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Abstract

E↵ective field theories (EFTs) are widely used in particle physics and well beyond.
The basic idea is to approximate a physical system by integrating out the degrees of
freedom that are not relevant in a given experimental setting. These are traded for a
set of e↵ective interactions between the remaining degrees of freedom. In these lectures
I review the concept, techniques, and applications of the EFT framework. In the 1st
lecture I give an overview of the EFT landscape. I will review the basis techniques and
usage of EFTs. A few prominent examples are presented in some detail, such as the
Fermi theory, the Euler-Heisenberg Lagrangian, and the chiral perturbation theory. In
the 2nd lecture I discuss quantitatively the procedure of integrating out heavy particles
in a quantum field theory. An explicit example of the tree- and one-loop level matching
between an EFT and its UV completion will be discussed in all gory details. The 3rd
lecture is devoted to path integral methods of calculating e↵ective Lagrangians. Finally,
in the 4th lecture I discuss the EFT approach to constraining new physics beyond the
Standard Model (SM). To this end, the so-called SM EFT is introduced, where the
SM Lagrangian is extended by a set of non-renormalizable interactions representing the
e↵ects of new heavy particles.

1



Contents

1 Illustrated philosophy of EFT 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scaling and power counting . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Euler-Heisenberg Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 E↵ective Lagrangians and naturalness . . . . . . . . . . . . . . . . . . . . 12

2 E↵ective Toy Story 16
2.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Tree-level matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 One-loop matching of 2-point function . . . . . . . . . . . . . . . . . . . 19
2.4 One-loop matching of 4-point function . . . . . . . . . . . . . . . . . . . 22
2.5 RG equations in the EFT . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Summary and lessons learned . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Path integral methods for EFT 27
3.1 Flash review of path integrals . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Matching - general discussion . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Calculating functional determinants . . . . . . . . . . . . . . . . . . . . . 31
3.4 Scalar toy model example . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Tree level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 One loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 SM EFT: e↵ective theory for BSM 36
4.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Higher-dimensional operators . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 From BSM to operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 From operators to observables . . . . . . . . . . . . . . . . . . . . . . . . 47

A Method of regions 53

2



1 Illustrated philosophy of EFT

1.1 Introduction

Not so long ago the Holy Grail of theoretical particle physics was the fundamental theory
underlying the SM and Einstein gravity. It was hoped that strong consistency constraints
on quantum theories incorporating gravity would lead to an essentially unique solution.
That theory of everything, valid at very high energies, should have the SM as its low-
energy approximation, possibly with some intermediate field theories between the weak
and the Planck scale. Such a top-down approach would allow one to predict the spectrum
and interactions of the SM particles, and the existence of new particles, symmetries, and
interactions. Alas, that program has not delivered what it promised, and the quest for
the theory of everything is now largely abandoned. Instead the focus these days is on less
ambitious but more practical theories of something, which describe particular physical
systems in particular conditions. We think of them as e↵ective fields theories because
they are not meant to be valid at all energy scales, and often the degrees of freedom
they describe are not fundamental but emergent.

Consider a physical system whose dynamics is described by the Lagrangian LUV(�, H).
Here I divided the degrees of freedom of the system into two groups denoted as � and
H. In principle, LUV encodes the full information about the system, and allows one
to predict the rate of any processes involving � and H. However, quite often one is
interested in amplitudes with only �’s in the external states, while those with H’s are
irrelevant in the particular experimental situation. This may be because H’s are too
heavy to be excited, given the characteristic energy scale of the experiment. Take e.g.
the QED Lagrangian which contains the photon and electron fields. Both of these are
crucial to describe light-by-light scattering, as photons interact with each other only via
intermediate electrons. However, on-shell electrons cannot appear on-shell in scatter-
ing of very low energy photons well below the threshold for e+e� pair production. In
undersatand to understand the photon behavior we do not need to calculate scattering
amplitudes into electrons. Another example is the muon decay. This can be described
by the SM Lagrangian, where the decay happens to due to an exchange of a virtual
W boson at the leading order in perturbation theory (and also of other weak bosons
at higher orders). However, in muon decay the weak bosons are not directly visible as
resonances, simply because mµ ⌧ mW .

In a situation as in the examples above it may be more e�cient to use a simpler
description of the system where H is absent from the beginning. In the particle jargon,
we can integrate out H’s from the UV theory, so as to obtain an e↵ective theory for �’s
only. This can be succinctly formulated using the path integrals. The UV theory is fully
characterized by the partition function

ZUV[J�, JH ] =

Z
[D�][DH] exp


i

Z
d4x (LUV(�, H) + J��+ JHH)

�
. (1.1)

All n-point correlation functions of �’s and H’s (and thus all S-matrix elements) can be
obtained by di↵erentiating ZUV with respect to the currents J . In the e↵ective theory
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we only need the correlators of �’s, hence1

ZEFT[J�] = ZUV[J�, 0]. (1.2)

One might well stop at that definition, however the partition function of a realistic
quantum field theory is an extremely complicated and awkward object. For this reason
we would like to encode the dynamics of � in the e↵ective Lagrangian LEFT(�). This is
defined by

ZEFT[J�] =

Z
[D�] exp


i

Z
d4x (LEFT(�) + J��)

�
. (1.3)

The problem which I will discuss at length in these lectures is how to find LEFT(�) given
LUV(�, H). It should be obvious that Le↵(�) 6= LUV(�, H), unless � and H are totally
decoupled. The di↵erence Le↵(�) � LUV(�, 0) must be non-trivial in order to account
for the e↵ects of H exchange between the �’s.

In general, LEFT(�) will be a complicated non-local object. In the particle physics
jargon, non-local means non-polynomial in the fields and their derivative. For example,
the interaction term LEFT(�) � �22�2 is local, whereas LEFT(�) � �2(2 + M2)�1�2

is non-local. The latter do arise in e↵ective theories to describe e↵ects of propagation
of heavy H particles, and may be unfamiliar to regular QFT users. However, there
is one important situation where LEFT(�) can be adequately approximated by a local
Lagrangian. This occurs when the integrated-out H particles are much heavier than
�’s masses and energies, which is also the most common case where EFT techniques
are applied. Heuristically this is easy to understand. When we operate at energies well
below the mass M we are blind to physics at distance scales L ⌧ M�1. Thus, the
exchange of H’s with masses of order M between �’s looks to a low-energy observer
as a contact interaction between �’s only. Mathematically speaking, the H propagator
has a local expansion when its 4-momentum is much smaller than M : (2 + M2)�1

⇡

M�2
�M�42 + . . . . In these lectures I will focus on the case when the EFT can be

described by a local Lagrangian.
There are several possible motivations to work with LEFT(�), rather than with the

more fundamental LUV(�, H):

• Simplicity. Calculations within the e↵ective theory may be far more e�cient,
especially for multi-loop integrals. Moreover, it is often the case that non-trivial
cancellations in the UV theory can be easily understood via power counting in the
EFT.

• Calculability. Loop calculations in a theory with disparate mass scales su↵er
from the problem of large logarithms, which may invalidate the perturbative ex-
pansion even when the coupling constants are well within the perturbative regime.
E↵ective theory techniques allow one to resum the large logarithms into a renor-
malization group flow of the EFT parameters.

1We usually demand the weaker condition that the on-shell S-matrix elements of �’s and not their
full o↵-shell correlators match between the UV theory and the EFT. The matching of the S-matrix
elements follows from Eq. (1.2), but in fact ZEFT[J�] is defined up to transformations that leave the
S-matrix invariant.
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• Agnosticity. The fundamental UV theory may be unknown, as is the case for the
fundamental theory underlying the SM. Alternatively, the low-energy consequence
of the UV theory may be di�cult to calculate, as for QCD below the confinement
scale. In such circumstances, the e↵ective theory approach allows one to proceed
in a systematic way, sweeping the ignorance under the carpet of free parameters
in LEFT.

In the following I will first discuss the general rules that enable systematic construc-
tion of e↵ective Lagrangians. Then I will walk through a series of simple examples
that illustrate some salient feature of e↵ective theories. This review is by no means
exhaustive. For further reading, I warmly recommend the general EFT reviews of David
Kaplan [1], Ira Rothstein [2], and Aneesh Manohar [3]. For reviews focused on specific
applications, see e.g. Ref. [4] for the e↵ective theory of heavy mesons, Ref. [5] for the
e↵ective theory of classical gravitational phenomena, or Ref. [6] for the e↵ective theory
of excitations in conductors.

1.2 Scaling and power counting

Even when the EFT is described by a local Lagrangian, LEFT(�) in general contains an
infinite number of interaction terms. Therefore any useful EFT comes with a set of power
counting rules which allow one to organize the calculations in a consistent expansion
and single out the most relevant contributions. For relativistic theories obtained by
integrating out heavy particles H, the inverse of the mass scale MH of H’s provides a
natural expansion parameter. Observables can then be expanded in powers of E/MH ,
where E is the typical energy scale of the experiment.

To be more quantitative, let us discuss how di↵erent terms in a local relativistic EFT
Lagrangian scale under the rescaling of the space-time coordinates:

xµ ! ⇠x0
µ
. (1.4)

The point here is that the limit ⇠ ! 0 corresponds to zooming in on small distance
scales (large energies), while the limit ⇠ ! 1 turns the focus on large distance scales
(small energies). By studying how LEFT(�) changes as ⇠ increases we can understand
the relative importance of various terms as we move towards lower energies away from
the UV theory underlying the EFT.

As an example, consider the following e↵ective action for a single scalar field �:

SEFT(�) =

Z
d4x

"
(@µ�)

2
�m2�2

� µ�3
� ��4

�

X

n+d>4

cn,d
⇤n+d�4

�n�1@d�

#
, (1.5)

where n(d) in the sum are positive (non-negative) integers. The convention here is that
the scalar has mass dimension [�] = mass1. The scales ⇤ and µ have been inserted to
make sure the action is dimensionless. Typically, ⇤ is identified with the mass scale MH

of the integrated-out particles. Changing the coordinates as in Eq. (1.4):

SEFT(�) =

Z
d4x0

"
⇠2(@µ�)

2
�m2⇠4�2

� µ⇠4�3
� �⇠4�4

�

X

n+d>4

cn,d⇠4�d

⇤n+d�4
�n�1@d�

#
.

(1.6)
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Next we rescale �! �0⇠�1 so that the kinetic term Eq. (1.6) has the same normalization
as the one in Eq. (1.5):

SEFT(�) =

Z
d4x0

"
(@µ�

0)2 �m2⇠2(�0)2 � (⇠µ)(�0)3 � �(�0)4 �
X

n+d>4

cn,d
(⇠⇤)n+d�4

(�0)n�1@d�0

#
.

(1.7)
The rationale of this last operation is that the path integral is dominated by the kinetic
term. Once we normalize the leading contribution canonically, we can more easily isolate
the scaling behavior of the interactions terms. Comparing Eq. (1.5) and Eq. (1.7) we
observe that all the terms in the sum are suppressed as we send ⇠ ! 1. These are
called irrelevant interactions because their e↵ects become more and more suppressed as
we descent towards lower energies. Note that the canonical dimension of the interaction
term, D = n+ d� 4, uniquely determines the scaling properties. The larger the D, the
more irrelevant the interaction term becomes far below the scale ⇤. Power counting in a
relativistic EFT in most cases can be organized based just on the canonical dimensions
of the interaction terms. In a practical situation, one retains in the e↵ective Lagrangian
only the terms up to some Dmax, and neglect the higher-dimensional interactions. The
calculations of observables are performed order by order in the 1/⇤ expansion.

The coe�cient of the �2 term in LEFT(�) increases with ⇠ ! 1. This is called a
relevant term: understandably, the particle’s mass becomes more and more important
in the IR. Similarly, the �3 interaction is relevant. Note that for the power counting
sake one needs to specify the order of magnitude of the scale µ multiplying �3: the
possible choices µ ⇠ ⇤ or µ ⌧ ⇤ will lead to a di↵erent expansion of the observables.
On the other hand, the coe�cient of the �4 term in LEFT(�) is dimensionless, which
implies it scales trivially with ⇠. We call this a marginal interaction. In fact, loop
corrections modify the scaling dimensions, tipping the balance either in the relevant or
in the irrelevant direction (unless the e↵ective theory is conformal).

I should mention here that the simple power counting rules above are not applicable
in all situations. Sometimes a large parameter ⇤� E is not available because the scale
of the UV theory is not parametrically larger than the typical energy scale of the EFT. In
such a case, the expansion of the e↵ective Lagrangian may be organized according to the
number of derivatives. Di↵erent power counting rules apply to non-relativistic theories,
such as the non-relativistic approximation of QED, in which case space and time have
di↵erent scaling dimensions due to the lack of Lorentz symmetry in the e↵ective theory.
Still di↵erent counting rules apply to relativistic systems with one heavy component
(such as atoms or B-mesons).

Before moving to specific examples, I would like to briefly discuss a general selection
rule that goes under the name of ~ counting. To derive it, it is convenient to temporarily
retrieve the Planck constant ~ in the action (usually set to ~ = 1 in the particle physics
literature). Then the action must have the dimension ~1, because the path integrand
contains eiS/~. Choosing the convention that no ~ factors multiply kinetic terms, each
field with a quadratic kinetic term needs to have dimension ~1/2. Then the coe�cient of
an interaction term with n fields needs to have dimension ~1�n/2, independently of the
number of derivatives. It follows that the parameters in the UV Lagrangian of Eq. (1.5)
have the following ~ dimensions:

[m2] = ~0, [] = ~�1/2, [�] = ~�1, [cn,d] = ~1�n/2. (1.8)
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The point of this exercise is that when LEFT is derived from the underlying UV theory,
its parameters are functions of the masses and couplings in LUV. If the typical mass scale
of the heavy degrees of freedom in LUV is M⇤, the usual dimensional analysis leads to
identifying ⇤ ⇠ M⇤. The ~ counting allows one in addition to estimate the magnitude
of dimensionless EFT parameters. Suppose the UV theory contains only one gauge
coupling denoted as g⇤. By the same rules, the gauge coupling has [g⇤] = ~�1/2. This
leads to the estimate

(tree) : cn,d ⇠ gn�2

⇤ , (1.9)

which predicts a pattern of all EFT couplings depending on just one fundamental pa-
rameter. This is not the whole story though. The loop expansion is also associated with
powers of ~. One can prove that each loop correspond to another factor of ~1. Thus, if
the EFT couplings are e↵ectively generated by one loop diagrams in the UV theory, the
estimate should be modified as

(one loop) : cn,d ⇠
gn⇤

(4⇡)2
. (1.10)

These simple heuristic rules are very useful, yet a warning is in order. Evidently,
the UV theory may contain more than one coupling. Moreover, the symmetries in the
UV theory may lead to additional selection rules. For example, the naive dimensional
analysis and ~ counting lead to the estimate m ⇠ g0⇤⇤ if the mass term is generated by
tree level processes in the UV theory. In practice we always assume the hierarchym⌧ ⇤,
because otherwise there would not be any energy range where the EFT description is
useful. The hierarchy can arise via fine-tuning, or because the mass term is generated at
a loop level. But if the hierarchy is due to some symmetries in the UV theory, there will
always be additional selection rules that need to be taken into account when estimating
the magnitude of the EFT parameters. All in all, the dimensional analysis and the ~
counting in the EFT are always used in conjunction with additional assumptions about
the dynamics of the UV theory.

