the physics of the interaction makes the event more manageable
from a purely topological point of view. Event mixing techniques were also used in a recent
CMS publication based on work of AMVA4NewPhysics members; there, the context was that
of low-energy collisions and the study targeted the “Bose-Einstein correlations” arising between
pairs of pions or kaons of low momentum [21, 20]. To our knowledge, no other use of similar
ideas have been made in the search for rare phenomena at the LHC; the same studies cited
above used the idea of event mixing in a restricted way with respect to what we are going to
describe here; the target of the mixing there was the property of charged tracks, which are
considerably more simple than hadronic jets as a whole.

The complexity of the physics of high-energy multijet production makes the idea of employ-
ing event mixing techniques for the modeling of those processes weird enough that one could be
tempted to discard it without a second thought. However, that would be a mistake. One can in
fact think of multijet events as the result of a very simple, tree-level 2→ 2 parton-parton scat-
tering, made complex by “second order” radiation effects. Taking such a standpoint one may
more clearly accept that the kinematics of those two tree-level partons can be made the key to
an effective mixing model. If those two partons can be considered separately, then they can also
be substituted with others of similar characteristics. The details of the final state produced by
each leading parton can thus be modeled independently. Working along this line of thought we
have developed a very effective and entirely new modeling algorithm, which we called “hemi-
sphere mixing”. This technique, developed within Work Package 4 of the AMVA4NewPhysics
network, is the main subject of the remainder of the present document.

3.1 The mixing idea

In the days of Z-pole electron-positron machines, the simplicity of the collisions allowed one to
study events by defining a “thrust” direction using particles produced in the final state. The
thrust axis is defined as the direction of space which maximizes the sum of particle momenta
projections along itself, T :

T =
∑
j

pj| cos ∆θTj| (3)

In passing, we also define a related variable we will use later, Ta:

Ta =
∑
j

pj| sin ∆θTj| (4)

Above, ∆θTj is the angle that observed particle j makes with the thrust axis. If one studies
Drell-Yan production, the thrust axis is a useful seed for a reference system describing the final
state. Since the center of mass is at rest in the laboratory system, the event can be divided
in two hemispheres, constructed such that the plane dividing them is orthogonal to the thrust
axis. For a hadronic event this proves advantageous. Soft colour-reconnection processes do
make the two hemispheres “talk” to each other, but this is a low-energy effect and it does not
appreciably spoil the above picture.

In hadron-hadron collisions the center of mass is not at rest in the laboratory system, so
even a two-body final state does not lend itself to an interpretation in terms of unrelated

8



hemispheres. A boost to the center-of-mass system would allow to employ that schematization,
but that approach fails due to the limited acceptance in rapidity of relevant detector components
(in particular the tracker, which we rely upon for b-tagging, one of the most powerful weapon
at our disposal in the selection of a signal-rich sample of data). In presence of a reduction of
the phase space, the boost creates non linearities in the resulting distributions which make any
modeling arduous. What one can do is to abandon the idea of a three-dimensional thrust axis,
and use instead a two-dimensional one, constructed in the transverse plane. Then, one can still
talk of “hemispheres”, provided that it is understood that these are in reality hemi-cylinders,
with the beam line as the axis of the cylinder.

The question is whether the schematization of a multijet event as the incoherent sum of
two hemispheres as defined above can be of any help in modeling hadron-hadron collisions. Let
us push this idea a bit further. We may consider an energetic QCD proton-proton collision as
it develops. At tree level, two quarks or gluons of high transverse momentum are emitted in
the final state, almost perfectly back-to-back in azimuth. Forward and backward evolution add
complexity to the picture, by including final-state radiation (FSR) and initial-state radiation
(ISR) effects of progressively lower Q2. What eventually remains of the two final state objects
is a pair of hadronic jets, accompanied by many others which may compete with or even
surpass the transverse momenta of the original pair. Additional parton-parton interactions
in the same proton-proton reaction provide further confusion, but have usually a smaller Q2;
the same happens with pile-up from other proton-proton collisions. It remains to be seen to
what extent do sub-leading processes modify the tree-level picture, spoiling the usefulness of
the two-hemisphere idealization.

Rather than trying to answer that question directly, in this document we take a different
approach: we assume a total absence of correlations in the kinematics of jet emissions in the two
hemispheres, and proceed to exploit that assumption to model QCD multijet events kinematics
by sewing together hemispheres observed in different events. A comparison of the model with
the original data can then highlight the extent to which the method can be relied upon for
specific applications.

3.2 The library of hemispheres

We take a dataset of QCD multijet events, and for each event we compute the thrust axis in
the transverse plane, using the identified hadronic jets of the event. Once we know the thrust
axis, we take at random one verse as a reference: this defines a two-dimensional unit vector ~t
in the transverse plane. At this point we can divide the jet list in two, depending on the sign
of the cosine of the angle between the jet azimuth and the thrust versor,

S = sgn(cos(φj − φt)). (5)

We store in a library separately the two collections: each determines one hemisphere; hence
from a dataset of N events we obtain a library of 2N hemispheres. Each hemisphere can be
characterized by the number of jets it contains, the number of b-tagged jets, the magnitude of
the thrust contributed by the jets. Other possible kinematical variables can also be constructed,
like the total invariant mass of the jets, etcetera. A list of some important kinematical variables
for this study is provided in Sec. 4.5. A graphical description of the working of the algorithm
is given in Fig. 4.

