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Chapter 1

Introduction

Quantum Field Theory (QFT) is the fundamental tool that is currently used for the
description of physics at very short distances and high energies. Since high energy implies
relativistic motion, QFT has to nicely combine special relativity with quantum mechanics.
The description in terms of “fields”, indeed, arise to have a manifestly relativistic invariant
description, where time and space are treated (almost) on equal footing. One might think
that including special relativity in quantum mechanics should be possible without drastic
consequences. This is not true, and its reason is intuitively clear. At very short time scales,
the energy-time uncertainty principle tells us that particles with energy E > mc? could
be created from the vacuum for a time t ~ h/E (virtual particles), before disappearing
again in the vacuum. This effect is totally negligible in studying physical systems at low
energies and long time scales, but it becomes relevant for physical processes whose time
scale is t ~ h/E or less. A quantum description in terms of single-particle wave function
is then inadequate and a more powerful description is needed. This formulation is in
fact Quantum Field Theory. It leads to striking consequences, such as the prediction of
anti-particles and an understanding of the spin-statistic relation between particles. The
experimental successes of QFT are impressive, in particular when applied to the description
of electrodynamics, giving rise to the Quantum Electro Dynamics (QED).

Most of the considerations in these lectures are devoted to the study of fields which
are weakly interacting, namely in which the interactions can be studied in a perturbative
fashion, starting from the description of free fields.

These notes do assume that the reader has a basic knowledge of QFT. Quantizations of
spin 0, spin 1/2 and abelian spin 1 fields are assumed, as well as basic notions of the path
integral formulation of QFT (including Berezin integration for fermions), Feynman rules,

basic knowledge of renormalization and the notion of functional generators of disconnected,



connected and one-particle irreducible (1PI) Green functions.

In writing these notes we have often consulted refs. [1] and especially [2]. Some parts
of these notes follow in part either ref. [1] or ref. [2]. When this is the case, we warn the
reader with a footnote. Notice that in these notes the metric convention is mostly minus,
like in ref. [1], in contrast to ref.[2], where it is mostly plus. This implies a multitude of
sign changes with respect to ref. [2]. Moreover, we warn the reader that we do not always
follow the same notation as refs. [1, 2], in order to have a common and light notation
throughout the notes.

These notes cover most of the QFT course given at SISSA by M.S., in collaboration
with Roberto Iengo until the academic year 2010-2011, in collaboration with Andrea Gam-
bassi until 2014-2015, and in collaboration with Joan Elias-Miré in the years 2016-2017
and 2017-2018. The tutorials and exercises, essential parts of the QFT course, are not
reported in these notes. This implies that some technical topics closely associated with the
exercises, such as details of the renormalization of QED, Yukawa and other theories, are
not currently included in these lecture notes. The notes are far from being comprehensive.
Due to lack of time, several important topics are not covered at all, or just mentioned.
Infra-red divergences, the deep inelastic scattering and the operator product expansion,
connection to critical phenomena and statistical field theory are examples of important
topics currently missing. Phenomenological applications are limited to a minimum, since
they are more systematically considered in the Standard Model course.

The topics marked with a * in the text are optional for students in the Astroparticle
curriculum. The topics marked with #x are optional for all the students.

These notes are preliminary and surely contain many typos, imprecisions, etc.

We hope that the students will help us in improving the notes and in spotting the

many mistakes in there.

Acknowledgments

I thank Roberto Iengo and Andrea Gambassi for their contribution in the elaboration of
part of these lecture notes. I thank Roberto Iengo, Andrea Gambassi and Joan Elias-
Mir6 for their precious collaboration over the years in giving this course. I thank Matteo
Bertolini, Marcello D. Caio, Lorenzo Di Pietro, Matthijs Hogervorst, Marco Letizia, Hi-
manshu Raj, Andrea Romanino, Giacomo Sberverglieri for useful comments and help in
debugging these notes. I am particularly grateful to Marco Gorghetto for having found so

many typos!