1.3 Euler-Heisenberg Lagrangian

One illustrative example of an EFT is the Euler-Heisenberg Lagrangian [7].2 Consider
the low-energy e↵ective theory for massless photons where all charged degrees of freedom
have been integrated out. The lightest know charged particle is the electron, thus we
expect such an EFT to be valid for photon energies E ⌧ me ⇠ 0.5 MeV. The e↵ective
Lagrangian should be Lorentz- and gauge-invariant, thus it should take the form

LEH = �
1

4
Fµ⌫Fµ⌫ +

1

⇤4
L

d=8

EH
+

1

⇤8
L

d=12

EH
+ . . . (1.11)

Gauge invariance dictates that the photon field Aµ can enter only via the field strength
tensor Fµ⌫ ⌘ @µA⌫ � @⌫Aµ or its dual F̃µ⌫ ⌘ ✏µ⌫⇢�@⇢A�. The first term in Eq. (1.11) is
the usual kinetic term, which does not contain any interactions. The remaining terms
describe higher-dimensional photon self-interactions, which arise after integrating out

2Here, Euler is of course not the famous 18th century mathematician, but a PhD student and
Luftwa↵e pilot in Nazi Germany. Similarly, Heisenberg is a 20th century German physicist, and not
the famous kingpin from Breaking Bad.
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charged particles. As usual in a relativistic EFT, the interactions are organized according
to their canonical dimensions, each consecutive term being suppressed by appropriate
power of the cut-o↵ scale ⇤ ⇠ me. For E ⌧ ⇤ the power counting suggests that the
interactions with the lowest canonical dimensions are the most relevant ones. At the
dimension-6 level there is no possible gauge-invariant interaction due to the identity
Fµ⌫F⌫⇢F⇢µ = 0 (more generally, all invariants with an odd number of Fµ⌫ vanish). Thus,
the leading interactions arise at the level of dimension-8 operators. For simplicity, I
assume that parity is conserved in the EFT, so that the interactions do not depend
F̃ (in principle, the Lagrangian may contain terms with an even number of F̃ , but in
that case they can always be traded for F ). There are 2 independent parity-conserving
dimension-8 operators , which I parametrize as3

L
d=8

EH
= a1

↵2

16
(Fµ⌫Fµ⌫)(F⇢�F⇢�) + a2

↵2

16
(Fµ⇢F⌫⇢)(Fµ�F⌫�), (1.12)

where ↵ = e
2

4⇡
and e is the electromagnetic coupling. When these e↵ective interactions

arise from integrating out charged particles, any of the 4 external photon legs in the
vertex has to pick up at least one power of e. Since the coe�cient of an F 4 operators
has the ~ dimension �1, while [e] = ~�1/2, the mismatch has to be balanced by a loop
factor. For these reasons I factored out ↵2 = e4/16⇡2 from the Wilson coe�cients, such
that ai are simply order one numerical coe�cients. Any other dimension-8 terms can be
expressed by the ones in Eq. (1.12). The Wilson coe�cients a1 and a2 are arbitrary at
this point. They can be fixed when the UV completion of this EFT is specified.

One practical e↵ect of the interactions in Eq. (1.12) is to modify Maxwell’s equations
of electrodynamics. Due to the non-linearities in the field equations, a superposition of
two solutions is not a solution anymore. In practice, however, the non-linear e↵ects are
extremely small in the low-energy regime, such that they have not been unambiguously
observed to date.4

The e↵ective Lagrangian in Eq. (1.11) can be used to calculate any scattering pro-
cesses with low-energy photons. In particular, the dimension-8 interactions in Eq. (1.12)
provide the tree-level contributions to the 2-to-2 scattering. It is straightforward (even
if a bit tedious) to derive the Feynman rules and calculate the scattering amplitudes.
I will write down the results as a function of the helicities (+/�) of the incoming and
outgoing photons. One can express the helicity amplitudes in terms of the kinematical
invariants s = (p1 + p2)2, t = (p1 � p3)2, u = (p1 � p4)2 as

M(±±;±±) =
↵2

8⇤4
(4a1 + 3a2) s

2,

M(±⌥;±⌥) =
↵2

8⇤4
(4a1 + 3a2) u

2,

M(±⌥;⌥±) =
↵2

8⇤4
(4a1 + 3a2) t

2,

M(±±;⌥⌥) =
↵2

8⇤4
(4a1 + a2)

�
s2 + t2 + u2

�
. (1.13)

3In the literature another parametrization is typically used: L
d=8

EH
= c1(Fµ⌫Fµ⌫)(F⇢�F⇢�) +

c2(Fµ⌫ F̃µ⌫)(F⇢�F̃⇢�). This is equivalent to the one in Eq. (1.12) upon relating the Wilson coe�cients
as a1↵2 = 16c1 � 32c2, a2↵2 = 64c2.

4Light-by-light scattering is routinely observed in colliders, however for photon energies E � me

where the EFT in Eq. (1.11) is no longer valid.
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The remaining helicity amplitudes, not displayed above, are zero. The first 3 amplitudes
depend on the same linear combination of the Wilson coe�cients. That is because they
are not independent, as they are related by the crossing symmetry. t-channel crossing
corresponds to exchanging s$ u, and replacing the 1st helicity entry with the opposite
of the 3rd and vice-versa. u-channel crossing corresponds to exchanging s $ t, and
replacing the 1st helicity entry with the opposite of the 4th and vice-versa. The crossing
symmetry must hold in any sensible quantum field theory, and one can easily see that
the amplitudes in Eq. (1.13) are consistent with the t- and u-channel crossing. The last
amplitude in Eq. (1.13) transform into itself under crossing symmetry.

The Euler-Heisenberg Lagrangian is an e↵ective theory valid at energies up to the
cut-o↵ ⇤. At that scale it is replaced by another theory containing some other particle of
mass⇠ ⇤ coupled to the photon. The dimension-8 interactions in Eq. (1.12) approximate
the e↵ects of exchanging the new particle between photons at energy scales E ⌧ ⇤. The
coe�cients a1 and a2 can then be matched by comparing the EFT results for the 2-to-2
scattering amplitude with that calculated in the UV theory with the new particle.

One example of the UV completion is the QED Lagrangian:

LUV = �
1

4
Fµ⌫Fµ⌫ + i �µ@µ + eQe �µ Aµ, (1.14)

where  is the electron field and Qe = �1. In QED, 2-to-2 photon scattering proceeds
through box diagrams with the electron in the loop, like the one in Fig. ??. Calculating
the helicity amplitudes from these diagrams, expanding the results in m2

e
, and keeping

the leading 1/m4

e
term in this expansion, the QED amplitudes take the form of Eq. (??)

with the following identification:

aQED

1

⇤4
= �

4Q2

e

9m4
e

,
aQED

2

⇤4
=

56Q2

e

45m4
e

. (1.15)

For other SM fermions the result is the same upon replacing Qe ! Qf , me ! mf , and
including the color factor where appropriate. Integrating out a scalar with the mass
ms and the electric charge Qe leads to a di↵erent pattern of the Wilson coe�cients (see
e.g. [8]):

aSQED

1

⇤4
=

Q2

s

18m4
s

,
aSQED

2

⇤4
=

2Q2

s

45m4
s

. (1.16)

Finally, consider a UV completion which is itself an e↵ective theory. The Lagrangian
contains a real scalar h of mass mh coupled to photons via dimension-5 interactions

LUV = �
1

4
Fµ⌫Fµ⌫ +

1

2
(@µh)

2
�

m2

h

2
h2 + bh

↵

4⇡f
hFµ⌫F̃µ⌫ . (1.17)

The coupling bh is characteristic for axions, or more generally for Goldstone bosons of a
global symmetry spontaneously broken at the scale f where the global symmetry current
has a mixed triangle anomaly with the electromagnetic U(1) currents. Integrating out h
at tree level leads to the e↵ective dimension-8 interactions in Eq. (1.12) with the Wilson
coe�cients

aaxion
1

⇤4
= �

b2
h

⇡2f 2m2

h

,
aaxion
2

⇤4
=

2b2
h

⇡2f 2m2

h

. (1.18)
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Let us go back to the EFT. In theory, by measuring elastic scattering of low-energy
polarized photons we could determine both Wilson coe�cients a1 and a2. In practice,
however, this does not seem feasible at present. Instead, the hope is to observe one day
the so-called vacuum birefrigence, that is the rotation of the polarization vector of light
traveling in vacuum in a strong magnetic field. Note that the measurement would me
much more than an academic exercise. It is certain that the Wilson coe�cients receive
contributions in Eq. (1.15) from integrating out the electron, and subleading contribu-
tions from the remaining SM particles. However, for all we know other unknown particles
could give larger or comparable contributions, especially if they are light. For example,
light milli-charged particles or axions remain an interesting possibility. Therefore, a
precision measurement of a1 and a2 would provide relevant constraints on hypothetical
hidden sectors.

Up this point we treated the Wilson coe�cients in Eq. (1.12) as free parameters.
This is broadly correct, as in principle there are many consistent theories with charged
particles that could serve as a UV completion and which would yield various patterns of
a1 and a2. However, they are not completely unconstrained, even if we remain agnostic
about the UV completion. There are two kinds of theoretical constraints:

• Positivity. Certain linear combinations of Wilson coe�cients are bound to be
positive under mild assumptions that the UV completion does not violate unitarity,
causality, and the crossing symmetry.

• Perturbativity. The magnitude of Wilson coe�cients is limited if the e↵ective
theory is to remain unitary and perturbative all the way to the cut-o↵.

Let us discuss these two in turn.
We start with positivity.5 For this purpose, it is convenient to rewrite the amplitudes

in Eq. (1.13) in the basis of linearly polarized photons: |xi = (|+i + |�i)/
p
2, |yi =

(|+i � |�i)/
p
2i,

M(x/y, x/y; x/y, x/y) =
↵2

4⇤4
(2a1 + a2)

�
s2 + t2 + u2

�
,

M(x/y, x/y; y/x, y/x) =
↵2

8⇤4

�
4a1s

2 + a2(2s
2
� u2

� t2)
�
,

M(x/y, y/x; x/y, y/x) = �
↵2

8⇤4

�
4a1t

2 + a2(2t
2
� s2 � u2)

�
,

M(x/y, y/x; y/x, x/y) =
↵2

8⇤4

�
4a1u

2 + a2(2u
2
� s2 � t2)

�
,

(1.19)

I denote the forward amplitudes as f�1�2(s) = M(�1�2 ! �1�2)|t=0,s=�u, where �i =
x, y. One can derive the following dispersion relation for the forward amplitude [9, 10]

1

2!

df�1�2

ds2
|s=0 =

Z 1

0

ds
Im f�1�2(s) + Im f�1�2(u)

⇡s3
. (1.20)

This equality holds in any theory with photons where amplitudes satisfy the postulates
of causality (analyticity in the s plane), crossing symmetry, as well as the Froissart

5Thanks to Brando Bellazzini for the help to work out these constraints.
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bound [11] (f(s) < c1s log2 s for s ! 1 and some constant c1). The last postulate
does not hold the Euler-Heisenberg e↵ective theory, as f(s) ⇠ s2. Although Eq. (1.20)
cannot be applied in this EFT, it should be valid in its UV completion provided the
latter is well-behaved. On the other side, the left-hand side can be reliably calculated
within the EFT, as it refers to the s! 0 limit of the amplitudes.

We choose the spin state �1�2 such that that spins are the same after t-channel
crossing: f�1�2(u) = f�1�2(s). Then unitarity (the optical theorem) allows us to trade
the imaginary forward amplitude for the total elastic and inelastic scattering cross section
from the given initial spin state: Im f�1�2(s) = s��1�2!all(s). Thus, we rewrite Eq. (1.20)
as

1

2!

df�1�2

ds2
|s=0 = 2

Z 1

0

ds
��1�2!all(s)

⇡s2
. (1.21)

The right-hand side is unknown and depends on the UV completion of the EFT, however
one thing we are sure is that it is manifestly positive. This in turn implies the positivity
of the left-hand side, which can be adequately approximated in the EFT and expressed
in terms of the Wilson coe�cients a1, a2.

To obtain concrete bounds, we use the amplitudes in the linear polarization basis in
Eq. (1.19). Under crossing the linear polarizations remain the same. Hence, the forward
amplitudes for the spin states |x/y, x/yi and |x/y, y/xi are transformed into itself under
t-channel crossing, as required in the derivation of Eq. (1.21). The dispersion relations
for these states read

(2a1 + a2)
↵2

2⇤4
= 2

Z 1

0

ds
�x/y,x/y!all(s)

⇡s2
,

a2
↵2

4⇤4
= 2

Z 1

0

ds
�x/y,y/x!all(s)

⇡s2
. (1.22)

Since the right-hand sides are manifestly positive, we obtain the positivity conditions on
the Wilson coe�cients in the Euler-Heisenberg Lagrangian:

2a1 + a2 > 0, a2 > 0. (1.23)

These conditions have to be satisfied for any sensible UV completion of the Euler-
Heisenberg Lagrangian. It is easy to verify it that the positivity conditions are satisfied
in (scalar) QED examples in Eq. (1.15) and Eq. (1.16). For the axion in Eq. (1.18) one
has 2a1 + a2 = 0 at tree level, which means that another contribution must arise at a
loop level to make this combination strictly positive.

The dispersion relations in Eq. (1.22) also provide a neat path to derive perturbativity
bounds on the Wilson coe�cients. Let us assume that the 2! 2 cross section calculated
in the EFT approximates well the one in the full UV complete theory all the way to the
cut-o↵ ⇤, that is for

p
s . ⇤. Cutting o↵ the integral on the right-hand side we obtain

2a1 + a2 & ↵2

16⇡2

✓
19a2

1

20
+

13a1a2
15

+
13a2

2

64

◆

a2 & ↵2

16⇡2

✓
a2
1

5
+

a1a2
60

+
3a2

2

40

◆
(1.24)

These constrain a1 and a2 to a be inside a circle of finite radius, and they cannot be arbi-
trarily large in a consistent EFT (although they can be rather huge due to the smallness

11



Figure 1: One-loop diagrams with W bosons and unphysical Goldstone bosons G±
contributing to the process sd̄! ds̄ in the SM. Only the diagram corresponding to the
color structure �c1c2�c3c4 are displayed. Similar diagrams with horizontal quark lines give
the other color structure �c1c3�c2c4 .

of ↵). Turning this around, if the EFT is generated from a particular UV completion
(such as QED), by power counting one expects ai ⇠ 1. Then the perturbativity condition
becomes a bound on ↵ in the UV completion:

↵ . 4⇡, (1.25)

or equivalently e . 4⇡. This is the familiar perturbativity bound on the coupling
strength in a gauge theory.

1.4 E↵ective Lagrangians and naturalness

In this example, I will illustrate how naturalness or lack thereof may manifest itself in
the EFT beyond tree level. To this end, I will study the low-energy e↵ective description
of �S = 2 transitions in the SM. I am more interested here in theoretical aspects rather
than in the flavor phenomenology. Therefore, I will work in a simplified framework of the
SM with only 2 generations of quarks. Quantitatively, this is a very bad approximation
of reality, as the top quark contribution to these transitions is non-negligible. However,
the clear hierarchy of scales, mq ⌧ mW for the first two generations, makes the EFT
discussion more straightforward and transparent.

Let us first consider the process sd̄! ds̄ in the SM. It proceeds via the box diagrams
in Fig. 2 with theW and physical Goldstone bosons exchanged between the fermion lines.
The relevant SM interactions are

LSM �

X

i,k=1,2

"
gL
p
2
Vikūi�̄µdkW

+

µ
+ i

p
2mui

v
Viku

c

i
dkG+ + h.c.

#
. (1.26)

I denote u1 ⌘ u, u2 ⌘ c, d1 ⌘ d, d2 ⌘ s. The unitary CKM matrix V in the 2-generation
case becomes just a rotation by the Cabibbo angle ✓c:

V =

✓
cos ✓c sin ✓c
� sin ✓c cos ✓c

◆
. (1.27)
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I will use the notation V11 ⌘ Vud, V12 ⌘ Vus, etc. In the limit of vanishing external
momenta, the amplitude takes the form

M(sc1
A
d̄c2
Ȧ
! dc3

Ḃ
s̄c4
B
) =

⇣
�c1c2�c3c4�̄ȦA

µ
�̄ḂB

µ
� �c1c3�c2c4 �̄ȦB

µ
�̄ḂA

µ

⌘
F, (1.28)

where A,B, Ȧ, Ḃ are spinor indices of the external fermions, and c1 . . . c4 are their color
indices. The form factor F calculated in the SM can be written as

FSM =
X

ij2uc

⇠i⇠jFij, ⇠i ⌘ VisV
⇤
id
. (1.29)

In the 2-generation case ⇠u = �⇠c = sin ✓c cos ✓c. One finds the following expression for
the function Fij in the limit mi,j ⌧ mW :

Fij =
g4
L

64⇡2
⇥

8
>><

>>:

�
1

m
2
W

+ m
2
i

m
4
W

h
2 log

⇣
m

2
W

m
2
i

⌘
� 3
i
+O(m�6

W
), i = j,

�
1

m
2
W

+ 1

m
4
W

m
4
i
log

✓
m

2
W

m
2
i

◆
�m

4
j
log

 
m

2
W

m
2
j

!
�m

4
i
+m

4
j

m
2
i
�m

2
j

+O(m�6

W
), i 6= j.