3.3 Mixing hemispheres

Let us go back to the original dataset of N events. Each event can be described by the variables
related to the two original hemispheres that make it up: thrust of the jets contained in the
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Figure 4: Schematic description of the algorithm concept.

hemisphere (T ), number of jets (Nj), number of b-tags (Nt), combined mass of the jets (M),
the variable called Ta (see above), and the sum of the jets pz components. We may label
them as h1(Nj, Nt, T,M, Ta, Pz) and h2(Nj, Nt, T,M, Ta, Pz). We now look in the library for
two hemispheres hp and hq that are similar to h1 and h2, in the sense that they have the same
value of Nj and Nt, and have small distance D(1, p), D(2, q) in the feature space spanned by
the additional continuous variables T , M , Ta, Pz:

D(1, p)2 =
(T (h1)− T (hp))

2

VT
+

(M(h1)−M(hp))
2

VM
+

(Ta(h1)− Ta(hp))2

VTa
+

(|Pz(h1)| − |Pz(hp)|)2

VPz

(6)

D(2, q)2 =
(T (h2)− T (hq))

2

VT
+

(M(h2)−M(hq))
2

VM
+

(Ta(h2)− Ta(hq))2

VTa
+

(|Pz(h2)| − |Pz(hq)|)2

VPz

(7)
Above, VT , VM , VTa , and VPz are the variances of the four considered variables. Of course, we
prevent hp and hq from being respectively equal to h1 and h2, in order to avoid reconstituting
the same event from its two original hemispheres. Also, we match the sum of longitudinal jet
momenta Pz by considering its absolute value (thus assuming, as it is safe to do in the case of
ATLAS and CMS, that the detector acceptance is forward-backward symmetric), and invert jet
pseudo-rapidities as needed in the matched hemisphere when we recombine two hemispheres to
form the modeled event. The hemispheres are rotated such that they match the original thrust
axis of the event to be modeled. Figure 5 gives a graphical description of the technique.

A naive approach to implement the previous procedure might be to loop over all hemispheres
in the library for each event in the original dataset and find the hemispheres that better match
those in the event. However, the computing time to apply the procedure to the whole dataset
of N events this way would be O(N2). That means it is not well suited to large datasets. The
matching of hemispheres is a multi-dimensional nearest-neighbor search, so it can be sped up
by using clever data structures. Since we only want to match hemispheres having the same
number of jets Nj and the same number of b-tags Nt, we start by partitioning hemispheres
into independent subsets based on their value of Nj and Nt. For each subset, a k-d tree [10]
is created, such that it partitions the multi-dimensional space in such a way that the best
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Figure 5: Graphical description of the creation of a mixed event from two hemispheres picked from the
library.

matching hemispheres (i.e. the second-nearest neighbors) for each given hemisphere can be
found in O(logN) comparison steps.

Through the above procedure we may therefore create an entirely new dataset, also consti-
tuted by N “events”. These pseudo-events –we shall call them “hemisphere-mixed events” in
the following– are constructed with hemispheres of real events, but not necessarily all of them,
as individual hemispheres could be used multiple times, and others could not be used: if we
were to create a new library of hemispheres from the hemisphere-mixed dataset we would not
in general fully reproduce the original hemisphere library.

The alert reader might have noticed that the mixing procedure “breaks” any correlations
that may exist between two halves of every event, beyond the rough agreement between the
magnitude of the transverse thrust (which is indeed approximately preserved by the matching
procedure). This is no doubt going to have some repercussions on the kinematic distributions
we can construct with the events under study. In Sec. 5 below we study whether there are
kinematic variables capable of distinguishing original and hemisphere-mixed events; yet for
now, we work under the hypothesis that the modeling does indeed not wreak havoc in the
kinematical distributions of QCD events.

One thing should already be pointed out here. If the original dataset contains a small
fraction (say, a few percents) of a physical process different from the 2 → 2 QCD events
we have been considering, then the mixing procedure is expected to smear out the difference
between that contamination and the background, such that the final result is still unaffected by
it. The reason of that effect is that the probability that a rare signal event gets replaced, by the
mixing procedure, by two hemispheres taken from the same process scales with the square of
the sample fraction. The actual probability, of course, depends not only on the signal fraction,
but also on how “recognizable” are the hemispheres of the contaminating signal, according to
the metric defined by the multi-variate distance D defined above. As long as D is constructed
with variables that do not discriminate the signal from the QCD too much, any small signal will
not affect the results of the mixing procedure, which will end up producing a hemisphere-mixed
sample showing characteristics much more similar to the dominant process.
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4 Datasets

The simulated samples used for this study were produced within the AMVA4NewPhysics ITN
in order to carry out several studies on the applicability of multi-variate statistical tools to hh
data analyses. In particular, in this analysis we will deal with signal sample corresponding to
the hh→ b b̄ b b̄ final-state and its main background component which is QCD multi-jet (mainly
b b̄ b b̄). In this section, details regarding the generation and detector-simulation of the datasets
for the mentioned processes will be provided together with information about the reconstruction
and event selection, which are preliminary steps to the application of the hemisphere mixing
method.

4.1 hh→ b b̄ b b̄ signal dataset generation

A total of 10 million events were generated at leading-order (LO), using matrix elements (ME)
from MadGraph 5 [6], for the SM process p p→ hh at a center-of-mass energy

√
s = 13 TeV.

The four-flavour scheme was used, with incoming partons being sampled from the nn23lo1 [9]
parton density function (PDF). The parton showering, hadronisation, and decays were handled
by Pythia 8 [28]. The decay channels for the Higgs bosons are restricted to h→ b b̄, so at the
end all events are consistent with the final state of interest.

The following ME requirements were modified from the MadGraph 5.2.4.2 default values
(at parton level):

• b-jets: pT ≥ 20 GeV

• jets and b-jets: |η| ≤ 3

• distance between two jets: ∆Rjj ≥ 0.1

• distance between two b-jets: ∆Rbb ≥ 0.1

while the rest where kept according to the default configuration. The leading-order production
cross section reported by MadGraph 5 is 14.518 ± 0.001 fb. Using next-to-next-to-leading-
log (NNLL) matched to next-to-next-to-leading-order (NNLO) calculations, and accounting for
top-quark mass effects to next-to-leading order (NLO), the LHC Higgs Cross-Section Working
Group [18] calculates that the production cross section for g g → hh at

√
s = 13 TeV is

33.5+1.8
−2.3fb, for mh = 125 GeV. Ref. [18] also calculates that the branching ratios for h → b b̄

is 0.5824+0.0072
−0.0074. The total theoretical production cross section is therefore 11.37+0.64

−0.80fb for the
hh→ b b̄ b b̄ process.