(1.30)
Note that the first term of F does not contribute to the amplitude because

P
i
⇠i = 0

due to the unitarity of the CKM matrix. Hence, the �S = 2 amplitude is O(m�4

W
)

rather than O(m�2

W
) as one might naively estimate via dimensional analysis. This is the

Glashow-Iliopoulos-Maiani (GIM) mechanism [12]. In fact, for two generations in the
limit mu ! 0, mc > 0 the GIM suppression is even stronger, as also the log-enhanced
terms cancel. In that limit i find

FSM ! � sin2 ✓c cos
2 ✓c

g4
L
m2

c

64⇡2m4

W

= � sin2 ✓c cos
2 ✓c

m2

c

4⇡2v4
(1.31)

I descend now to the EFT. I consider an e↵ective theory with two generations of light
quarks where the massive SM bosons (W , Z, and h) are integrated out. At the scales
far below the weak scale the e↵ective Lagrangian can be organized as an expansion in
1/mW . I will match this EFT to the SM (more precisely, to its simplified version without
the top and bottom quarks), working up to O(m�4

W
) and up to one-loop precision.

In the EFT, the sd̄ ! ds̄ transition can be mediated at tree level by the �S = 2
flavor-violating dimension-6 four-fermion operator:

LEFT4 �
Css

m2

W

(d̄�̄µs)(d̄�̄µs) + h.c., (1.32)

where Css is a dimensionless Wilson coe�cient. We know that �S = 2 processes arise
only at 1-loop level in the UV theory and, due to the GIM mechanism, they vanish

at O(m�2

W
). Hence Css ⇠

m
2
q

16⇡2m2
W

. At this order, to properly match Css to the UV

theory, one also needs to take into account the 1-loop contribution from the �S = 1
flavor-violating dimension-6 four-fermion operators in the EFT:

LEFT4 �

X

i,j=1,2

CsVisV ⇤
jd

m2

W

(ūi�̄µs)(d̄�̄µuj) + h.c.. (1.33)
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Figure 2: One-loop diagrams with contributing to the process sd̄ ! ds̄ in the EFT
where the W boson is integrated out. The first diagram corresponds to the color structure
�c1c2�c3c4 , and the other to �c1c3�c2c4 .

Integrating out the W -boson at tree level fixes the �S = 1 Wilson coe�cients as

Cs = �
g2
L

2
+O(m�2

W
) +O(1/16⇡2). (1.34)

For our purpose of matching Css at the next-to-leading order, the leading order expres-
sion for Cs is enough because the latter’s contribution to �S = 2 processes scales as
C2

s
/m4

W
/16⇡2.

As in the SM case, we can factor out the color and spin indices and parametrize the
amplitude as in Eq. (1.28). The form factor F calculated in the EFT takes the form

FEFT =
Css

m2

W

+
C2

s

m4

W

X

ij2u,c

⇠i⇠jIij , (1.35)

where the loop integral Iij is given by

Iij = �i
4

d

Z
ddk

(2⇡)d
k2

(k2 �m2
ui
)(k2 �m2

uj
)
. (1.36)

This integral is UV divergent. Evaluating it in the dimensional regularization (where
the quadratic divergence is not visible) I get

Iij =
1

8⇡2
⇥

8
>><

>>:

m2

i

h
1

✏̄
+ log

⇣
µ
2

m
2
i

⌘
+ 1
i
, i = j,

�
m2

i
+m2

j

� �
1

2̄✏
+ 3

4

�
+

m
4
i
log

✓
µ
2

m
2
i

◆
�m

4
j
log

 
µ
2

m
2
j

!

2(m
2
i
�m

2
j
)

, i 6= j.

(1.37)

Moreover, evaluating the diagram with the cut-o↵ one finds Iij = �
⇤
2

16⇡2 + . . . . However,
once we sum over the up-quarks in the loop, the GIM mechanism is again at play, and
both quadratic and logarithmic divergences cancel thanks to

P
⇠i = 0. In the limit

mu = 0, mc > 0 I get
X

ij2u,c

⇠i⇠jIij = �
m2

c

16⇡2
sin2 ✓c cos

2 ✓c. (1.38)

Matching to the SM, we require that the amplitudes sd̄! ds̄ calculated in the EFT and
in the SM are the same up to order m

2
c

16⇡2m4
W

. Comparing Eq. (1.35) and Eq. (1.29), we
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require
X

ij2u,c

⇠i⇠jFij =
Css

m2

W

+
C2

s

m4

W

X

ij

⇠i⇠jIij +O

✓
1

16⇡2m6

W

◆
. (1.39)

Given Eq. (1.31) and Eq. (1.38), this is satisfied for Css = 0. Thus, the �S = 2 four-
fermion operator is absent in the EFT Lagrangian also at order m�4

W
, while the proper

description of�S = 2 processes at that order is assured by loops involving a pair O(m�2

W
)

�S = 1 vertices present in that EFT.
We can move one more step down the EFT ladder. What happens when the charm

quark is also integrated out? Consider an e↵ective theory with 3 massless quarks s, d,
u and the interactions

LEFT3 �
C 0

ss

m2

W

(d̄�̄µs)(d̄�̄µs) +
Cs

m2

W

(ū�̄µs)(d̄�̄µu) + h.c.. (1.40)

In such a setup, the form factor for the sd̄! ds̄ amplitude is given by

FEFT0 =
C 0

ss

m2

W

+
C2

s

m4

W

⇠2
u

(�4i)

d

Z
ddk

(2⇡)d
1

k2
=

C 0
ss

m2

W

�
g4
L
sin2 ✓c cos2 ⇤2

64⇡2m4

W

. (1.41)

The integral depends quadratically on the cut-o↵ ⇤ of the 3-quark EFT, and now there
is no GIM mechanism to come to rescue. Therefore the Wilson coe�cient C 0

ss
cannot

vanish in the 3-quark EFT, as it is needed as a counterterm to cancel divergences.
Matching to the SM (or the 4-quark EFT) result we have

C 0
ss
=

g4
L
sin2 ✓c cos2 ✓c
64⇡2m2

W

�
⇤2
�m2

c

�
. (1.42)

We could have used the dimensional regularization instead, in which case no infinite
counterterm would be needed. However, doing so in this particular case we would miss
an interesting hint. In fact, the leading order result in the 4-quark EFT can be obtained
by replacing ⇤! mc in the 3-quark EFT calculation. Quadratic divergences do have a
physical meaning, sometimes.

Back in the 60s, before the charm quark discovery, the 3-quark EFT was the default
description of flavor transitions. In this context, the quadratic divergence suggested that
�S = 2 transitions receive dominant contributions from UV physics that scale at least
as the cuto↵ squared. At the same time, an upper bound on the sum of all existing and
new contributions was known from experimental observations of the neutral kaon mass
di↵erence. Naturalness then suggested that ⇤ of that EFT should not be large, and that
above ⇤ the EFT is replaced by UV completion where the quadratic sensitivity is cured.
This expectation was qualitatively borne out with the discovery of the charm quark
with mc ⇠ 1 GeV and interactions consistent the GIM mechanism. At the quantitative
level, the full story is a bit more complicated as the top quark contributions to �S = 2
transitions cannot be neglected in this discussion (they are of the same order as those
of the charm quark). Nevertheless, predicting the charm quark in Ref. [12] can be
considered a successful application of the naturalness principle in high-energy physics.
Until today it remains the only successful prediction (as opposed to several postdictions)
based on the naturalness principle...
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2 E↵ective Toy Story

In this lecture I will work out the low-energy EFT for a theory of two reals scalars,
one light and one heavy, interacting via cubic and quartic couplings in the Lagrangian.
The goal is to illustrate, in a simple and calculable example, some central concepts
pervading EFT calculations, such as the tree- and loop-level matching, the on-shell vs
o↵-shell matching, the basis independence, and the resummation of large logarithms.
The discussion is inspired by the one in the TASI lectures of Ira Rothstein [2], although
my approach is di↵erent in several important details. In particular, I match the EFT
and the full theory on-shell rather than o↵-shell, and I get rid of redundant operators
before matching.

2.1 Settings

Consider a light real scalar field � with mass mL and a heavy one H with mass M . The
Lagrangian of the UV theory is

LUV =
1

2

⇥
(@µ�)

2
�m2

L
�2 + (@µH)2 �M2H2

⇤

�
�0
4!
�4
�
�1
2
M�2H �

�2
4
�2H2. (2.1)

Note that I factored out the heavy mass scale M in the dimensionful coe�cient of
the trilinear term, which will a↵ect the power counting below. I’m imposing the Z2

symmetry �! ��, thus odd powers of � do not appear in the Lagrangian. The H3 and
H4 interactions are irrelevant for this discussion, and for simplicity I’m assuming they
are absent in the Lagrangian (even if this assumption is not stable, as loop corrections
will generate H3 and H4 counterterms).

We want to derive the EFT valid at E ⌧ M where H is integrated out. The EFT
Lagrangian has to be of the form

LEFT =
1

2

⇥
(@µ�)

2
�m2�2

⇤
� C4

�4

4!
�

C6

M2

�6

6!
+O(M�4). (2.2)

The interaction terms are organized as the expansion in inverse powers ofM ,
P

d

Cd

Md�4Od,
where each operator Od has the canonical dimension d. In this simple EFT there is only
one non-redundant operator at the dimension-4 level, and only one at the dimension-6
level. Operators with an odd number of �’s do not appear because of the Z2 symmetry
�! �� of the UV Lagrangian in Eq. (2.1), which is inherited by the low-energy theory.
I will not trace here the operators with d > 6, although it is easy to complicate the
analysis and truncate the Lagrangian at some higher d.

Note that one could write other possible operators at O(M�2), e.g.

Ô6 ⌘ (2�)2, Õ6 ⌘ �2�3, Õ0
6
⌘ �22�2, Õ00

6
⌘ �2@µ�@µ�, . . . (2.3)

It turns out that the operators in Eq. (2.3) are redundant, that is to say, adding them
to the Lagrangian in Eq. (2.2) does not change the physical content of the theory.
First, Õ00

6
and Õ0

6
can be traded for Õ6 via integration by parts: �2(@µ�)2 = �1

3
�32�,

�22�2 = 4

3
�32�. On the other hand, Ô6 and Õ6 can be eliminated in favor of the

16



interaction term present in Eq. (2.2) by using the classical equations of motion. It was
proven in Ref. [13] that shifting the higher-dimensional operators by a term proportional
to the classical equations of motion does not change the S-matrix elements, even at the
loop level. The point is that trading one interaction term for another using the equations
of motion is the same as redefining the fields in the Lagrangian in a non-linear way. For
example, going from the unbox basis to the box basis corresponds to the redefinition

�! �
⇣
1� C6

120C4M
2�2

⌘
. It is rather intuitive that the manner in which you define your

fields should not a↵ect the physical content of the theory. Independence of the S-matrix
on field redefinitions is the consequence of the equivalence theorem [14, 15].

In our case, the equation of motion for � read

2�+m2�+
C4

6
�3 = O(M�2). (2.4)

For our purpose, we don’t need to write down theO(M�2) piece explicitly as it is relevant
only for manipulating O(M�4) terms in the Lagrangian. Using the equation of motion
we find, for example, the following operator equation:

1

M2
�32� = �

m2

M2
�4
�

C4

6M2
�6 +O(M�4). (2.5)

This means that Õ6 has the same e↵ect on on-shell amplitudes as a particular linear
combination of the terms already present in Eq. (2.2). Since the coe�cients in Eq. (2.2)
are free parameters at this point, Õ6 can be left out without any loss of generality.
Conversely, one can use Eq. (2.5) to trade O6 for Õ6, leading to the Lagrangian

LEFT =
1

2

⇥
(@µ�)

2
�m2�2

⇤
� C̃4

�4

4!
�

C̃6

4!M2
�32�+O(M�4). (2.6)

In my jargon, the Lagrangian in Eq. (2.2) is written in the unbox basis, and the one
in Eq. (2.6) is written in the box basis.6 At any order in perturbation theory, both La-
grangians give equivalent predictions for all on-shell scattering amplitudes up to O(M�2)
terms. The two sets of predictions are related by the map

C̃4 = C4 �
m2

5M2

C6

C4

,

C̃6 = �
C6

5C4

. (2.7)

Exercise: Express the operator Ô6 by the ones present in the Lagrangian of Eq. (2.2).
Write down the map between the double-box basis, and the unbox basis.

Before moving on let us write the ~ dimensions of the fields and couplings. Demand-
ing that the action has ~1 dimension, and choosing the convention that no ~ factors
multiply kinetic terms, each field needs to have dimension ~1/2. Then the coe�cient of

6In this toy model the basis of dimension-6 operators is one-dimensional, but that is just because I
picked a particularly simple example to introduce the concept. The simplicity should be appreciated,
especially when compared to the 2499-dimensional basis of dimension-6 operators in the SM EFT.
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Figure 3: Tree-level Feynman diagrams contributing to the ��! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1).

an interaction term with n fields needs to have dimension ~1�n/2. It follows that the
couplings in the UV Lagrangian have the following ~ dimensions:

[�0] = ~�1, [�1] = ~�1/2, [�2] = ~�1, (2.8)

while the EFT couplings have the ~ dimensions:

[Ĉ6] = ~0, [C4] = ~�1, [C̃6] = ~�1, [C6] = ~�2. (2.9)

Matching the UV theory and the EFT consists fixing the EFT Wilson coe�cients
such that all on-shell scattering amplitudes of � are the same when calculated in either
framework. In practice, the above condition is imposed up to a fixed order in the 1/M
expansion and the in the loop expansion. In the following I will perform the matching
between the EFT Wilson coe�cients Ci and the UV parameters, working up to 1/M2

order and up to the 1-loop precision.

2.2 Tree-level matching

I start with the tree-level matching. At this order, the condition for the � propagator
to be the same in the UV theory and the EFT is trivial:

m2 = m2

L
. (2.10)

Let us move to the on-shell scattering amplitudes of �, starting with the 2-to-2
scattering. In the UV theory this process receives a contribution from the contact �4

interaction, and also from the s-, t-, and u-channel exchange of H, see Fig. 3. The
resulting amplitude is given by

M
UV

4
= ��0 � �

2

1
M2


1

s�M2
+

1

t�M2
+

1

u�M2

�

⇡ ��0 + 3�2
1
+

�2
1

M2
(s+ t+ u) +O(M�4)

⇡ ��0 + 3�2
1
+

4m2

L
�2
1

M2
+O(M�4) (2.11)

where s = (p1 + p2)2, t = (p1 � p3)2, u = (p1 � p4)2 are the Mandelstam variables, and
in the last step we used s+ t+ u = 4m2

L
.
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The analogous calculation in the EFT is simpler, as only the leftmost diagram in
Fig. 3 contributes. In the unbox basis this yields

M
EFT

4
= �C4. (2.12)

The matching between the EFT and the UV theory consists in imposing the requirement
M

EFT

4
= M

UV

4
+O(M�2). The matching condition thus reads

C4 = �0 � 3�2
1
� 4�2

1

m2

L

M2
. (2.13)

We can equally well perform the matching in the box basis. Here the EFT calculation
is a tad less trivial due to the presence of the derivative 4-point vertex. With the external
momenta on-shell I get

M
EFT

4
= �C̃4 +

m2

M2
C̃6, (2.14)

and the matching condition becomes

C̃4 �
m2

M2
C̃6 = �0 � 3�2

1
� 4�2

1

m2

L

M2
. (2.15)

This is consistent with Eq. (2.13) after using the map in Eq. (2.7).
In order to match the Wilson coe�cient C6 in the unbox basis one needs to calculate

the 6-point function on the UV and EFT sides. This is a lengthy and complicated
exercise, so I will only quote the final result here. In Section 3 I will derive this result
using much more powerful methods of path integrals. All in all, the tree-level matching
conditions in the unbox basis up to O(M�2) read

m2 = m2

L
,

C4 = �0 � 3�2
1
� 4�2

1

m2

L

M2
,

C6 = 45�2
1
�2 � 20�0�

2

1
+ 60�4

1
. (2.16)

Using Eq. (2.7) one also finds the matching condition in the box basis:

m2 = m2

L
,

C̃4 = �0 � 3�2
1
�

9m2

L

M2

�2
1
�2

�0 � 3�2
1

,

C̃6 = 4�2
1
� 9

�2
1
�2

�0 � 3�2
1

. (2.17)

2.3 One-loop matching of 2-point function

We start with matching the 1PI 2-point function ⇧(p2). At tree level we have ⇧EFT

0
=

p2 �m2, and ⇧UV

0
= p2 �m2

L
. This will be corrected by 1-loop diagrams.7 On the EFT

7 Loop integrals have been calculated with the help of the Package-X code [16].
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Figure 4: One-loop Feynman diagrams contributing the two-point function of � in the
toy model described by the Lagrangian Eq. (2.1).

side, there is just one diagram marked as a) in Fig. 4. Working in the unbox basis and
evaluating the diagram in dimensional regularization I get

�⇧EFT = (�i)
�iC4

2

Z
ddk

(2⇡)d
i

k2 �m2

= C4

m2

32⇡2


1

✏̄
+ log

✓
µ2

m2

◆
+ 1

�
. (2.18)

where 1/✏̄ = 1/✏+ �E + log(4⇡), and µ is a dimensionful parameter introduced through
the dimensional regularization prescription. The physical mass m2

phys
is defined as the

pole of ⇧(p2). For renormalization, I will always use the MS scheme, which consists in
simply dropping the 1/✏̄ pole in all amplitudes. The parameter µ can be identified with
the renormalization scale, as explained in detailin the following. Then the physical mass
at one loop is related to the Lagrangian parameters by

m2

phys
= m2

� C4

m2

32⇡2


log

✓
µ2

m2

◆
+ 1

�
. (2.19)

The physical mass on the left-hand side is an observable, thus it should not depend
on the arbitrary scale µ. The answer is that, at loop level, the mass parameter in the
Lagrangian should be promoted to a scale-dependent object, m2(µ). To ensure it, the
parameter m2 at one loop order must satisfy the RG equation

dm2

d log µ
= C4

m2

16⇡2
, (2.20)

such that the right-hand side is also µ-independent at one loop.
In the box basis of the EFT the 2-point function takes the form:

�⇧̃EFT = �
iC̃4

2!

Z
ddk

(2⇡)d
1

k2 �m2
+ (�i)

iC̃6

2!4M2

Z
ddk

(2⇡)d
2i(k2 +m2)

k2 �m2

= C̃4
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
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M2
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+ log
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◆
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�
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(2.21)

It is important to notice that �⇧EFT and �⇧̃EFT coincide on-shell but are not the same
o↵-shell! In particular, the dependence on p2 is completely di↵erent. It follows that the
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anomalous dimensions are basis-dependent: at one loop the wave-function renormaliza-
tion in the box basis is non-trivial,

�̃� ⌘
d�⇧̃EFT

dp2
|p2=m

2
phys

= �
C̃6

64⇡2

m2

M2


1

✏̄
+ log

✓
µ2

m2

◆
+ 1

�
, (2.22)

whereas �� = 0 in the unbox basis. In general, the equivalence theory only ensure the
equality of on-shell S-matrix elements, while o↵-shell correlation functions are basis-
dependent. However, physical quantities must be the same, irrespectively of the basis
in which they are calculated. The physical mass (the solution to p2 �m2 + �⇧̃EFT = 0)
in the box basis at one loop is given by

m2

phys
= m2

�
m2

32⇡2

✓
C̃4 �

m2

M2
C̃6

◆
log

✓
µ2

m2

◆
+ 1

�
, (2.23)

which is the same as in Eq. (2.19) after mapping the parameters as in Eq. (2.7). By the
same token, the RG equation in the box basis matches that in Eq. (2.20).

We move to the UV side. First, there is again the diagram a) in Fig. 4, but now the
mass parameter and the quartic coupling of � are di↵erent:

M
UV,a)

2
= �0

m2

L

32⇡2


1

✏̄
+ log
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◆
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�
. (2.24)

Next, there’s the analogous diagram b) with the heavy scalar in the loop.

M
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2
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. (2.25)

Next, there’s the diagram c) containing a tadpole:

M
UV,c)

2
= (�i)(�i�1M)2

1

02 �M2

Z
ddk

(2⇡)d
i

k2 �m2

= ��2
1

m2

L

32⇡2


1

✏̄
+ log

✓
µ2

m2

L

◆
+ 1

�
. (2.26)

Finally, the mixed heavy-light loop expanded to O(M�2) and evaluated at p2 = m2

L

reads

M
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All in all, the physical mass of the light scalar in the UV theory at one loop in the
MS scheme is given by
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Equating Eq. (2.19) and Eq. (2.28), one finds the matching equation between the MS
mass parameters in the UV and EFT Lagrangians:

m2(µ) = m2
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Note that ~ counting still works at the loop-level. To see this, one should take into
account that, when ~ is retrieved in the action, the loop expansion parameter is really
~

16⇡2 .
One can see that the log(µ2/m2

L
) cancel out in the matching equation. Choosing

µ = M , the matching condition further simplifies to

m2(M) = m2
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Thanks to the absence of log(µ2/m2

L
) in the matching equation, choosing the high

matching scale µ ⇠ M ensures that there are no large logarithms in the matching
equation. Otherwise, these large logs could invalidate the perturbative expansion if
�2
1
log(µ2/M2)� 1, or �2 log(µ2/M2)� 1.
Furthermore, Eq. (2.30) shows the modern way to formulate the UV sensitivity of

scalar masses. In the low-energy theory for the scalar �, the loop corrections to m2

are proportional to m2 as long as we use the dimensional regularization. On the other
hand, one would find large quadratically divergent corrections to m2 in the EFT, �m2

⇠

⇤2/(16⇡2), if a mass-dependent regulator (e.g. the momentum cut-o↵) were used. This
is often confusing: the question whether of there is the fine-tuning problem seems to
depend on the regularization procedure. Viewing the low-energy theory as an EFT that
is matched to some up completion at the high scaleM allows one to avoid this conundrum
and formulate the fine-tuning problem in the regularization-independent manner. What
Eq. (2.30) tells us is that the natural value of the parameter m2 in the EFT is m2

⇠M2

(more precisely m2
⇠M2/(16⇡2)), which is also what one would expect from the simple

scaling arguments. In order to arrive at a small m ⌧ M/(4⇡) (and thus mphys ⌧ M)
in the EFT one needs to choose m2

L
⇠ M2/16⇡2

� m in the UV theory, and carefully
fine-tune the cancellation.

2.4 One-loop matching of 4-point function

For the 4-point function, the number of 1-loop diagrams in the UV model explodes, so
I will restrict the discussion to the case �1 = 0, which greatly simplifies the calculation.
Note that in this limit the tree-level matching conditions becomes simply C4 = �0,
C6 = 0.

For the EFT calculation, the relevant diagrams are drawn in the top row of Fig. 5. In
the unbox basis I find the following result for the 2-to-2 scattering up to 1-loop precision:

M
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, (2.31)
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Figure 5: One-loop Feynman diagrams contributing to the ��! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1) in the limit �1 = 0.
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. (2.32)

The S-matrix element is
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4
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4
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i
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2
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(2.33)

from which the observable di↵erential cross-section can be calculated. Here �� is the
wave-function renormalization which however vanishes at one loop in the unbox basis,
and MS prescription consists in dropping the 1/✏̄ poles in the amplitude. Demanding
that SEFT

4
is renormalization-scale independent, one obtains the RG equation for the

Wilson coe�cient C4,
dC4

d log µ
=
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4
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C6. (2.34)

It is instructive to repeat the same calculation in the box basis. O↵-shell, the 2-to-2
amplitude reads

M̃
EFT

4
= �C̃4 +

P
4

i=1
p2
i

4M2
C̃6 +

C̃2

4
�

2m
2

M2 C̃4C̃6

32⇡2
[f(s,m) + f(t,m) + f(u,m)]

+
3C̃2

4

32⇡2

✓
1

✏̄
+ log

✓
µ2

m2

◆
+ 2

◆
�

3C̃4C̃6m2

16⇡2M2

✓
1

✏̄
+ log

✓
µ2

m2

◆
+

3

2

◆

�
3C̃4C̃6(

P
4

i=1
p2
i
)

128⇡2M2

✓
1

✏̄
+ log

✓
µ2

m2

◆
+ 2

◆
. (2.35)

Much as for the two point function, the on-shell matrix elements M̃EFT

4
and M

EFT

4
are

di↵erent, and the two have a di↵erent momentum dependence. However, the S-matrix
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element calculated in the box basis,

SEFT

4
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M̃
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4
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|p2

i
=m

2
phys

, (2.36)

is exactly the same as in the one in the unbox basis Eq. (2.33), once the Wilson coe�cients
are related by the map in Eq. (2.7).

We move to the UV theory computation, where we also include the bottom row
diagrams in Fig. 5 with the heavy scalar in the loop. In the limit �2 = 0 the result is
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(2.37)

Expanding this in 1/M ,
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In the MS scheme, the renormalized amplitudes are those of Eq. (2.31) and Eq. (2.38)
with 1/✏̄ poles dropped and µ is interpreted as the renormalization scale. We then read
o↵ the matching condition for C4 at 1-loop level:
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2
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48⇡2M2
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As in the previous case of matching m2, logs of the small mass scale m do not show up
in the matching equation. Again, we are free to choose µ = M (or another µ ⇠ M ,
e.g. µR = 11M/17 if you wish) to avoid large logs in the matching equation. Then the
matching between the EFT and UV parameters simplifies to

C4(M) = �0(M)�
�2
2
m2

48⇡2M2
. (2.40)

2.5 RG equations in the EFT

We have seen that the matching between the UV theory and the EFT simplifies if the
matching is performed at the scale µ ⇠ M . Then, to calculate the EFT couplings at
µ ⌧ M we need to evolve them using the RG equations. The latter are obtained by
demanding the observables, such as the physical mass and S-matrix elements, do not
depend on the renormalization scale. In the unbox basis this led us to the following RG
equations (c.f. Eq. (2.20) and Eq. (2.34))
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d log µ
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,

dC4

d log µ
=

1

16⇡2


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�
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The O(M0) terms on the r.h.s. are the standard result in the �4 theory. There is also an
O(M�2) terms in the running equation for C4 that is proportional to the Wilson coe�-
cient of the dimension-6 operator. In general, the EFT at one loop, Wilson coe�cients
of higher dimensional operators may a↵ect RG running of lower-dimensional ones (never
the other way around) if there are explicit mass parameters in the EFT.

Let us pause for a moment to brood on the physical meaning of Eq. (2.41). To
one-loop accuracy the first of these equations is solved by

m2(µ) = m2(M)
⇣ µ

M

⌘ C4
16⇡2

. (2.42)

Given that m2
⇠M2, c.f. Eq. (2.30), Eq. (2.42) tells us that the naive scaling is modified

by 1-loop e↵ects, leading tom2
⇠M2+

C4
16⇡2 . For these reason the coe�cients on the right-

hand side of the RG equations are referred to as anomalous dimensions. Furthermore,
using a✏ = e✏ log a ⇡ 1 + ✏ log a one can re-write Eq. (2.42) as

m2(µ) ⇡ m2(M)


1 +

C4

16⇡2
log
⇣ µ

M

⌘�
, (2.43)

which is a valid approximation as long as C4 log(µ/M)⌧ 16⇡2. This should be compared
to the expression for the physical mass in the full UV theory in Eq. (2.28). Up to one
loop accuracy this is the same expression once the map between the EFT and the
UV parameters is taken into account (c.f. Eq. (2.30) and Eq. (2.7)). What the RG
evolution accomplishes is re-summing the possibly large logarithms in Eq. (2.28) into the
expression in Eq. (2.42), which is valid also C4 log(µ/M) & 16⇡2 (assuming C4 ⌧ 16⇡2,
that is to say, the breakdown of the perturbation theory is due to large logarithms, and
not due large couplings).

.

2.6 Summary and lessons learned

To summarize, given the heavy-light scalar system described by Eq. (2.1), in order to
calculate scattering amplitudes of the light scalar � at energies E far below the heavy
mass scale M one should apply the following algorithm:

1. Express the parameters of the EFT Lagrangian Eq. (2.2) at the scale M by those
of the full theory at that scale using the matching equations such as the ones in
Eq. (2.30) and Eq. (2.40).

2. Evolve the Wilson coe�cients down to the scale µ ⇠ E using the RG equations in
the EFT, such as the ones in Eq. (2.41).

3. Calculate the amplitudes using the EFT Lagrangian with the parameters at the
scale µ ⇠ E.

4. If working at O(M�2) is insu�cient for the given E/M and the experimental
precision, write down d = 8 operators (or higher) in the EFT Lagrangian and
generalize the matching and RG equations to the corresponding order in 1/M .
Similarly, if the 1-loop precision is insu�cient, generalize the matching and RG
equations to higher loops.
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Alternatively, one could perform the same calculations within the full theory with two
scalars. This would be of course more involved computationally. Moreover, when E ⌧
M , one may run into the problem of large logs that invalidate the perturbative expansion.
Thus, calculations in the EFT are most often superior, both from the practical and from
the precision point of view.

One could also go the opposite way, from the EFT to the UV theory. Imagine that
some hypothetical experimental data are well described by a theory with a single scalar
field and the e↵ective Lagrangian Eq. (2.2). Due to the presence of higher-dimensional
operators, this theory cannot be valid up to an arbitrary high scale. Indeed, one finds
that the amplitude calculated in the e↵ective theory lose perturbative unitarity at the
high-energy scale ⇤ ⇠ 4⇡Mp

|C6|
which we assume to be beyond the reach of the hypothetical

experiment. In such circumstances, a hypothetical theorist would speculate that at the
single scalar theory is embedded in a two scalar theory where the new scalar has mass
M  ⇤. Then, running the experimentally measured Wilson coe�cients C4 and C6 up
to a high scale, and matching them to the parameters to the heavy-light scalar system,
one could gain some insight about certain combinations of masses and couplings of the
heavy scalar.
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3 Path integral methods for EFT

The path integral formulation of quantum field theories o↵ers powerful methods to match
the low-energy e↵ective Lagrangian to any UV f relativistic theory. These methods go
under the name of the covariant derivative expansion (CDE) and have been developed
recently in Refs. [17, 18, 19, 20, 21].

3.1 Flash review of path integrals

In a quantum field theory the correlation functions can be computed from a path integral
according to

h�(x1) . . .�(xn)i =

R
[D�]�(x1) . . .�(xn) exp

⇥
i
R
d4xL(�)

⇤
R
[D�] exp

⇥
i
R
d4xL(�)

⇤ . (3.1)

All correlation functions can be encoded in the generating functional Z[J ] called the
partition function:

Z[J ] =

Z
[D�] exp


i

Z
d4x (L(�) + J�)

�
. (3.2)

Given Z[J ], the correlation function can be recovered by di↵erentiating with respect to
the source term:
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. (3.3)

Actually, the full information about the theory is stored in the 1-particle irreducible
(1PI) diagrams, that is to say, in connected diagrams which cannot be disconnected
by cutting a single internal propagator. There exists a generating functional for the
1PI irreducible diagrams, which I call the quantum 1PI action8, which is defined as the
Legendre transform of logZ[J ]:

�[�b] = �i logZ[J ]�

Z
d4xJ(x)�b(x), �b(x) =

� logZ[J ]

�J(x)
, (3.4)

where �b, the so-called classical field, is a solution to the classical equations of motion,
�L|�=�b

+ J�� = 0. Given the quantum 1PI action, the 1PI diagrams can be recovered
by di↵erentiating �[�]:

h�(x1) . . .�(xn)i1PI = i
�n�[�]

��(x1) . . . ��(xn)
. (3.5)

The central formula in most application is the Gaussian path integral. For a real
scalar �, a complex scalar �, and a Dirac fermion  we have

Z
[D�] exp

✓
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2
�Â�

◆
= C1[det Â]

�1/2,
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i ̄Â 

⌘
= C3[det Â], (3.6)

8In the literature it is usually called the e↵ective action, but I prefer not to use this term because of
possible confusion with the low-energy e↵ective action

R
d4xLEFT.
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where Â is a di↵erential operator acting in the space of functions, and Ci’s are some
renormalization constant which is irrelevant in practical applications.