4.2 pp→ b b̄ b b̄ background dataset generation

A total of 10 million events were generater at LO, using MEs from MadGraph 5, for the SM
process p p→ b b̄ b b̄. The four-flavour scheme was used, with incoming partons being sampled
from the nn23lo1 PDF. The parton showering, hadronisation, and decays were handled by
Pythia 8.

The following ME requirements were modified from the MadGraph 5.2.4.2 default values
(at parton level):

• b-jets: pT ≥ 20 GeV

• jets and b-jets: |η| ≤ 3

12



• distance between two jets: ∆Rjj ≥ 0.1

• distance between two b-jets: ∆Rbb ≥ 0.1

while the rest where kept according to the default configuration. The production cross sec-
tion reported by MadGraph 5 is 1.7471 ± 0.0001 nb. Applying a LO→NLO rescaling factor
calculated in Ref. [6] of 1.73+1.13

−0.73, the theoretical cross section for p p→ b b̄ b b̄ is 3.0+2.0
−1.3nb.

4.3 Detector simulation

The simulation applied to both signal and background samples using Delphes [17, 25, 23]
was configured to produce a response in between the ATLAS [1] and CMS [15] detectors. This
choice was dictated by the need to allow researchers that belong to the two collaborations
to profit equally from these studies. A middle-ground between CMS and ATLAS also allows
results to be obtained which are not too dependent on experimental detail.

Delphes uses parametrised responses to allow the quick simulation of a real detector-
environment by reconstructing final-state objects with given efficiencies, applying resolution
effects, and simulating pile-up contributions. Whilst it is not expected to provide a simulation
as accurate as that of Geant 4 [5, 4], it is expected to be sufficiently accurate to validate the
proofs-of-concepts addressed, and the comparisons made, in this document.

4.4 Reconstruction and event selection

After simulation, events are reconstructed using the default algorithms provided by Delphes,
resulting in a set of reconstructed objects (i.e. data structures) of different types: electrons,
muons, taus, jets, photons and MET. However, only hadronic jets are relevant for the final-state
considered in this analysis, which are clusters of detector signals produced by the hadronization
products of energetic final-state partons. The reconstruction software used to reconstruct jets
is the anti-kT [12] algorithm with a radius parameter R = 0.5; the Delphes package includes
the Fastjet [13] implementation of the algorithm.

Another relevant step in event reconstruction is b-tagging, which is the identification of jets
from the decay of B-hadrons. In an actual proton collider detector, complex algorithms are used
to take advantage of the fact that the lifetime of B-hadrons is long enough to produce displaced
vertexes and tracks and achieve high identification efficiencies. Fast simulators such as Delphes
cannot model this phenomenon in detail and therefore a simple b-tagging identification efficiency
parametrization is used as a function of jet flavour, which should be of the same order of those
produced by the CMS and ATLAS detectors.

The ultimate goal of the hemisphere mixing algorithm is to accurately modeling the back-
ground of the hh→ b b̄ b b̄ and similar analyses, using real samples of data. Therefore, we have
to impose realistic analysis cuts over the simulated dataset such that the results are comparable
with those which could be obtained when applying this technique to data. Only the events that
pass all the following requirements are selected and used in this study:

• At least four with pT > 30 GeV and |η| < 2.5 have to be present in the event

• Of those jets, at least four have to be b-tagged

the rest of the events are filtered out.
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4.5 Kinematic variables

Here we give a description of the kinematic variables that are used in this study to character-
ize the background and signal datasets. Events with a multi-jet topology can be univocally
described by specifying the number of jets and the four-momentum of each of them; how-
ever, higher-level variables constructed with them can better discriminate the hh→ bb̄bb̄ decay
process from QCD backgrounds. Below is given a list of the variables explicitly cited in the
remainder of this document:

• HT is the sum of the transverse momenta pT of all observed jets in the event. It is
a variable that discriminates the high-energy production of central jets, which can be
originated by a massive particle decay, from the production of jets at smaller angles from
the beams direction, which is more characteristic of QCD processes.

• M lead
jj is the leading dijet invariant mass. This variable is computed by a procedure

described in detail below.

• M trail
jj is the trailing dijet invariant mass. This variable is also described below.

• p1T is the transverse momentum of the highest-pT jet of the event.

• ∆φ12 is the azimuthal angle (computed, i.e., in the plane transverse to tbe beams direc-
tion) between the two highest-pT jets in the event.

• ∆φ23 is the azimuthal angle between the second and third jet, ordered by pT .

• ∆φ34 is the azimuthal angle between the third and the fourth jet, ordered by pT .

• ∆η23 is the pseudorapidity difference between the second and third jet, ordered in pT .

The procedure which selects the two pairs of jets that should be identified with possible decay
products of Higgs bosons is the following. Unlike in the list above, where angular variables are
defined, jets are now ordered by decreasing value of the b-tagging discriminant value, such that
the first jets are those most likely originating from true b-quark decays. In hh signal events
the first four jets in such a list are those corresponding to the decay of the two Higgs bosons,
although mismatches and spurious b-tags do make the assignment imperfect. These four jets are
then to be paired in order to reconstruct the mass of a hypothetical Higgs boson which produced
them. The procedure by means of which the two dijet pairs are identified is the following. We
first compute the dijet invariant mass of each of the possible pairs of jets constructed with the
four b-tagged jets, obtaining three possible pairings: (M12,M34), (M13,M24), and (M14,M23).
The chosen pairing among these is the one which results in the smallest value of the absolute
dijet mass difference between the two values in the pair. This allows us to pick a pairing which
is likely to be the correct one for jet pairs in hh decay events (for which the two dijet masses
should be equal within experimental resolutions) without biasing ourselves toward accepting
pairs whose dijet masses are closest to the true Higgs boson mass. The benefit is that we
thus retain, in the resulting dijet mass variables (leading and trailing, as defined by their
value - leading being the highest-mass one), a high discrimination power between signal and
backgrounds. This can be confirmed by observing the distributions shown in the left panels of
the middle rows in Fig. 8.