3.2 Matching - general discussion

I follow closely the presentation of Ref. [21]. Consider a theory with a collection of light
fields � and heavy fields H with the Lagrangian LUV(�, H). We are interested in the
low energy EFT where H are integrated out. The EFT is valid at energies below the
heavy fields mass scale M and the interactions of the light fields � at these scales are
described by the local Lagrangian LEFT(�). The problem is to determine LEFT(�) given
LUV(�, H).

The matching between a UV theory and its low-energy EFT can be concisely char-
acterized at the level of path integrals. The UV theory is defined by the generating
functional and the quantum action as follows:
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Z
[D�][DH] exp
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Z
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�
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(3.7)

On the other hand, the EFT is defined by the generating functional and the quantum
action as follows:
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Z
[D�] exp


i

Z
d4x (LEFT(�) + J��)

�

�EFT[�b] = �i logZEFT[J�]�

Z
d4xJ�(x)�b(x)

�b(x) =
� logZEFT[J�]

�J�(x)
. (3.8)

Since ZUV[J�, 0] generates all correlation functions for the light fields in the UV theory,
while ZEFT[J�] generates the same correlation functions in the EFT, we require that

ZEFT[J�] = ZUV[J�, 0]. (3.9)

This condition is somewhat stronger than we need, as it ensures that the equality of
on-shell as well as o↵-shell correlation functions. What we really need is the equality of
S-matrix elements in the UV and the EFT theories. Thus, once we find LEFT(�) that
solves Eq. (3.9), we will allow for field redefinitions of �, which changes the correlation
function but preserves the S-matrix elements. Furthermore, one never demands that
Eq. (3.9) is exact. Instead, one typically assumes that it holds up to some prescribed
order in the loop expansion, and/or up to some order in 1/M Taylor expansion of both
sides.

Thus, the original problem is transformed into the one of constructing LEFT(�) such
that Eq. (3.9) is satisfied. However, Z[�] is in general a highly complicated object. For
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practical reasons, it is simpler more convenient to manipulate the 1PI quantum action.
We can equivalently formulate the condition in Eq. (3.9) as

�UV[�, 0] = �EFT[�] (3.10)

In the following I review the construction that satisfies Eq. (3.10) up to the one loop
order. I will work under the assumption that � and H are a collection of real scalar
fields, but the discussion can be easily generalized to other spins.

Let me first calculate the EFT side. In the path integral for ZEFT I change variables
as � = �b + �0, where the background value �b satisfies �LEFT|�=�b

+ J��� = 0. I also
expand the Lagrangian around �b. This gives

ZEFT = ei
R
d
4
x(LEFT|�=�

b
+J��b)

Z
[D�0] exp


�
i

2

Z
d4x�0TQEFT�

0
�
+ . . . (3.11)

where QEFT = � �
2LEFT
��2 |�=�b

. The linear term in �0 vanish as a consequence of the
definition of �b, while the cubic and higher terms, represented by the dots, correspond
to two- and higher-loop contributions which are neglected here. Note that, since �b

solves equations of motion with some arbitrary source term J�, it is e↵ectively arbitrary.
In the following we skip the index b for the light fields �.

Using Eq. (3.6), Eq. (3.11) becomes:

ZEFT = ei
R
d
4
x(LEFT+J��) [detQEFT]

�1/2 + . . . (3.12)

It follows

�EFT[�] =

Z
d4xLEFT +

i

2
log detQEFT + . . . (3.13)

The calculation on the UV side is similar with one important di↵erence. Since we
set JH = 0, Hb solves

�LUV
�H |H=Hb

= 0, and thus it becomes a function of � only. I denote

it as Hb = Hc(�), where Hc is a solution to the classical equations of motion in the
background of �. All in all,

�UV[�] =

Z
d4xLUV|H=Hc(�)

+
i

2
log detQUV + . . . (3.14)

where

QUV ⌘

✓
�H XLH

XLH �L

◆
=

 
�

�
2LUV
�H2 �

�
2LUV
���H

�
�
2LUV
���H

�
�
2LUV
��2

!
|H=Hc(�)

. (3.15)

We write the EFT Lagrangian as LEFT = L
(0)

EFT
+L

(1)

EFT
+ . . . , where for LEFT = L

(0)

EFT

Eq. (3.10) is satisfied at tree level, while L
(1)

EFT
is the correction required for Eq. (3.10)

to be satisfied at one loop. Comparing Eq. (3.14) and Eq. (3.13) we immediately obtain
a simple formula for the tree-level e↵ective Lagrangian:

L
(0)

EFT
(�) = L̂UV(�, Hc(�)). (3.16)

The hat above signifies the expansion in 1/M up to the order in which we perform
the matching. The point is that LUV(�, Hc(�)) may contain non-local interactions due
to Hc(�) containing derivatives in denominators. Only after expanding in 1/M and
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truncating at some finite order we obtain a local Lagrangian, as required by our matching
procedure.

More work is needed to determine L
(1)

EFT
. To this end we need to massage �[�] a bit

more. Let’s start with the UV side. QUV can be diagonalized as

QUV = V

✓
�H �XLH�

�1

L
XLH 0

0 �L

◆
V †, V =

✓
1 XLH�

�1

L

0 1

◆
. (3.17)

Since detV = 0, we have

log detQUV = log det�L + log det
�
�H �XLH�

�1

L
XLH

�
(3.18)

The first term is interpreted as the loops of the light fields in the UV theory, while the
second describes the heavy and mixed loops.

We go back to the EFT. When calculating log detQEFT we need to take into account
only L

(0)

EFT
, which we already determined, because L

(1)

EFT
contributes to the determinant

only at two loops. The functional derivatives of L(0)

EFT
can be simplified as

�2L(0)

EFT

��2
=

�2

��2

⇣
L̂UV(�, Hc(�))

⌘
=

�

��

 
�L̂UV

��
|H=Hc(�)

!

=
�2L̂UV

��2
|H=Hc(�)

+
�2L̂UV

���H
|H=Hc(�)

dHc

d�
(3.19)

Now using

0 = �
�

��

✓
�LUV

�H
|H=Hc(�)

◆
= XLH +�H

dHc

d�
(3.20)

we get
QEFT = �̂L � X̂LH�̂

�1

H
X̂LH (3.21)

Again, the hat here denote the 1/M expansion. Thus,

log detQEFT = log det �̂L + log det
⇣
1� �̂�1

L
X̂LH�̂

�1

H
X̂LH

⌘

= log det �̂L + log det
⇣
1� X̂LH�̂

�1

L
X̂LH�̂

�1

H

⌘

= log det �̂L � log det �̂H + log det
⇣
�̂H � X̂LH�̂

�1

L
X̂LH

⌘
(3.22)

All in all, to ensure �UV[�] = �EFT[�] up to one-loop order we need to choose L
(1)

EFT
as

Z
d4xL(1)

EFT
=

i

2
log det

�
�H �XLH�

�1

L
XLH

�
�

i

2
log det

⇣
�̂H � X̂LH�̂

�1

L
X̂LH

⌘

+
i

2
log det �̂H (3.23)

I used that det �̂L = det�L; in other words, in the light loops it doesn’t matter if
the expansion in 1/M is done before or after taking the integral. That is in general
not true for the heavy and mixed loops. A surprising theorem, known as the method
of regions, allows one separate hard and soft contributions to the loop integrals. The
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method of regions postulates that loop integrals with two disparate mass scales m and
M are exactly given by the sum of their soft region obtained by expanding the integrand
assuming the loop momenta k ⇠ mi ⌧ M and the hard expansion region assuming
k ⇠ M � m. See Appendix A for an explicit example. Note that isolating the soft
region is equivalent to expanding the integrand in 1/M , thus it is the same as putting
the hat. Thus we have log detX = log detXhard + log detXsoft and moreover

log det
�
�H �XLH�

�1

L
XLH

�
soft

= log det
⇣
�̂H � X̂LH�̂

�1

L
X̂LH

⌘

(log det�H)soft = log det �̂H = 0 (3.24)

The last equality hold in dimensional regularization because the expansion leads to
scaleless integrals of the form M�c

R
ddkkn = 0. Finally, the compact expression for the

1-loop part of the e↵ective Lagrangian reads
Z

d4xL(1)

EFT
=

i

2
log det

�
�H �XLH�

�1

L
XLH

�
hard

(3.25)

3.3 Calculating functional determinants

We turn to discussing how one actually calculate the functional determinant in Eq. (3.25).
The central formula for this enterprise is

log det Â = Tr log Â. (3.26)

Here, Tr should be taken both in the space of functions where Â is acting, and over all
internal indices (color, spin, flavor, etc.) of the quantum field being integrated over. To
di↵erentiate the latter, the trace over internal indices only will be denoted as tr. One
can derive the following useful expression for the functional trace of an operator which
is a function of the momentum operator p̂ (p̂ = p in the momentum basis, p̂ = i@x
in the coordinate basis). Representing the trace as the sum of the eigenstates in the
momentum basis we have:

TrO(p̂) =

Z
ddq

(2⇡)d
hq|trO(p̂)|qi =

Z
ddx

Z
ddq

(2⇡)d
hq|xihx|trO(p̂)|qi (3.27)

Now we can insert the coordinate basis representation of the momentum eigenstate:
hx||qi = e�iqx.

TrO(p̂) =

Z
ddx

Z
ddq

(2⇡)d
eiqxtrO(i@x)e

�iqx =

Z
ddx

Z
ddq

(2⇡)d
trO(i@x+q) =

Z
ddx

Z
ddq

(2⇡)d
trO(p̂�q)

(3.28)
The last step is just a trivial change of variable q ! �q. Hence we have

L
(1)

EFT
=

i

2

Z
ddq

(2⇡)d
tr log

�
�H �XLH�

�1

L
XLH

�
hard

|
P̂=P̂�q

(3.29)

Now assume �H is of the form

�H = �P̂ 2 +M2 +XH(H,�, P̂ ) (3.30)
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Then

L
(1)

EFT
=

i

2

Z
ddq

(2⇡)d
tr log

⇣
�q2 + 2qP̂ � P̂ 2 +M2 +XH |P̂=P̂�q

�XLH�
�1

L
XLH |P̂=P̂�q

⌘

hard

=
i

2

Z
ddq

(2⇡)d
tr log

h
1� (q2 �M2)�1

⇣
2qP̂ � P̂ 2 +XH |P̂=P̂�q

�XLH�
�1

L
XLH |P̂=P̂�q

⌘i

hard

(3.31)

Above we dropped a constant �-independent term. Finally

L
(1)

EFT
= �

i

2

1X

n=1

n�1

Z
ddq

(2⇡)d
tr

 
2qP̂ � P̂ 2 +XH |P̂=P̂�q

�XLH�
�1

L
XLH |P̂=P̂�q

q2 �M2

!n

hard

(3.32)
This way, calculation of the e↵ective Lagrangian at one loop is reduced to calculating a
number of momentum integrals.

3.4 Scalar toy model example

I go back to the scalar toy model discussed in Section 2. I will rederive the matching
conditions between the parameters of the UV theory and the EFT using the path integral
techniques discussed in this section. We will see that path integrals o↵er a much more
e�cient way to determine the e↵ective Lagrangian.

3.4.1 Tree level

At tree-level the matching equation is given by Eq. (3.16). To find the EFT Lagrangian
we first need Hc(�) which solves the equation of motion for the heavy field H in the
background of �. I get

Hc(�) = �
�1M

2


M2 +2+

�2
2
�2

��1

�2. (3.33)

To obtain the tree-level e↵ective Lagrangian, this solution should be inserted in the UV
Lagrangian:

L
(0)

EFT
(�) = LUV(�, Hc(�))

=
1

2
(@µ�)

2
�

m2

L

2
�2
�
�0
4!
�4
�
�1
2
M�2Hc(�)�

1

2
Hc(�)


2+M2 +

�2
2
�2

�
Hc(�)

=
1

2
(@µ�)

2
�

m2

L

2
�2
�
�0
4!
�4 +

�2
1
M2

8
�2


M2 +2+

�2
2
�2

��1

�2. (3.34)

Expanding this up to order 1/M2:

L
(0)

EFT
=

1

2
(@µ�)

2
�

m2

L

2
�2
�
�
�0 � 3�2

1

� �4

4!
�45�2

1
�2

�6

6!M2
�4�2

1

�32�

4!M2
+O(M�4). (3.35)

Note that both the �6 and �32� dimension-6 terms appear as a result of this procedure,
however one of the pair is redundant. One can simplify the e↵ective theory by projecting
it into one of the bases introduces in Section 2. If we remove �32� using Eq. (2.5) we get
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in the unbox basis defined by Eq. (2.2). At the tree level and at O(M�2) the matching
conditions read

m2 = m2

L
,

C4 = �0 � 3�2
1
� 4�2

1

m2

L

M2
,

C6 = 45�2
1
�2 � 20�0�

2

1
+ 60�4

1
. (3.36)

On the other hand, eliminating �6 we get the matching conditions in the box basis
defined by Eq. (2.6):

m2 = m2

L
,

C̃4 = �0 � 3�2
1
�

9m2

L

M2

�2
1
�2

�0 � 3�2
1

,

C̃6 = 4�2
1
� 9

�2
1
�2

�0 � 3�2
1

. (3.37)

These match the results in Eq. (2.16) and Eq. (2.17) previously obtained by diagram-
matic methods. However, the path integral way is much more straightforward, given
that one can avoid calculations of the 6-point function.

3.4.2 One loop

We move to the 1-loop level. For simplicity, I consider the Lagrangian of Eq. (2.1) in the
limit �1 = 0. In that case there is no linear coupling of the heavy field to the light one,
which implies that Hc(�) = 0 is a solution to the equation of motion for H. Furthermore,

XH =
�2
2
�2, XLH = 0. (3.38)

Because Hc(�) vanishes, the tree-level EFT Lagrangian is just the UV Lagrangian with
the heavy fields set to zero:

L
(0)

EFT
=
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2
(@µ�)

2
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m2

L

2
�2
�
�0
4!
�4. (3.39)

We now compute the 1-loop EFT Lagrangian using Eq. (3.32):
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= �
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(2⇡)d

 
2qP̂ � P̂ 2 + �2

2
�2

q2 �M2

!n

. (3.40)

In this case the “hard” qualifier can be dropped because there is no tree-level Lagrangian
to expand in local operators.

The n = 1 term yields
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The n = 2 term yields
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where I dropped total derivatives (such as e.g. @2(�2)).
The n = 3 term yields
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where I integrated by parts to trade �2(@µ�)2 = �
1

3
�32�.

There is also an O(1/M2) contribution from the n = 4 term:
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The n > 4 terms in the expansion of the logarithm only contribute at O(M�4).
Putting this together, the e↵ective Lagrangian up to one loop in the MSbar scheme

is given by
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One can see that the path integral approach leads to dimension-6 operators from both
the box and the unbox bases. To project onto one of these bases we need to trade the
operators using the identity

1

4!M2
�32� = �

m2

4!M2
�4
�

5C4

6!M2
�6 +O(M�4). (3.46)

Eliminating �32� in Eq. (3.45), in the unbox basis the matching between the Wilson
coe�cients and the UV parameters is thus
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One can see this correctly reproduces the results for the 1-loop matching of m2 and C4

calculated diagramatically, c.f. Eq. (2.29) and Eq. (2.39). The 1-loop matching for C6

is a new result, which would be time-consuming to calculate diagramatically.
On the other hand, eliminating �6 in Eq. (3.45) one obtains the matching conditions

in the box basis:

C̃4 = �0 �
3�2

2
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(3.48)
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4 SM EFT: e↵ective theory for BSM

The Standard Model (SM) of particle physics is a theory of quarks and leptons interacting
via strong, weak, and electromagnetic forces. It is built on the following principles:

#1 The basic framework is that of a relativistic quantum field theory, with interactions
between particles described by a local Lagrangian.