The eight variables listed above are only a subset of the many possible high-level feature
variables one may construct with the jets of an event. In fact, since for each jet there are four
momentum components to consider, a full characterization of a multi-jet event involves a total
of 4Nj independent variables, where Nj is the number of jets. Many of the jets in the events
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resulting from the selection detailed in Sec. 4.4 have 6, 7 or even more jets, making the number
of possible independent features very large. We are thus facing the common problem of a high-
dimensional feature space when we wish to perform statistical compatibility tests using these
data samples. The solution, discussed in the next section, is to apply permutation techniques
to tests that consider subsets of 20 kinematic variables originally identified to describe the most
relevant kinematic characteristics of the selected events. Those 20 variables include, in addition
to the eight described above, the transverse momenta and pseudorapidities of leading jets, as
well as angles between them.

15



5 Tests of the hemisphere mixing procedure

5.1 Overview of the statistical framework

The main goal of the statistical studies is to check if the hemisphere mixing algorithm performs
according to our expectations, i.e. whether it produces artificial observations having the same
distribution as the original observed data. To this aim, we have performed both an exploratory
analysis and a formal test to evaluate a potentially significant difference between the two
distributions.

As a first exploratory step, we compare graphically the empirical distribution of the back-
ground data with the empirical distribution of hemisphere-mixed events. Since the two dis-
tributions are multidimensional, we consider univariate representations of the eight variables
considered as the most relevant for the analysis, i.e. four kinematic features (HT , transverse
momentum, leading and trailing dijet invariant mass) and four angular features (azimuthal
angle between jets and pseudo-rapidity difference - see Sec. 4.5).

The univariate visualization of the data is often performed by binning a given variable
and drawing its histogram [26]. However, the comparison of two data sets sampled from a
similar parent distribution using histograms is problematic due to the usually large variance
of the per-bin uncertainty bars. Kernel density estimation [26, 27] is a better suited method
for estimation and visualization of variable density. It mimics histograms while allowing for a
greater flexibility and smoothness, and can be regarded as a generalization of the histograms.
Given a univariate sample X1,X2, . . . ,Xn, a kernel density estimate is defined as

f̂(x;h) =
1

n

n∑
i=1

Kh(x−Xi) (8)

where K is a probability density function known as a “kernel” and h is a smoothing parameter
selected according to some optimality criterion. In the following, Silverman’s “rule of thumb”
criterion is adopted [27, p.48].

The distribution estimates are presented for the original background observations and the
hemisphere-mixed background events in Figs. 6 and 7. While not exactly identical, the dis-
tributions exhibit very similar behaviour, thus indicating a first descriptive evidence of the
effectiveness of the hemisphere mixing algorithm. Since by eye the presented densities look
quite alike we choose to also draw their ratio as a function of their domains. If the two dis-
tributions were equal, these densities ratios should oscillate around 0.5 without showing any
systematic peaks. This is roughly what we observe in the graphs; the observed disproportion
of background versus mixed events observed for the smallest values of the domain of some of
the displayed variables is likely to be caused by the known issues of kernel density estimation
on the boundaries.

For the sake of comparison of the original distributions, it is useful to also illustrate the
difference between background and signal distributions. The plots of marginal distributions of
the two different samples are presented in Figs. 8 and 9.

At this point it is important to check the effect of a signal contamination in the base
of data used in constructing the library of hemispheres. For this purpose, a different set of
hemisphere-mixed events are obtained from a dataset consisting in background observations
contaminated with a 10% fraction of signal events. These mixed events are compared with the
pure background sample (devoid of any signal contamination) in order to evaluate whether the
hemisphere mixing algorithm enjoys the further property of smearing out a possible signal, as
discussed in Sec. 3.3. In Figs. 10 and 11 we present the impact of a 10% signal contamination
on the distributions and the smearing of its characteristics caused by the hemisphere mixing
method. These figures indicate that the algorithm works according to its expectations. While
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some of the distributions do show some very slight differences, the dijet mass distributions
appear very well modeled. This is relevant as the dijet masses are the variables for which a
precise modeling is most important, as in the experimental data analysis they are usually taken
as the basis of inference on the presence of signal in the data. While in the hh search we will
be dealing with possible signal contaminations well below one percent in selected data, here we
voluntarily increase the signal fraction in order to see by eye what effect the mixing procedure
has on the signal distributions. A 10% signal contamination would definitely be detectable by
eye in the dijet mass region 100-150 GeV due to the distinctive peak in the leading and trailing
dijet masses (see Fig. 8, graphs on the right in the second and third row). Figure 10 shows
that this is not the case in hemisphere-mixed data, thanks to the smearing of the dijet mass
features of the small signal component; this is also demonstrated by the ratio graphs.

The qualitative comparisons discussed above indicate that it is worth exploring the per-
formance of the hemisphere mixing algorithm in more detail. We present below a proper
multivariate statistical analysis and a sensitive hypothesis test with that aim.
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Figure 6: On the left side is shown the kernel density estimate of marginal distributions of pure
background data (red) and of the hemisphere-mixed dataset obtained from it (blue); on the right side
of each row is shown the ratio of the two densities as a function of their domain. The marginal
distributions show four kinematic variables describing the events; see Sec. 4 for their definition. A
Gaussian kernel and Silverman’s “rule of thumb” method for bandwidth selection [27, p.48] are used.
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Figure 7: On the left side is shown the kernel density estimate of marginal distributions of pure
background data (red) and of the hemisphere-mixed dataset obtained from it (blue); on the right side
of each row is shown the ratio of the two densities as a function of their domain. The marginal
distributions show four kinematic variables describing the events; see Sec. 4 for their definition.
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Figure 8: On the left side are compared the distributions of four kinematic variables for background
(red) and signal (green). On the right a mixture of 90% background and 10% signal (green) is compared
to the background alone (red). From the graphs it is evident that a 10% contamination is very well
distinguishable in these distributions, in particular those of the two-body invariant masses.
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Figure 9: On the left side are compared the marginal distributions of four angular variables for back-
ground (red) and signal (green). On the right is shown the comparison of the marginals for a mixture
of 90% background and 10% signal (green) with those of background alone (red).
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Figure 10: Left: comparison of the distributions of four kinematical variables for background alone
and the hemisphere-mixed result of a sample constituted by 10% signal and 90% background. The
hemisphere mixing procedure makes the signal contamination almost invisible even when this is quite
large; compare with the graphs on the right panels of Fig. 8. Right: ratio graphs of the distributions
shown on the left.
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Figure 11: Left: comparison of the distributions of four angular kinematical variables for background
alone and hemisphere-mixed result of a sample constituted by 10% signal and 90% background. Com-
pare with the graphs on the right panels of Fig. 9. Right: ratio graphs of the distributions shown on
the left.
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5.1.1 Inferential analysis: a permutation-based approach