#2 The Lagrangian is invariant under the linearly realized local SU(3)⇥SU(2)⇥U(1)
symmetry.

#3 The vacuum state of the theory preserves only SU(3) ⇥ U(1) local symmetry,
as a result of the Brout-Englert-Higgs mechanism [22, 23, 24]. The spontaneous
breaking of the SU(2) ⇥ U(1) symmetry down to U(1) arises due to a vacuum
expectation value (VEV) of a scalar field transforming as (1, 2)1/2 under the local
symmetry.

#4 Interactions are renormalizable, which means that only interactions up to the
canonical mass dimension 4 are allowed in the Lagrangian.

Given the quantum numbers of the 3 families of quarks and leptons under the SU(3)⇥
SU(2)⇥ U(1), these rules completely specify the theory up to 19 free parameters. The
local symmetry implies the presence of spin-1 vector bosons which mediate the strong
and electroweak forces. The breaking pattern of the local symmetry ensures that the
carriers of the strong and electromagnetic force are massless, whereas the carriers of the
weak force are massive. Finally, the particular realization of the Brout-Englert-Higgs
mechanism in the SM leads to the emergence of exactly one spin-0 scalar boson - the
famous Higgs boson [25, 26, 27].

The SM passed an incredible number of experimental tests. It correctly describes
the rates and di↵erential distributions of particles produced in high-energy collisions;
a robust deviation from the SM predictions has never been observed. It allows one
to accurately calculate many properties of elementary particles, such as e.g. magnetic
dipole moments, as well as certain properties of simple enough composite particles, such
as e.g. atomic energy levels. The discovery of a 125 GeV boson at the Large Hadron
Collider (LHC) [28, 29] nails down the last propagating degree of freedom predicted
by the SM. Measurements of its production and decay rates vindicate the simplest
realization of the Brout-Englert-Higgs mechanism, in which a VEV of a single SU(2)
doublet field spontaneously breaks the electroweak symmetry. Last not least, the SM is
a consistent quantum theory (as long as the gravitational interactions can be neglected).
In particular, for the measured value of the Higgs boson mass the vacuum of the theory
is metastable, with a lifetime many orders of magnitude longer than the age of the
universe. Therefore the validity range of the SM can be extended all the way up to the
Planck scale (at which point the gravitational interactions become strong and can no
longer be neglected) without encountering any theoretical inconsistency.

Yet we know that the SM is not the ultimate theory. It cannot account for dark
matter, neutrino masses, matter/anti-matter asymmetry, and cosmic inflation, which are
all experimental facts. In addition, some theoretical or esthetic arguments (the strong
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CP problem, flavor hierarchies, unification) suggest that the SM should be extended.9

This justifies the ongoing searches for new physics, that is particles or interactions not
predicted by the SM.

In spite of good arguments for the existence of new physics, a growing body of
evidence suggests that, at least up to energies of a few hundred GeV, the fundamental
degrees of freedom are those of the SM. Given the absence of any direct or indirect
collider signal of new physics, it is reasonable to assume that new particles from beyond
the SM are much heavier than the SM particles. If that is correct, physics at the weak
scale can be adequately described using e↵ective field theory (EFT) methods.

The framework adopted here is referred to as the SM EFT. In this framework the
assumptions #1 . . .#3 above continue to be valid.10 Thus, much as in the SM, the
Lagrangian is constructed from gauge invariant operators involving the SM fermion,
gauge, and Higgs fields. The di↵erence is that the assumption #4 is dropped and
interactions with arbitrary large mass dimension D are allowed. These interactions can
be organized in a systematic expansion in the operator dimensions:

L = LSM +
1

⇤L

X

i

c(5)
i
O

D=5

i
+

1

⇤2

X

i

c(6)
i
O

D=6 +
1

⇤3

L

X

i

c(7)
i
O

D=7 +
1

⇤4

X

i

c(8)
i
O

D=8

+ . . . , (4.1)

where each O
D

i
is a gauge invariant operator of canonical dimension D constructed from

the SM fields, and the parameters c(D)

i
are called the Wilson coe�cients. The leading

order term in this expansion is the SM Lagrangian with operators up to D= 4. All
possible e↵ects of heavy new physics are encoded in operators with D > 4, which are
suppressed in the Lagrangian by appropriate powers of the mass scales ⇤ and ⇤L (I will
justify later why two di↵erent scales are introduced in Eq. (4.1)). In other words, the
SM EFT is defined as a double expansion in 1/⇤ and 1/⇤L. The expansion is useful
assuming v ⌧ ⇤ and v ⌧ ⇤L.

The EFT defined by Eq. (4.1) is intended to parametrize observable e↵ects of a large
class of BSM theories with new particles much heavier than the SM ones and much
heavier than the energy scale at which the experiment is performed. Constraints on the
EFT parameters can be recast into constraints on particular BSM models as soon as
the matching between its parameters and the EFT Wilson coe�cients is known. In the
rest of this section I discuss the e↵ective Lagrangian in Eq. (4.1) and the relatonship
between its parameters, BSM physics, and collider observables.

9Historically, a strong esthetic motivation to extend the SM was o↵ered by its naturalness problem.
Due to the large sensitivity of the Higgs mass to physics at high energy scales many researchers believed
that the SM has to be replaced by another theory at energies very close the Z boson mass. Given the
failure to observe any non-SM degrees of freedom at the LHC, one concludes that the naturalness
problem of the SM is probably a red herring, much as the cosmological constant problem.

10One could consider a more general e↵ective theory where the assumptions #2 and #3 are also
relaxed and the electroweak symmetry is realized non-linearly, see Section II.2.4 of [30] for a review.
In that framework, the Higgs boson h is a perfect singlet under the gauge transformations, while the
3 Goldstone bosons ⇡a eaten by W and Z transform non-linearly under SU(2)L ⇥ U(1)Y , but linearly
under the electromagnetic U(1). Such a framework can be viewed as a generalization of the SM EFT
where the Lagrangian contains terms that are non-analytic in H†H = 0. Consequently, it is relevant to
describe the low-energy e↵ects of SM extensions containing new particles whose masses vanish in the
limit of unbroken electroweak symmetry.
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SU(3)C SU(2)L U(1)Y

q =

✓
u
d

◆
3 2 1/6

uc 3̄ 1 -2/3
dc 3̄ 1 1/3

` =

✓
⌫
e

◆
1 2 -1/2

ec 1 1 1
H 1 2 1/2

Table 1: Transformation properties of the SM fields under the SM gauge group.

4.1 Standard Model

For the sake of defining my notation and conventions, I start by reviewing the SM field
content and Lagrangian. The fields entering the Lagrangian in Eq. (4.1) are:

• Vector fields Ga

µ
, W i

µ
, Bµ, where i = 1 . . . 3 and a = 1 . . . 8. They transform

as four-vectors under the Lorentz symmetry and are the gauge fields of the GSM

group.

• 3 generations of fermionic fields qI = (uI , dI), uc

I
, dc

I
, `I = (⌫I , eI), ecI . They trans-

form as 2-component spinors under the Lorentz symmetry.11 The transformation
properties under GSM are listed in Table 1. The generation index, I, J = 1 . . . 3
will be sometimes suppressed to reduce the clutter.

• Scalar field H = (H+, H0) transforming as (1, 2)1/2 under GSM. I also define
H̃i = ✏ijH⇤

j
with ✏12 = �✏21 = 1, which transforms as (1, 2)�1/2.

The Lagrangian can be split as

L
SM = L

SM

V
+ L

SM

F
+ L

SM

H
+ L

SM

Y
. (4.2)

The first term above contains gauge invariant kinetic terms for the vector fields:12

L
SM

V
= �

1

4
Ga

µ⌫
Ga

µ⌫
�

1

4
W i

µ⌫
W i

µ⌫
�

1

4
Bµ⌫Bµ⌫ . (4.3)

The field strength tensors are expressed by the corresponding gauge fields as

Bµ⌫ = @µB⌫ � @⌫Bµ,

W i

µ⌫
= @µW

i

⌫
� @⌫W

i

µ
+ gL✏

ijkW j

µ
W k

⌫
,

Ga

µ⌫
= @µG

a

⌫
� @⌫G

a

µ
+ gsf

abcGb

µ
Gc

⌫
. (4.4)

11Throughout this review I use the 2-component spinor notation for fermions. I follow the conventions
of Ref. [31] unless otherwise noted. One di↵erence is that my definition of the �µ⌫ matrices di↵ers by
a factor of 2 from that in Ref. [31]: �µ⌫ ⌘

i
2
(�µ�̄⌫ � �⌫ �̄µ), �̄µ⌫ ⌘

i
2
(�̄µ�⌫ � �̄⌫�µ).

12Here and everywhere, repeating Lorentz indices µ, ⌫, . . . are implicitly contracted using the Lorentz
tensor ⌘µ⌫ = diag(1,�1,�1,�1). I do not adhere to the convention of writing upper and lower Lorentz
indices.
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where ✏ijk and fabc are the totally anti-symmetric structure tensors of SU(2) and SU(3),
and gs, gL, gY are gauge couplings of SU(3)C ⇥ SU(2)L ⇥ U(1)Y . For the future use,
I also define the electromagnetic coupling e = gLgY /

p
g2
L
+ g2

Y
, and the weak mixing

angle s✓ = gY /
p

g2
L
+ g2

Y
.

The second term in Eq. (4.2) contains covariant kinetic terms of the fermion fields:

L
SM

F
= iq̄�̄µDµq + iuc�µDµū

c + idc�µDµd̄
c + i ¯̀̄�µDµ`+ iec�µDµē

c. (4.5)

Each fermion field is a 3-component vector in the generation space. The covariant
derivatives are defined as

Dµf =
�
@µ � igsG

a

µ
T a

f
� igLW

i

µ
T i

f
� igY YfBµ

�
f. (4.6)

Here T a

f
= (�a,��a, 0) for f in the triplet/anti-triplet/singlet representation of SU(3),

where �a are Gell-Mann matrices; T i

f
= (�i/2, 0) for f in the doublet/singlet representa-

tion of SU(2); Yf is the U(1) hypercharge. The electric charge is given by Qf = T 3

f
+Yf .

The third term in Eq. (4.2) contains Yukawa interactions between the Higgs field
and the fermions:

L
SM

Y
= �H̃†ucyuq �H†dcydq �H†ecye`+ h.c., (4.7)

where yf are 3⇥ 3 matrices in the generation space.
The last term in Eq. (4.2) are the Higgs kinetic and potential terms:

L
SM

H
= DµH

†DµH + µ2

H
H†H � �(H†H)2, (4.8)

where the covariant derivative acting on the Higgs field is

DµH =

✓
@µ �

i

2
gLW

i

µ
�i
�

i

2
gYBµ

◆
H. (4.9)

For a future use, I write here the equations of motion for the SM gauge bosons:

@⌫B⌫µ = �
igY
2

H† !DµH � gY j
Y

µ
,

�
@⌫W

i

⌫µ
+ ✏ijkgLW

j

⌫
W k

⌫µ

�
= D⌫W

i

⌫µ
= �

i

2
gLH

†�i
 !
DµH � gLj

i

µ
,

�
@⌫G

a

⌫µ
+ fabcgsG

b

⌫
Gc

⌫µ

�
= D⌫G

a

⌫µ
= �gsj

a

µ
,

2H = µ2

H
H � 2�(H†H)� jH , (4.10)

where

jY
µ

=
X

f2⌫,e,u,d

Yf f̄ �̄µf +
X

f2e,u,d

Yf̄cf c�µf̄
c,

ji
µ

= q̄�̄µ
�i

2
q + ¯̀̄�µ

�i

2
`,

ja
µ

= q̄�̄µT
aq + uc�µT

aūc + dc�µT
ad̄c, (4.11)
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are the fermionic currents corresponding to the U(1), SU(2), and SU(3) factors of the
SM gauge group, and

H† !DµH ⌘ H†DµH �DµH
†H,

jH ⌘ �ūcy†
u
q̃ + dcydq + ecye`, q̃i ⌘ ✏ij q̄j. (4.12)

Now I discuss the mass eigenstates in the SM after electroweak symmetry breaking.
Because of the negative mass squared term in the Higgs potential the Higgs field gets a
VEV,

hHi =
1
p
2

✓
0
v

◆
, µ2

H
= �v2. (4.13)

This generates mass terms for W i

µ
and Bµ and a field rotation is needed to diagonalize

the mass matrix. The mass eigenstates are defined to the electroweak vector fields by

W 1

µ
=

1
p
2

�
W+

µ
+W�

µ

�
, W 3

µ
=

1p
g2
L
+ g2

Y

(gLZµ + gYAµ) ,

W 2

µ
=

i
p
2

�
W+

µ
�W�

µ

�
, Bµ =

1p
g2
L
+ g2

Y

(�gYZµ + gLAµ) . (4.14)

The mass terms W and Z boson in the SM Lagrangian are expressed by the electroweak
parameters as

mW =
gLv

2
, mZ =

p
g2
L
+ g2

Y
v

2
. (4.15)

In the presence of D=6 operators there may be new contributions to W and Z mass
terms, as discussed later in this chapter.

The SM fermions (except for the neutrinos) also acquire mass terms after electroweak
symmetry breaking

Lfermionmass = �u
c

I
[Mu]IJuJ � dc

I
[Md]IJdJ � ec

I
[Me]IJeJ + h.c. (4.16)

In the SM, these mass terms are produced by the Yukawa interactions in Eq. (4.7):
Mf = vp

2
yf , and can be non-diagonal in general. If that is a case, a set of rotations is

needed to bring the mass terms to the diagonal form:

u! Luu, uc
! ucR†

u
, d! Ldd, dc ! dcR†

d
, e! Lee, ec ! ecR†

e
, (4.17)

where each Li and Ri is a unitary 3 ⇥ 3 matrix such that R†
f
MfLf = diag(mfI

). In
the SM, the observable e↵ects of these rotations are described by the unitary Cabbibo-
Kobayashi-Maskawa (CKM) matrix VCKM = L†

u
Ld, which controls flavor changing charged

currents in the quark sector. The remaining e↵ects of the rotations cancel out in the SM
mass eigenstate Lagrangian. Again, D=6 operators may contribute to the fermion mass
terms in Eq. (4.16), which also a↵ects the unitary rotations to the mass eigenstate basis.
From now on I will assume the fermion fields are written in the mass eigenstate basis
after all contribution from D=6 operators are taken into account. In that basis, the
e↵ects of the rotations are absorbed in the Lagrangian parameters and in the definition
of the quark doublet fields: qI = (uI , [VCKM]IJdJ).
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Finally, I discuss the degrees of freedom in the Higgs sector. Once the Higgs field
gets a VEV as in Eq. (4.13), it can be conveniently parametrized as

H =
1
p
2

✓
i
p
2G+

v + h+ iGz

◆
. (4.18)

The fields Gz and G± do not correspond to new physical degrees of freedom (they
kinetically mix with the massive gauge bosons and can be gauged away). From now on
I will work in the unitary gauge and set G± = 0 = Gz. The scalar field h corresponds
to a scalar particle called the Higgs boson. Its mass can be expressed by the parameters
of the Higgs potential as

m2

h
= 2µ2

H
= 2�v2. (4.19)

4.2 Higher-dimensional operators

I start with discussing the dimension-5 operators in the SM EFT Lagrangian Eq. (4.1).
They are of the form

[O5]IJ = (✏ijH
iLj

I
)(✏klH

iLj

J
), (20)

where I, J = 1, 2, 3 are the generation (flavor) indices, Clearly, these operators violate
the lepton number (and B-L). The most important e↵ect of the operators in Eq. (20) is
the appearance of Majorana-type neutrino masses after electroweak symmetry breaking:

1

⇤L

[c5]IJ [O5]IJ ! +
v2

2⇤L

[c5]IJ⌫I⌫J . (21)

The SM neutrino masses are bound to be below eV , and from the oscillation experiments
tell us that at least two masses are non-zero, and at least one must be equal or larger than
0.06 eV. From that we deduce that ⇤L/c5 & 1015 GeV for all eigenvalues of the matrix
c. The large scale suppressing the dimension-5 operators in the SM EFT Lagrangian
makes them practically unobservable in collider experiments.