In order to confirm the empirical evidence supported by the visual exploration of the figures
shown above, a formal statistical test should be performed. More specifically, let X1,X2, . . . ,XN1

and Y1,Y2, . . . ,YN2 be two random samples from densities fX and fY respectively, Xi,Yi ∈ Rd.
Here the two samples refer to the background data and the hemisphere mixed data produced
by the algorithm. The aim is to test the null hypothesis

H0 : fX(x) = fY (x)

for all x that are in the domain of variables, against the general alternative

H1 : fX(x) 6= fY (x).

The issue of testing two samples for equal distributions is quite common in statistical inference
and many solutions have been proposed [26, 30]. In the following we present the standard
statistical tools that could be a common choice for the given problem.

The Kolmogorov-Smirnov test [26] can be used for the considered issue when data are
unidimensional. The statistic is computed based on a distance between the empirical cumulative
distribution functions of the samples and for this reason it is not restricted to location or scale
changes only. This test has several attractive features. Among them is the robustness to
outliers, as the statistic is only sensitive to the bulk of density function. On the other hand,
this test has usually small power in comparison to others [26].

A more powerful alternative is the Wilcoxon rank sum test [26]. This is a common non-
parametric univariate two-sample test, for which the alternative hypothesis is that the two
distributions differ by some location shift µ 6= 0 (for the two-sided case). For the considered
data this test is not an optimal choice as it is also univariate and tests a different hypothesis
(the same location in general does not mean the equality of distributions).

The Multivariate Analysis of Variance (MANOVA) [30] could be a better alternative as
it is a multivariate test. However, the test is designed to spot the difference in means and
therefore it also does not satisfy the hypothesis that are meant to be tested. Additionally, the
assumptions for this test are that the variables have normal marginal distributions. However for
a large number of observations the distribution of means is approximately normal (as it follows
from the Cental Limit Theorem). For this reason the MANOVA test is robust to non-normal
datasets [22].

As described above these standard statistical tests are not proper for our purpose. For this
reason we have to identify a more sophisticated method. Duong et al. [19] recently proposed a
kernel density-based two-sample test. The test makes no assumptions on the data distribution,
it is multivariate and tests the required hypothesis. It relies on a kernel density estimation
(KDE) of fX and fY . The densities of the two samples are estimated as a generalization of
Eq. 8,

f̂X(x;HX) =
1

N1

N1∑
i=1

KHX
(x−Xi) and f̂Y (x;HY ) =

1

N2

N2∑
i=1

KHY
(x−Yi)

where K is a kernel function and HX , HY are the chosen bandwidth matrices. for K ∈
{X, Y }.

The integrated squared error is a measure of discrepancy between the density functions

T =

∫
[fX(x)− fY (x)]2 dx
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where integration is taken over the appropriate Euclidean space and has been well studied
for the optimal selection of smoothing parameters. Note that T could be also written in the
following form:

T = ψX,X + ψY,Y − ψX,Y − ψY,X
where ψK,L =

∫
fK(x)fL(x)dx. Therefore the discrepancy T could be estimated as

Z = ψ̂X,X + ψ̂Y,Y − ψ̂X,Y − ψ̂Y,X
where

ψ̂X,X =
1

N2
1

N1∑
i=1

N1∑
j=1

KHX
(Xi −Xj) , ψ̂Y,Y =

1

N2
2

N2∑
i=1

N2∑
j=1

KHY
(Yi −Yj) ,

ψ̂X,Y =
1

N1N2

N1∑
i=1

N2∑
j=1

KHX
(Xi −Yj) , ψ̂Y,X =

1

N1N2

N1∑
i=1

N2∑
j=1

KHY
(Yi −Xj) .

It has been shown that the Z statistic is asymptotically Normal. This property gives the
KDE test a significant advantage over other multivariate tests in terms of computational speed.
However, a drawback of the test is that the kernel density estimation is highly affected by the
curse of dimensionality [7], hence its use is not recommended in dimensions higher than 6 [14].

Within the problem under consideration, the initial number of observed variables one may
study is much higher than any dimension which could guarantee accurate results (as mentioned
in Sec. 4, 20 relevant variables have been considered on the selected datasets; the eight most
interesting among them have been presented in the figures shown supra). Therefore the idea is
to perform the test on subsets of variables. Let T be the set of the variables from the data. We
take P subsets of T and denote them as T1, ...,TP . For each Tk the statistical test is performed,
a test statistic Zk obtained and its respective p-value pk, for k = 1, . . . , P. Given the vector of
p-values, a solution for combining them is required to evaluate the significance of the test.

Methods of inference for the combination of multiple p-values have been well described in
the statistical literature [11]. A function known as a combinant is computed based on the
obtained vector of p-values. The combinant is often chosen such that its distribution is known
provided that some assumptions are met. Based on the known combinant distribution and the
obtained combinant value, a single combined p-value is obtained, which allows us to decide
whether the null hypothesis should or should not be rejected. In this report we consider two
combinants: the Fisher combinant, which is defined as pF = −

∑P
k=1 log(pk); and the min-p,

which is defined as pM = −mink=1,2,...,P pk.
One important point to make is that the distributions for the combinants are only known

if the p-values obtained in the multiple tests are independent. Unfortunately, for our case
this assumption is not met as the subsets Tk could have non-null intersections; in addition,
the mutual dependence among the variables might cause the sets Tk to be dependent. One
way to overcome this problem and turn out with a distribution of the combinants under the
null hypothesis is to resort to a permutation framework [24]. Given X1,X2, . . . ,XN1 and
Y1,Y2, . . . ,YN2 , a new pair of samples is obtained by randomly exchanging observations from
X to Y and viceversa. This would guarantee that the distribution of the permuted samples,
whatever they are, are identical, i.e. that we are under the null hypothesis H0. Then, a vector
of test statistics can be computed from the permuted data. This operation is replicated B
times and the following table is obtained.
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Variables T1 . . . Tk . . . TP
Original samples Z11 . . . Z1k . . . Z1P

...
...

. . .
...

. . .
...

Permuted samples b Zb1 . . . Zbk . . . ZbP
...

...
. . .

...
. . .

...
Permuted samples B Z(B+1)1 . . . Z(B+1)k . . . Z(B+1)P

To combine the results, for each test statistic Zbk the p-value is computed by columns as

pbk =

∑B+1
l=1 1{Zbk ≤ Zlk}

B + 1
, (9)

where 1{·} is the identity function. In this way the analogous matrix of p-values is constructed.
In this matrix the particular combinants are computed by rows. Note that we obtain B + 1
combined p-values each for a single permutation of samples as presented below.

T1 . . . Tk . . . TP
p11 . . . p1k . . . p1P → pF1
...

. . .
...

. . .
...

...
pb1 . . . pbk . . . pbP → pFb
...

. . .
...

. . .
...

...
p(B+1)1 . . . p(B+1)k . . . p(B+1)P → pFB+1

Given B combined p-values from tests on permuted samples, we obtain the empirical distri-
bution of the combinant values under the null hypothesis. This distribution is used to obtain
the final p-value for the considered permutation framework for the original sample combined
p-value. The final p-value is given as a percentile rank of the original combinant values across
the all obtained. In other words, the final p-value for the Fisher combinant in permutation
framework is

pF =

∑B+1
b=1 1{pFb ≥ pF1 }

B + 1
. (10)

For the min-p the final p-value is respectively given by

pM =

∑B+1
b=1 1{pMb ≥ pM1 }

B + 1
. (11)

5.2 Performance of the statistical test

The aim of this section is to validate the KDE-permutation test described in Sec. 5.1.1 in terms
of first type error and its power. Beyond the KDE-permutation test, for the sake of comparison
we consider also the MANOVA test, as well as a Wilcoxon test included in a permutation
setting based on the combination of univariate results to allow its use with multidimensional
data.

The permutation framework of the KDE test has been adjusted to strike a compromise
between power and computation time. The tested samples have size 2000 each and the test is
performed in the three-dimensional space of the three selected variables. We restrict ourselves
to three-dimensional subspaces because for higher dimensions the density estimation would not
be accurate enough given the size of the samples; on the other hand, an increase of the size
increases the computation time quadratically. We therefore take P = 40 sets of three variables
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that span the space in which the consecutive tests are performed. The selection of sets is taken
at random from all the possible choices of picking 3 out of 20 considered variables. The number
of sample permutations B is set to be 400. The resulting CDF is presented in Fig. 12.

5.2.1 Type-1-error analysis

The accuracy of a statistical test can be defined as its resistance to incorrectly rejecting the
null hypothesis at the nominal level α - the significance level or type-I error rate. Since the
null hypothesis is rejected when p-value is lower than α, an accurate test produces under H0

p-values that are uniformly distributed.
We are interested in verifying the accuracy of the KDE test in the permutation framework,

i.e. checking if its p-values for random subsamples under the null are uniformly distributed. To
do so we sample, without replacement, under the null hypothesis observations X1,X2, . . . ,XN1

and Y1,Y2, . . . ,YN2 from the sample of the background data, so that both sets are sampled
from the common density. Given the two generated samples we perform the test and obtain
its respective p-value for the tested hypothesis. This procedure is repeated R times in order to
obtain an empirical cumulative distribution function (CDF) of p-values. This empirical CDF
is compared with the uniform CDF to validate the accuracy (Fig. 12).

The accuracy is also computed for the Wilcoxon test in the described permutation framework
and for the MANOVA test. Within the permutation framework, Wilcoxon tests are performed
consequently on all P = 20 variables taken one at a time because the test is uniform. The
samples are permuted also B = 400 times. For the MANOVA test the size of samples was
increased to n = 20000 so that the asymptotic distribution of the test statistic would be
reached.
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Figure 12: The empirical cumulative distribution function of p-values for the three considered tests
under H0 (on the left for KDE test and on the right for Wilcoxon and the MANOVA). The number of
sampling is R equal to 46 for KDE test, 100 for Wilcoxon tests and 1000 for MANOVA. For the tests
in permutation framework p-vales are computed for Fisher (green solid line) and min-p (black dashed)
combinants. The CDF for MANOVA is shown by a red dotted line. The blue line on both plots is the
uniform CDF.

The empirical CDF for the accurate test should be close to the uniform CDF. As the significance
level α is usually a small value, both CDFs should overlap particularly well for the range of
values in (0, 0.1). In the studied case the min-p combinant for the KDE test is too conservative,
as seen by its CDF lying below the diagonal. The MANOVA test turns out to be conservative as
well but rather for higher significance levels α. The other CDFs reflect the expected behaviour.
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Given the chosen significance level α = 0.05, the KDE test with the permutation framework
for the Fisher combination would reject the null hypothesis for the tested 46 subsamples in
4.3% of cases; the MANOVA would reject the null in 4.5% of cases; and the Wilcoxon test with
Fisher combinant in 6% of cases. Given the above, the KDE test with the Fisher combinant
can be considered an accurate test. The same could be said about the Wilcoxon test in the
permutation framework. The MANOVA test turned out to be conservative for the given data.
In conclusion, the selected tests are accurate and proper for testing the stated hypothesis.

5.2.2 Power analysis

In order to analyze the performance of the studied algorithm we need to employ a statistical test
that not only controls the first-type error but also offers a small second-type error probability,
i.e. one that with high probability correctly rejects the null hypothesis when it is indeed false.
The rate of type-II error (β) is equivalently determined by the power of the statistical test,
which is defined as 1 − β. Hence, a powerful test is one that with a high probability accepts
the alternative hypothesis when a departure from the null hypothesis is present. This should
be studied for the KDE-permutation test: in other words, we need to evaluate how often we
are capable of rejecting the null hypothesis when the tested samples are drawn from different
distributions. This is in general an ill-posed question, as we are not specifying the alternative
hypothesis; however, we can take a simplified ansatz in the following.