Because there is an approximate symmetry protecting the dimension-5 operators, it
makes sense to assume that the scales ⇤L and ⇤ in Eq. (4.1) are vastly di↵erent, and
loop corrections will not destabilize that. From now on I assume the following hierarchy
of scales:

v ⌧ ⇤, ⇤2
⌧ v⇤L. (22)

As a consequence, the contributions of the odd-D operators to low-energy observables
that conserve B or L will be subdominant with respect to that of the even-D operators.

Given Eq. (22), the leading contributions to collider observables are expected from
D = 6 operators suppressed by ⇤2. The scale ⇤ is identified with the mass scale of heavy
particles in the B and L conserving UV theory that completes the SM. The importance
of dimension-6 operators for characterizing low-energy e↵ects of heavy particles has been
recognized long ago, see e.g. [32, 33]. More recently, advantages of using a complete
and non-redundant set of operators have been emphasized. The point is that seemingly
di↵erent higher-dimensional operators can lead to the same S-matrix elements describing
scattering of the SM particles. This is the case if the operators can be related by using
equations of motion, integration by parts, field redefinitions, or Fierz transformations.
This leads to non-trivial and often counter-intuitive relations between operators. For
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Bosonic CP-even

OH (H†H)3

OH2 (H†H)2(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†HfW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iHfW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2: Bosonic D=6 operators in the Warsaw basis.

example, by using equations of motion one can establish equivalence between certain
purely bosonic operators and a linear combination of 2- and 4-fermion operators! Thus,
starting from the set of all distinct D=6 operators that can be constructed from the SM
fields, a number of these operators will be redundant as they are equivalent to linear
combinations of other operators. The redundant operators can be removed to simplify
the EFT description and to establish an unambiguous map from observables to the
EFT Wilson coe�cients. A minimal, non-redundant set of operators is called a basis.
There is infinitely many equivalent bases, and for dimension-6 operators several distinct
constructions are frequently used in the literature. Furthermore, bases of operators have
been constructed for D=7 [34, 35], and for D=8 [36, 35] (for 1 generation of fermions),
but I will not discuss them here.

Because of a humungous number of D=6 operators, and because establishing equiva-
lence between operators may be time consuming, identifying a basis is not a trivial task.
Indeed, a complete construction for one generation of SM fermions was accomplished
only a few years ago in Ref. [37], and than extended to 3 generations in Ref. [38]. This
construction is referred to as the Warsaw basis, and is often used in the literature. One
important conclusion from this exercise is that a complete basis of D=6 operators is
characterized by 2499 independent parameters [38]. Note that construction of one com-
plete basis is a qualitative tour de force, as now any other basis can be systematically
derived by transforming operators from the Warsaw basis. Another popular choice of
operators is the so-called SILH basis13 which was proposed in Ref. [39] and completed
in Ref. [40]. Finally, Ref. [41] proposed a slightly di↵erent (but fully equivalent) way
to parametrize the space of D=6 operators using a subset of couplings characterizing
the interactions of mass eigenstates in the e↵ective Lagrangian. It should be stressed
that any complete basis leads to equivalent predictions concerning possible new contri-

13SILH stands for Strongly Interacting Light Higgs, because this operator basis is more convenient to
describe low energy e↵ects of strongly interacting BSM sectors from which the Higgs doublet emerges
as a light composite state.
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Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)

H`
]IJ i¯̀I�i�̄µ`JH†�i

 !
DµH

[OHe]IJ iec
I
�µēcJH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O(3)

Hq
]IJ iq̄I�i�̄µqJH†�i

 !
DµH

[OHu]IJ iuc
I
�µūcJH

† !DµH

[OHd]IJ idc
I
�µd̄cJH

† !DµH

[OHud]IJ iuc
I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i

µ⌫

[O†
eB

]IJ ec
I
�µ⌫H†`JBµ⌫

[O†
uG

]IJ uc
I
�µ⌫T a eH†qJ Ga

µ⌫

[O†
uW

]IJ uc
I
�µ⌫ eH†�iqJ W i

µ⌫

[O†
uB

]IJ uc
I
�µ⌫ eH†qJ Bµ⌫

[O†
dG

]IJ dc
I
�µ⌫T aH†qJ Ga

µ⌫

[O†
dW

]IJ dc
I
�µ⌫H̄†�iqJ W i

µ⌫

[O†
dB

]IJ dc
I
�µ⌫H†qJ Bµ⌫

Table 3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators) the
corresponding complex conjugate operator is implicitly included.

butions to physical observables. Nevertheless, working with a particular basis may be
more convenient for specific applications.

The full list of dimension-6 operators in the Warsaw basis is given in Tables 2, 3,
and 4. It takes a moment to realize that not all gauge invariant operators that one can
construct from the SM fields are present there. This is because the redundant operators
have already been removed. Let us see how this works in practice, taking the example
of the dimension-6 operator O0

HD
⌘ (H†H)DµH†DµH. First, integrating by parts we

obtain

O0
HD

=
1

2
H†H

�
2(H†H)�H†DµDµH �DµDµH

†H
�

(23)

Now we can use the Higgs equations of motion in Eq. (4.10) to get rid of the last two
terms in the bracket

O0
HD

= �µ2

H
(H†H)2+

1

2
(H†H)2(H†H)+2�(H†H)3+

1

2
H†H

⇥
�ūcy†

u
q̃ + dcydq + ecye`+ h.c.

⇤
.

(24)
At this point all the operators on the right-hand side above belong to the Warsaw basis,
which proves that O0

HD
is redundant. Note that many di↵erent Warsaw basis operators

must be simultaneously present in a specific linear combination to exactly reproduce the
e↵ect of O0

HD
. Repeating similar calculations one can prove that any gauge invariant

operator can expressed by the ones in the Warsaw basis [37]. A more systematic method
of constructing a basis is possible using the Hilbert series techniques [36, 35].
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O(8)

ud
(uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O(8)

qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O(8)

qd
(q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq

⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q

(¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O(8)

quqd
(ucT aqj)✏jk(dcT aqk)

O`equ (¯̀j ēc)✏jk(q̄kūc)

O(3)

`equ
(¯̀j�̄µ⌫ ēc)✏jk(q̄k�̄µ⌫uc)

O`edq (¯̀̄ec)(dcq)

Table 4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are sup-
pressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor indices
are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator the com-
plex conjugate is included in the Lagrangian and the corresponding Wilson coe�cient
is complex.

Exercise: Express the following dimension-6 operators

H†�iDµHD⌫W
i

µ⌫
,

Bµ⌫DµH
†D⌫H,

(¯̀̄�µ�
i`)(¯̀̄�µ�

i`),

by the operators in the Warsaw basis.

In general, the Wilson coe�cients of the higher-dimensional operators are free pa-
rameters which are only subject to experimental constraints. However, given some broad
assumptions about the UV physics, it is possible to make useful estimates. First of all,
we can use the ~ counting to determine how the Wilson coe�cients depend on the cou-
plings strength g⇤ of new physics to the SM. Assuming there is only one relevant g⇤ and
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one mass scale ⇤ in the UV theory, we can write down the following estimates:

OH = |H|
6 : cH ⇠ g4⇤,

OeH = |H|
2 ¯̀Hec : ceH ⇠ g3⇤,

OH2 = |H|
22|H|

2 : cH ⇠ g2⇤,

OW = ✏ijkW
i

µ⌫
W j

⌫⇢
W k

⇢µ
: cW ⇠ g⇤,

. . . (25)

These estimates may be very useful to guess which operators are the most important
ones in some scenarios, but as it stands they can be misleading too. Let us assume a
strongly coupled UV completion of the SM, where the Higgs is coupled to new resonances
with the strength g⇤ � 1. Then Eq. (25) suggests that OH should come with a huge
numerical coe�cient, which could even be O(104)! However, the same UV physics would
also contribute to the SM quartic Higgs interaction �|H|

4 such that � ⇠ g2⇤. But we
know that � ⇠ 0.1 from the measurement of the Higgs boson mass. Barring fine-
tuning, the UV theory should have some protection mechanism (e.g. an approximate
shift symmetry) to ensure that, the contributions to the Higgs potential in the EFT are
proportional to �. This would lead to an additional selection rule in the EFT, and we
conclude

OH = |H|
6 : cH ⇠ �g2⇤. (26)

Now, the strongly coupled scenario could lead only to cH . 10 (which would still be
wonderful). By the same token, we expect the new physics to have an order parameter
to protect the SM flavor structure. This would lead to a selection rule that chirality
violating operators should be accompanied by the corresponding Yukawa coupling:

OeH = |H|
2 ¯̀Hec : ceH ⇠ yeg

2

⇤. (27)

The scaling for cW is naive for another reason. If the SU(2)L gauge bosons are funda-
mental, any amplitude with n external W bosons should be accompanied by n powers
of the SU(2)L gauge coupling gL. From the ~ coupling it then immediately follows that
OW cannot be generated at tree level. These consideration change the scaling as

OW = ✏ijkW
i

µ⌫
W j

⌫⇢
W k

⇢µ
: cW ⇠

g3
L

16⇡2
, (28)

which makes OW di�cult to observe in practice, even for ⇤ ⇠ 1 TeV, as its Wilson
coe�cient is cW . 10�3.

4.3 From BSM to operators

We use the dimension-6 operators as a prop to parametrize the e↵ects of heavy BSM
particles on weak-scale observables. Suppose that one day it will be demonstrated that
some linear combination of the higher-dimensional operators must indeed be present in
the SM EFT Lagrangian to correctly account for all experimental results. What will
this tell us about the new physics? In order to address this question the best way is to
go through a number of examples that relate dimension-6 operators to the coupling and
masses in BSM models.
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Example no. 1 is akin to the Fermi theory. Consider a heavy neutral vector boson
Vµ with mass MV coupled to the SM fermionic currents:

LUV � Vµ

�
gXf,Lf̄ �̄µf + gXf,Rfc�µf̄c

�
. (29)

In this theory the fermions interact by exchanging V in addition to the SM gauge
bosons. For energies well below mV one can ignore the momentum dependence in the V
propagator, which e↵ectively leads to contact interaction between the fermion currents.
In the e↵ective theory below mV this corresponds to the dimension-6 operators in the
Lagrangian:

LEFT � �
1

2M2

V

�
gV f,Lf̄ �̄µf + gV f,Rfc�µf̄c

�2
(30)

Thus, heavy neutral vectors in the UV theory lead to the appearance of a linear combina-
tion of 4-fermion operators in the SM EFT. All the operators generated in our example
can be straightforwardly matched to the Warsaw basis 4-fermion operators displayed in
Table 4. The Wilson coe�cients are matched as

cf1f2
⇤2 = �

gV f1
gXf2

M
2
V

. Note that low-energy

experiments probe only c/⇤2, thus they can only determine the ratio of the BSM cou-
plings and masses, and not separately about the two. Still, pinpointing a dimension-6
operators set the upper limit on the mass scale of new physics, as the couplings cannot
be larger than 4⇡.

Vector bosons can also couple to the Higgs current. As example no. 2 consider a
complex vector boson Xµ with mass MX coupled to the Higgs as

LUV � gXXµH
†DµH + h.c. (31)

This sort of coupling is characteristic of composite Higgs models, where the Higgs is a
composite particle made of quark-like partons charged under new strong interactions,
and Xµ is a ⇢-meson-like vector resonance in the strong sector. Below the scale of the
resonance the X exchange can be approximated by the contact interaction between 4
Higgs fields:

LEFT � �
g2
X

M2

X

|H†DµH|
2 (32)

Exercise: Consider a triplet of heavy real vector bosons V i

µ
coupled to the SU(2)L Higgs

current as
L � gV V

i

µ
H†�iDµH (33)

Which dimension-6 operator mimics the e↵ect of V i

µ
exchange at energies below MV ?

Express this operator by the ones present in the Warsaw basis.

In both examples above, the SM EFT operators approximate tree-level exchange
of heavy particles. But loop corrections in the UV theory may also be mimicked by
dimension-6 operators. Some of the Warsaw basis operators can be generated only at
loop level if the UV theory is renormalizable. For the example, this is the case of the
OHG operators in Table 2. Consider example no. 3 where we consider a colored scalar
particle t̃c with mass MT and the quantum numbers of the SM right-handed top. The
interactions in the UV theory include

LUV � �yTH
†Ht̃†

c
t̃c. (34)
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This sort of structure is characteristic for supersymmetric models where the scalar play
a central role in restoring the naturalness of electroweak symmetry breaking. At tree-
level the new scalar does not a↵ect the scattering amplitudes of the SM fields in any
way. However it does contribute at the 1-loop level to certain processes. One of them
is the gg ! h production where it enters via the triangle and bubble diagrams. That
contribution can be reproduced in the SM EFT at tree level by the operator OHG with
the Wilson coe�cient

cHG

⇤2
=

yTg2s
256⇡2M2

T

. (35)

4.4 From operators to observables

In order to understand the phenomenological e↵ects of higher-dimensional operators SM
EFT it is convenient to leave the SU(3)⇥SU(2)⇥U(1) invariant formulation and instead
study the interaction terms of the mass eigenstates after electroweak symmetry breaking.
There are 2 ways in which the higher-dimensional operators can lead to deviations from
the SM interactions:

1. Modified couplings: corrections to the coupling strength for the SM-like inter-
actions.

2. New vertices: New interaction terms appear that are not present in the SM
Lagrangian.

One example leading to the modified couplings is the operator OHe = iec�µēc(H†DµH�
DµH†H) in Table 3. Inserting the Higgs VEV, it leads to a coupling of the Z-boson to
right-handed electrons:

cHe

⇤2
OHe ! �

cHe

p
g2
L
+ g2

Y
v2

2⇤2
Zµec�µēc. (36)

In the SM, the couplings strengths of the fermions to the Z boson are fully specified
by the electroweak gauge couplings gL, gY and the fermion’s quantum numbers: gZf =p

g2
L
+ g2

Y
(T 3

f
� s2

✓
Qf ). In particular, for the right-handed electron gZe =

p
g2
L
+ g2

Y
s2
✓
.

The e↵ect ofOHe is to shift the interaction strength by the amount�gZe = �
cHe

p
g
2
L
+g

2
Y
v
2

2⇤2

which is a-priori independent of the fermion’s quantum numbers. The e↵ect can be
measured (or constrained) e.g. by precision studies of the process e+e� ! Z ! e+e�

process, as was done in the previous century by the LEP collider at CERN.
The same operator OHe provides also an example for the new vertices. Namely, it

also leads to the Higgs boson couplings to two right-handed electrons and one Z boson:

cHe

⇤2
OHe ! �

cHe

p
g2
L
+ g2

Y
v

2⇤2
hZµec�µēc. (37)

Such coupling is not present in the SM Lagrangian (in the SM, h always couples exactly
2 other fields). Thus, the above terms leads to a new vertex that should be included
when calculating the amplitudes for Higgs processes. Physically, the new vertex a↵ects
the decay width and di↵erential distributions for the Higgs boson decay to 4 leptons,
which is routinely studied by the LHC collider.
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It is important to mention that sometimes there is no invariant way to separate
the modified couplings and new vertices. Much as for the dimension-6 operators, we
can always redefine the couplings and fields in the mass eigenstate Lagrangian so as to
reshu✏e the interaction terms and rewrite the Lagrangian in a di↵erent albeit equivalent
form. There is even more freedom than before as, once electroweak symmetry is broken,
there is nothing unnatural in redefining separately then Z, W , and photon fields (while
in the unbroken phase one usually redefines SU(2) ⇥ U(1) gauge fields only in order
to maintain manifest gauge invariance). Let me give one example. We consider the
following interactions of the Higgs boson h:

L �
1

2
(@µh)

2
�

m2

h

2
h2
�

m2

h

2v

✓
1 + �1

v2

⇤2

◆
h3
� �2

v

⇤2
h@µh@µh+ . . . (38)

where the dots denote terms with 4 and more Higgs bosons, which are not of interest in
this discussion. Two e↵ects of dimension-6 operators appear in the Lagrangian above.
The one proportional to �1 is the modification of the triple Higgs self-coupling, which
is already present in the SM Lagrangian but with the magnitude strictly fixed by the
Higgs boson mass. The other e↵ect proportional to �2 is a new Higgs self-interaction
terms which does not appear in the SM Lagrangian in its canonical form. Both of
these corrections can be generated by the dimension-6 operators in the Warsaw basis,
e.g. by OH and OH2 in Table 2. Both contribute in a non-trivial way to the Higgs
scattering amplitudes, for example to hh ! hh, or to double Higgs production at the
LHC, pp! hh, once interactions of h with the rest of the SM are taken into account.