In the considered framework, the more “separated” are the tested distributions the easier is
to reject the null, hence the power of our KDE test can be measured as a function of the signal
contamination in the samples. We compute it for a sequence of different signal fractions in a
background sample.

To be more specific, consider two d-variate samples X1,X2, . . . ,XN1 and Y1,Y2, . . . ,YN2 , in
which the first one is taken purely from the background dataset while the second one consists in
s% of signal events and 100− s% of background events. In contrast to the previously described
null distribution analysis, these two samples are indeed taken from different distributions. The
difference between them increases as the signal fraction s increases. The p-value of such a test
for each studied signal fraction s is shown in Table 1. The numbers indicate that the test has
power for signal fractions of 5% and above. A larger size of data tested would cause the power
to increase; unfortunately, CPU time constraints prevented us from studying those cases in
more detail at the time of writing.

Significance level α s = 1% s = 5% s = 10%
0.01 0.013 0.018 0.038
0.05 0.050 0.118 0.175
0.10 0.138 0.200 0.275

Table 1: The fraction of cases for which the null hypothesis was rejected for significance levels α equal
to 0.01, 0.05 and 0.10. 80 pairs of samples were generated under the alternative hypothesis for each
background contaminated data with values of signal fraction s equal in turn to 1%, 5% and 10%.

5.3 Tests of the hemisphere mixing performance

Since the accuracy and, to some extent, the power of the KDE test in the permutation frame-
work with the Fisher combination function have been found to be appropriate, the test can be
applied to the dataset with hemisphere mixed events. In contrast to previous approaches we
do not have to perform many tests on different subsamples in order to analyze the distribution
of its p-values. Rather a single test on the bigger samples would allow us to draw inference on
the stated hypothesis, given the significance level α = 0.05.
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The hemisphere mixing algorithm is expected to produce artificial data with the same
distribution as the original data. In order to validate this expectation, a test comparing a
background-only sample with a hemisphere-mixed background sample is performed. The re-
sulting p-value for this test is presented in the first row of Table 2. Its value shows that
there is no evidence against the null hypothesis at any reasonable significance level α. In other
words, based on the KDE-permutation test results, the pure background and hemisphere-mixed
background are consistent with being sampled from the same distributions.

Sample tested against pure background Obtained p-value
Hemisphere-mixed background events 0.224

Hemisphere-mixed data from mixture of 95% background and 5% signal 0.284
Hemisphere-mixed data from mixture of 90% background and 10% signal 0.005

Table 2: p-values for the KDE tests in the permutation framework describing the distribution equality
of two samples, where the first sample is pure background and the second is a hemisphere-mixed sample
of pure background (top row) and of background contaminated with a 5% or 10% signal fraction (middle
and bottom row). The tests are performed on samples of size 15000.

A further desirable feature of the artificial data produced by the hemisphere mixing algorithm is
that it is capable of smearing out the kinematical features of a possible signal component present
in the data. This would be achieved if the hemisphere mixing of a data sample containing back-
ground events contaminated by a small signal component produced a dataset whose features
distribute as a pure background sample. To test this property, we produce a hemisphere-
mixed sample starting from a mixture of 95% background events and 5% signal events. A 5%
contamination is absolutely off-scale in the case of the search for the tiny hh → bb̄bb̄ signal
predicted by the Standard Model in LHC data, so this test is meant to try and see where the
background modeling “breaks down”. The new sample distribution is tested against the pure
background distribution; the resulting p-value of the test is given in the second row of Table 2.
This also shows no evidence against the null hypothesis at the considered significance level α.
The hemisphere mixing algorithm is thus seen to perform according to the expectations, for
sample sizes typical of the LHC searches we aim at. We then test a 10% signal contamination,
and verify that in that case the test does reject the null hypothesis at the chosen α level. We
thus verify that a breaking point of the method is reached for very large signal contaminations.
This further highlights the fact that for the signal contaminations of background-rich control
samples typically used in the considered searches, which are usually smaller than a percent, the
algorithm produces a very good modeling.

In conclusion, at a significance level α = 0.05 we do not reject the null hypothesis of
distributions equality in both tests discussed above. In other words, we see no evidence that
the hemisphere mixed events have different distributions from those of a background-pure
sample, both in the case of an application to a background-pure dataset, and in the case of a
dataset which contain an up to 5% signal contamination. For this reason the algorithm may
be successfully applied to the problem for which it was designed.

29



6 Conclusions

In this document we describe a technique which proves capable of modeling a data set pre-
dominantly constituted by high-pT QCD production processes in a fully data-driven way. We
show that the main kinematic features of the data are preserved by the proposed modeling
algorithm, and that specific characteristics such as dijet masses and angles can be relied upon
in the mixed model. The method is especially useful for the search of a resonant signal such as
the one arising from hh→ bb̄bb̄ events because it is shown that the presence of such a minority
component of the data used in the model does not affect the modeling of the background,
which is driven entirely by the majority component. In particular, the Higgs boson “peak” in
the dijet mass distribution of the signal component contaminating the data used in the model
gets washed away by the recombination procedure. This is especially useful as one may then
use the model as background-only template in a fit to data selected in the corner of phase space
where the signal component is not negligible, as it remains insensitive of the contamination.
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A Details of the Nearest Neighbor implementation

In this appendix we provide some detail on the algorithm mentioned in Sec. 2.2, which originates
from the method called “k-nn” in professional statistics literature. Its previous use in high-
energy physics research is very limited to our knowledge; one example is its adoption in a 2003
Tevatron study [8] where the problem was the one of regressing the dijet mass resolution of
b-jet pairs for the Higgs boson search.