Nevertheless, we can equivalently work with an e↵ective Lagrangian where the 2-
derivative h(@µh)2 interaction is completely eliminated via field redefinitions. To this
end we redefine the Higgs boson field as

h! h+ �2
v

2⇤2
h2. (39)

After this redefinition the e↵ective Lagrangian of Eq. (38) takes the form

L =
1

2
(@µh)

2
�

m2

h

2
h2
�

m2

h

2v

✓
1 + (�1 + �2)

v2

⇤2

◆
h3 + . . . , (40)

where I ignored O(⇤�4) resulting from the redefinition. Seemingly, the Lagrangians in
Eqs. (38) and (40) are di↵erent, as they contain di↵erent interaction terms. However,
the equivalence theorem makes sure that field redefinitions cannot change the physical
content of the theory. This way, the two Lagrangians give exactly the same predictions
for physical observables, at any order in the perturbation theory, which one can always
verify by an explicit calculation. Of course, the e↵ect of the 2-derivative interaction
proportional to �2 never vanishes, but just turns out to be equivalent to a shift of the
SM-like triple Higgs coupling. When the SM interactions of h with the W , Z and
fermions are taken into account, one should also include the shift of the corresponding
coupling due to Eq. (39).

The redefinitions like the one in Eq. (39) allow one to bring the SM EFT mass
eigenstate Lagrangian to a more convenient form where the calculations are somewhat
simplified. One particular construction can be found in Refs. [30, 42].
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Let me now turn to another topic which is very relevant for connecting the SM EFT
operators to precision observables. There are important but less-than-obvious e↵ects of
the higher-dimensional operators which stem from shifting the SM input parameters. In
the SM the values of the electroweak parameters gL, gY , and v are customarily extracted
from 3 precisely measured observables:

1. The Fermi constant GF which is extracted from the muon lifetime,

2. The electromagnetic structure constant ↵(0), which parametrizes the interaction
strength of charged particles in the deep Thomson limit where the exchanged 4-
momentum approach zero,

3. The Z boson mass m2

Z
(mZ), which parametrizes the real part of the pole of the

Z-boson propagator.

In the SM at tree level these input observables are related to the SM parameters as

p
2GF =

1

v2
, ↵ =

g2
L
g2
Y

4⇡(g2
L
+ g2

Y
)
, m2

Z
=

(g2
L
+ g2

Y
)v2

4
. (41)

Beyond the SM, already at tree level these observables may depend on other parameters
of the theory.14 For example, the Warsaw basis operator OHD contributes to the to the
Z boson mass after electroweak symmetry breaking:

cHD

⇤2
|H†DµH|

2
!

cHDv2

2⇤2

(g2
L
+ g2

Y
)v2

8
ZµZµ. (42)

Thus, the Z boson mass term in the Lagrangian is a↵ected by the dimension-6 opera-
tors. The observable m2

Z
(mZ) was measured at the LEP collider with the order 0.01%

precision: mexp

Z
= 91.1876 ± 0.0021 GeV. It would be however wrong to conclude that

the Wilson coe�cient cHD is constrained with that precision. The point is that the mZ

measurement is used to determine the electroweak parameters gL, gY , v, and at this
point cHD just complicates that determination. Before we go on with constraining cHD,
we must first disentangle it from the SM input parameters.

It pays o↵ to make this discussion a little bit more general than we need for the SM
EFT sake. Let us parametrize the Fourier-transformed kinetic terms of the gauge boson
as

⌘µ⌫

✓
⇧WW (p2)W+

µ
W�

µ
+

1

2
⇧ZZ(p

2)ZµZµ +
1

2
⇧��(p

2)AµAµ + ⇧Z�(p
2)ZµAµ

◆
+pµp⌫(. . . )

(43)
For a canonically normalized gauge field we have ⇧V V = m2

V
�p2. The form factors may

represent SM loop corrections or BSM tree- or loop-level corrections. Next, we allow
the couplings of the W and Z bosons to fermions to be shifted from the SM value. We

14As a side remark, basically the same discussion applies to the SM itself beyond the tree-level, as
the loop corrections a↵ect the input observables such that they depend on other SM parameters and
even on the regularization scheme.
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parametrize the interactions between the electroweak gauge bosons and fermions as

L �
gL,0gY,0q
g2
L,0

+ g2
Y,0

Aµ

X

f

Qf (ēI �̄µeI + ec
I
�µē

c

I
)

+

"
[gWe

L
]IJ

p
2

W+

µ
⌫̄I �̄µeJ +W+

µ

[gWq

L
]IJ

p
2

ūI �̄µdJ +
[gWq

R
]IJ

p
2

W+

µ
uc

I
�̄µd̄

c

J
+ h.c.

#

+ Zµ

X

f=u,d,e,⌫

[gZf

L
]IJ f̄I �̄µfJ + Zµ

X

f=u,d,e

[gZf

R
]IJf

c

I
�̄µf̄

c

J
. (44)

Here, gL,0, gY,0 are the gauge couplings of the SU(2)L ⇥ U(1)Y local symmetry. The
subscript zero is to mark that they are not related to the input observables by the
relations in Eq. (41), even at tree level. The SM fermions fJ , f c

J
are in the basis where

the mass terms are diagonal, and then the unitary CKM matrix V0 enters through the
quark doublets as qI = (uI , VIJ,0dJ). The gauge coupling strength are parametrized as

[gWe

L
]IJ = gL,0

�
�IJ + [�gWe

L
]IJ
�
,

[gWq

L
]IJ = gL,0

⇣
[V ]IJ,0 + [�gWq

L
]IJ
⌘
,

[gWq

R
]IJ = [�gWq

R
]IJ

[gZf ]IJ =
q

g2
L,0

+ g2
Y,0

 
T f

3
�Qf

g2
Y,0

g2
L,0

+ g2
Y,0

+ [�gZf ]IJ

!
. (45)

In the SM limit all �g vanish, and then Eq. (41) is recovered at tree level. Finally, we
also allow for new contributions to observables from 4-fermion operators.

Now I discuss how the observables GF , ↵(0) and m2

Z
(mZ) are related at tree level to

the parameters of such an extension of the SM. We have

2
p
2GF =

gWe

L
gWµ

L

2⇧WW (0)
� [c``]1221 � 2[c(3)

``
]1122,

↵(0) =
g2
L,0

g2
Y,0

4⇡(g2
L,0

+ g2
Y,0

)

�1

⇧0
��
(0)

,

m2

Z
(mZ) = ⇧ZZ(m

2

Z
). (46)

Here [c(3)
``
]IIJJ/v2 multiplies the 4-fermion operator (¯̀I �̄µ�i`I)(¯̀J �̄µ�i`J) in the Lagrangian.

Let us now assume that the propagators and couplings are close to the SM ones,

⇧WW =
g2
L,0

v2
0

4
� p2 + �⇧WW (p2),

⇧ZZ =
(g2

L,0
+ g2

Y,0
)v2

0

4
� p2 + �⇧ZZ(p

2),

⇧�� = �p2 + �⇧��(p
2),

gWf

L
= gL,0(1 + �gWf

L
), (47)
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and expand Eq. (46) to the linear order in the deformations:

2
p
2GF ⇡

2

v2
0

✓
1�

�⇧WW (0)

m2

W

+ �gWe

L
+ �gWµ

L
�

1

2
[c``]1221 � [c(3)

``
]1122

◆
,

↵(0) =
g2
L,0

g2
Y,0

4⇡(g2
L,0

+ g2
Y,0

)

�
1 + �⇧0

��
(0)
�
,

m2

Z
(mZ) =

(g2
L,0

+ g2
Y,0

)v2
0

4
+ �⇧ZZ(m

2

Z
). (48)

This shows that in the presence of new physics the values of the parameters v0, gL,0, gY,0
have to be modified with respect to the SM. However, it is more convenient to absorb
these corrections by redefining the parameters as

v0 = v(1 + �v), gL,0 = gL(1 + �gL), gY,0 = gY (1 + �gY ), (49)

such that v, gL, gY satisfy Eq. (41). This is achieved by the following redefinition

�v =
1

2

✓
�
�⇧WW (0)

m2

W

+ �gWe

L
+ �gWµ

L
�

1

2
[c``]1221 � [c(3)

``
]1122

◆
,

�gL =
g2
L

4(g2
L
� g2

Y
)v2


�
2�⇧ZZ(m2

Z
)

m2

Z

+
2�⇧WW (0)

m2

W

+
2g2

Y
�⇧0

��
(0)

g2
L

+[c``]1221 + 2[c(3)
``
]1122 � 2�gWe

L
� 2�gWµ

L

i
,

�gY =
g2
Y

4(g2
L
� g2

Y
)v2


2�⇧ZZ(m2

Z
)

m2

Z

�
2�⇧WW (0)

m2

W

�
2g2

L
�⇧0

��
(0)

g2
Y

�[c``]1221 � 2[c(3)
``
]1122 + 2�gWe

L
+ 2�gWµ

L

i
. (50)

The rationale for this redefinition is that the observables on the left-hand side in Eq. (41)
are measured with a fantastic precision (especially GF and ↵ but also mZ is known an
order of magnitude more precisely than typical electroweak observables). If we worked
with the original parameters, we would have to add them to the fit together with the
new physics parameters. Then GF and ↵ and mZ would impose highly constraints on v0,
gL,0, and gY,0 which would be highly correlated with the constraints on the new physics
parameters. It is more transparent and more practical to do the redefinition in Eq. (49)
and Eq. (50), assign the SM values to v, gL, and gY , remove GF , ↵, mZ from the set of
observables we fit to, and fit just the new physics parameters to other observables.

As an example, let us write down how this a↵ect the W mass observable. In the
original variables the observable is given by

m2

W
(mW ) =

g2
L,0

v2
0

4
+ �⇧WW (m2

W
). (51)

After the redefinition in Eq. (49) and Eq. (50) the formula for the W mass becomes

m2

W
=

g2
L
v2

4
+

1

g2
L
� g2

Y

✓
g2
Y
�⇧WW (0)�

g4
L

g2
L
+ g2

Y

�⇧ZZ(m
2

Z
) + g2

Y
m2

W
�⇧0

��
(0)

◆
+�⇧WW (m2

W
).

(52)
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In the above, gL, gY , v take the numerical values calculated from Eq. (41). Moreover,
on the r.h.s. one can replace mW and mZ with their tree-level expressions, since the
di↵erence is higher order in the loop expansion. Note that 2-point function can be
complex if light particles run in the loops (which is the case for light SM fermions); in
all formulas here and below Re �⇧ is implicit.

The formulas in Eq. (50) and Eq. (52) are valid for any BSM scenario. In particular,
we can apply them to the SM EFT with dimension-6 operators. Let’s come back to our
example withe the OHD operator from the Warsaw basis. From Eq. (42), it shifts the Z
propagator as �⇧ZZ = cHDv

2

2⇤2 m2

Z
. Once we redefine away the contribution to the Z mass,

cHD will re-emerge as a shift of the W mass (and many other electroweak observables),
even though the operator itself does not contribute directly to the W mass term in the
Lagrangian. From Eq. (52) one obtains

�mW

mW

=
�m2

W

2m2

W

= �
cHDg2Lv

2

4(g2
L
� g2

Y
)⇤2

. (53)

The recent experimental measurements yield mexp

W
= 80.385±0.015 with the SM predic-

tion being mSM

W
= 80.364± 0.004. This translates to �mW

mW

= (2.6± 1.9) · 10�4. Assuming
OHD is the only higher-dimensional operators present in the SM EFT Lagrangian we
obtain the constraint on its Wilson coe�cient:

cHD

⇤2
=
�1.2± 0.9

(10 TeV)2
. (54)

Since cHD ⇠ g2⇤, the W mass measurement probes weakly coupled (g⇤ ⇠ 1) new physics
at the scales of order 10 TeV, and strongly coupled new physics (g⇤ ⇠ 4⇡) at the scales
of of order 100 TeV. In general, electroweak precision measurements have a much better
reach than direct searches at the LHC for some classes of new physics scenarios.

Exercise: Determine the phenomenological constraints on the Warsaw basis operator
OH2 from the Higgs measurements at the LHC. Use the constraint for the overall Higgs
signal strength �(pp!h)

�(pp!h)SM
= 1.09 ± 0.11. What is maximum mass scale of new physics

that can be probed by LHC Higgs measurements?
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A Method of regions

To understand the method of regions it is instructive to first go through a simple example.
Consider the dimensionally regularized integral with two disparate mass scales m⌧M ,

I0 =

Z
ddk

(2⇡)d
1

k2 �m2

1

k2 �M2
. (A.55)

It is trivial to calculate the integral exactly

I0 =
i

16⇡2


1

✏̄
+

m2

M2 �m2
log

✓
m2

M2

◆
+ log

✓
µ2

M2

◆
+ 1

�
. (A.56)

We can know expand the exact results in powers of 1/M ,

I0 =
i

16⇡2


1

✏̄
+ log

✓
µ2

M2

◆
+ 1 +

m2

M2
log

✓
m2

M2

◆�
+O(M�4). (A.57)

Let us go back to the original integral and expand the integrand in 1/M before doing
the integral. Formally, we make that expansion assuming k2

⇠ m2
⌧M2 after rotating

to Euclidean momenta, and then integrate term by term the resulting series. This leads
to

Isoft = �
1

M2

Z
ddk

(2⇡)d
1

k2 �m2
+O(M�4)

= �
i

16⇡2

m2

M2


1

✏̄
+ log

✓
µ2

m2

◆
+ 1

�
+O(M�4). (A.58)

Clearly, Isoft 6= I0; even the O(M0) terms in I0 are not reproduced in Isoft. This is
because I0 is actually dominated by k2

⇠M2. Let us then try to expand the integrand
for k2

⇠M2
� m2 and integrate terms by term:

Ihard =

Z
ddk

(2⇡)d
1

k2

1

k2 �M2
+m2

Z
ddk

(2⇡)d
1

k4

1

k2 �M2
+O(M�4)

=
i

16⇡2


1

✏̄
+ log

✓
µ2

M2

◆
+ 1

�
+

i

16⇡2

m2

M2


1

✏̄
+ log

✓
µ2

M2

◆
+ 1

�
+O(M�4).

(A.59)

Now the first term in Ihard correctly reproduces the O(M0) part in I0. Yet the O(M�2)
parts do not quite match. Magically, however, the sum of Ihard and Isoft correctly repro-
duces the O(M�2) part of I0 as well:

I0 = Isoft + Ihard. (A.60)

One can check that the above equality is in fact true to all orders in 1/M . Notice that,
for the second integral in Ihard, the pole is due to an IR singularity, which then cancels
in the sum against a UV pole in Isoft.

More generally, when integrand contains two disparate mass scales m ⌧ M , the
momentum integral can be calculated as a sum of two contributions: the soft one where
the integrand is expanded for k ⇠ m, and the hard one with the integrand expanded for
k ⇠ M . It is understood that, the original integral as well as soft and the hard parts
are calculated using dimensional regularization, in case they are UV or IR divergent.
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