In the 2011 bb̄H search the scalar field to be estimated was, like in the matrix method
discussed in the Introduction, the b-tag probability of hadronic jets. Differently from regression
problems such as the one of the 2003 study, this quantity cannot be estimated on an event-
by-event basis: one may only obtain it as a fraction of successes over trials by considering
samples of events. This introduces a complication in the k-nn problem, which fully motivates
the generalization of the usual “k-averaging” performed in such algorithms.

A.1 Details of the implementation

Data events were divided into two orthogonal sub-samples based on the value of a kinematic
discriminator capable of effectively separating signal and background events; with it, a signal-
depleted control region was defined. The data contained therein was used to estimate the b-tag
probability P as a function of n relevant kinematical features of the jet and the event containing
it. This was derived by selecting a sample of NH events found to be the closest -i.e. the most
similar- (in the multi-dimensional sense discussed below) to the point X = x1, x2, ...., xn where
the function was to be evaluated. The function value P (X) was then simply determined as the
fraction of b-tagged events in the sample of NH .

The generalized multi-dimensional distance at the basis of the selection of NH neighbors
was computed using the n variables describing the multi-dimensional feature space as follows:

D =

nV∑
i=1

w2
i (xi − yαi)2 (12)

where xi are the variables defining the evaluation point X, and yαi are the corresponding
variables in events belonging to the control region α. The weights wi account for the different
importance of the features i in determining the value of P , and they are at the heart of the
k-nn implementation described here.

The full range of variability of each variable xi was divided in nB = 10 bins of varying size,
chosen such that have all the bins were equally populated by control region data; the b-tagging
fraction was then computed in each bin. For any value of the variable xi a single-dimensional
weight wi equating to the local gradient of the univariate b-tag probability was approximated
by

wi =
fiR − fiL
x̄iR − x̄iL

. (13)

The above formula provides a crude estimate of the gradient of the function in each of the
directions of space, as it assumes it to be independent on the particular location in the space
where we need to estimate it. Indeed, it is only the starting point of a more refined estimate,
detailed below.

A.2 The point-by-point weight estimation

One starts by collecting a large set of NA events (with NA >> NB), selected from the control
sample as the closest ones to the evaluation point X of the b-tag probability P (X), using
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the above simplified definition of weights in the distance calculation. The selected NA events
can then be used to compute a bias in the b-tag probability estimate. For each direction
of space, spanned by xi, a numeric estimate of the possible quadratic dependence of the b-
tagging probability around the evaluation point (in the sense specified by the unrefined distance
definition described above) is performed within the large hyperellipsoid spanned by the NA

events, using the calculation detailed below.
The difference in the value of the quadratic and constant function for x′i = xi (the coordinate

of the “center” of the hyperellipsoid containing the NA events) may define the “bias” which one
is subjected to if, by using evenly-distributed training events along xi, one averages their b-tag
probability neglecting the fact that the latter has a more complex variation than a constant or
linear one. The magnitude of the bias along the direction xi is used as an additional weight
W (X), this time fully varying throughout the feature space, which multiplies the relative
distance component of control region events from the evaluation point:

D(X) =

nV∑
i=1

W (X)2w2
i (xi − yαi)2 . (14)

In such a way the metric D of the space around the evaluation point X is adaptively
improved. In other words, the resulting set of NH events which will be found the closest to X
is distributed within a hyperellipsoid whose shape is characteristic of that particular point of
the multi-dimensional space.

The approximation of the b-tagging probability in each point of space X with a quadratic
function is the “lowest-order” improvement to a linear function, but it provides already a very
effective estimate of the bias due to evaluating the b-tagging probability away from X by moving
along each coordinate. The method provides a significant improvement in the choice of the most
“similar” events to the testing one, as far as the b-tag probability is concerned.

A.2.1 Details of the weight calculation

The b-tag probability cannot be easily fit to a quadratic shape within the hyperellipsoid, because
it is not a function defined on a per-event basis: events are either tagged or untagged, so the
individual values are zeros or ones. However, we can estimate the parameters of the quadratic
function as follows.

We write the b-tag probability as a function P (X) defined in the surrounding of the evalu-
ation point X, for which we take x = 0; here the variable x is the direction in the hyperspace
along which we wish to estimate the bias in our estimate of b-tagging which we are subject to
if we compute a linear average within the hyperellipsoid. So in general we have

P (x) = a0 + a1x+ a2x
2. (15)

If we cannot easily fit for P (x) within the hyperellipsoid, we can at least compute the moments
of the distribution of b-tagged and untagged events in the surroundings of x = 0: these are
defined as

λ0 =

∫ d

−d
P (x)dx = 2da0 +

2

3
d3a2 (16)

λ2 =

∫ d

−d
x2P (x)dx =

2

3
d3a0 +

2

5
d5a2 (17)

while of course odd moments are null. The two equations above allow to easily solve for a0.
We obtain

32



a0 =
9d2λ0 − 15λ2

8d3
. (18)

Now, if instead of assuming a quadratic form (the simplest form which produces a bias in the
b-tagging rate if averaged over the hyperellipsoid) we decide, as we do, to simply estimate the
b-tagging rate by averaging it in the [−d, d] interval, we obtain

P (x) = a0 =
λ0
2d
. (19)

The bias we are subject to because of linear averaging instead than considering the quadratic
dependence is then

∆a0 =
λ0
2d
− 9d2λ0 − 15λ2

8d3
=

15λ2 − 5d2λ0
8d3

. (20)

We can take the bias computed as above in each direction of space around the test point as our
wanted estimate of the relative weight W (X) in the calculation of the generalized distance in
the space: the metric D is now therefore susceptible of how the b-tagging rate varies in a way
directly proportional to the bias produced by our averaging procedure.

The λ coefficients are estimated by the formulas

λ0 = 2d
Ntag

Njet

(21)

and

λ2 = d3
2Σtagx

2

3Σjetx2
(22)

where we have labeled Ntag the number of b-tagged events in the hyperellipsoid, Njet the number
of events not containing a b-tag in the considered jet, and the sums run on the respective sets
of events.

B Software details

Software Version References Use/Notes
NumPy various [31] Data analysis and computation
R version 3.3.2 [29] Exploratory analysis and testing
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