Chapter 2

General Properties of QFT

Quantum field theory aims at describing the processes which occur as a result of the
interaction between elementary particles, mediated by a certain number of force carriers.
The very same requirement of Lorentz covariance (i.e., compatibility with the theory of
special relativity) is a fundamental ingredient of the theory and actually motivated the
introduction of concepts such as antiparticles which were later on detected experimentally.
Most of our knowledge of the interaction between elementary particles comes from the
prototypical scattering experiment in which incoming particles are well-separated in space
before getting close to each other in such a way to interact and scatter. After scattering
has occurred, the particles resulting from the process typically separate again in space in
such a way that their interaction is negligible and their properties as isolated particles,
e.g., mass, can be determined via suitable detectors. In this chapter we discuss QFT
keeping in mind the framework of scattering experiments in order to define the concept
of asymptotic states and assign a specific meaning to the mass of particles from their
dynamical properties (e.g., the propagator). Then we discuss some important properties
of QFT which derive from the existence of a unitary mapping (the S-matrix) between the
incoming and outgoing particle states, such as the optical theorem, and we discuss how
scattering amplitude and decay rates can be inferred from the correlation function of the
fields naturally described by QFT.

2.1 The Kallén-Lehmann Spectral Representation

2.1.1 Asymptotic Theory: a Brief Reminder

In a nutshell, quantum field theory can be thought of as based on the following elements:

(a) the possible (quantum) states of the theory are generated from a (unique) vacuum



state |0) by the action of free fields ¢;,(x), which generates the Fock space of states (and
which we assume to be a real scalar); (b) physical observables — such as the interacting
field ¢(x) can be all expressed in terms of ¢;,(x). The basic idea behind this setting is that
¢(x) as well as all the other observables can be actually obtained from the free fields ¢;,(z)
by switching adiabatically on and off the interaction as |zo| — co. This construction is
clearly relevant to scattering processes which originate from particles (wavepackets) well-
separated in space. Starting from ¢(xg, &) one should recover ¢;,(xg, ) as xg — —oo, but

this generally occurs up to the wave-function renormalization constant Zilrf %,
q 1/2 -
d(xg = —00,%) = Z;) " din(x0, ). (2.1.1)

Analogously, ¢(xg — +o00,%) — Z(%? Dout(T0, T), where ¢oy is a free field. The fields

Ginjout satisty the free Klein-Gordon equation
(O +m2)dinjour () = 0, (2.1.2)

while the interacting field does not, (O + m?)¢(z) # 0. In and out free fields can be
expressed in terms of the corresponding creation and annihilation operators as
dgﬁ —ipx T ipx
(bin/out(x) = (a’(min/oute +a (min/oute ) ) (213)

) V@n)32w;s
where pr = wzzg — P+ @, po = wy = /P? + m?. The canonical quantization condition
[éin/out(fv t)a (bin/out (:'ja t)} = ’L(S(g) (f - :‘7) ) (214)

where the dot stands for a time derivative, implies the commutation relations

[a(ﬁ)in/outa aT(CT)m/out} = 53(1[7_ CT) : (2'1'5)

Inverting eq.(2.1.3), we can express the annihilation and creation operators in terms of ¢
and d)

ipT

\/ (27r)32w5
————

h(x)

<
(F)infous = i / b D dinfouty (@) (2.1.6)

=
where dy =0y — Jp. The hermitian conjugate of the right-hand side of eq.(2.1.6) clearly
gives af (P)injout- Notice that the time-dependence of this expression is only apparent. In

general, for any function h(z) satisfying the free Klein-Gordon equation (O+m?)h(z) = 0,
3 x4
/d .’L‘h(.’L‘) 80 (bin(out) (:E) (217)

8



is time-independent. This is easily shown by taking a time derivative of this expression,
the use of the Klein-Gordon equation and an integration by parts. The same result applies
if we substitute ¢, (our)(z) by some other solution of the free Klein-Gordon equation.
The incoming multiparticle states are generated from the corresponding vacuum state
|0);, by the action of the creation operators a'(p);, of the free theory, e.g., |P)in =
al(7)in|0)in for the single-particle state with three-momentum 7.! Analogous construc-
tion can be done for the outgoing states, starting from the corresponding vacuum [0) 4y
[P out = ' (?)out|0)out. Given that both the incoming and outgoing particle states are
nothing but different representations of the free theories, there should be an unitary iso-
morphism between them, the so-called S-matrix: S|i)our = |i)in. We will discuss the
consequences of the general properties of the S-matrix in secs. 2.3 and 2.4. Accordingly,
the transition amplitude from an initial state i (|i);,) to a final state f (|f)out) can be

expressed only in terms of incoming states as
out<f|i>m = m<f|S|Z>m (2.1.8)

The stability of the vacuum requires that |0);, = |0)oyt = |0) while the kinematic stability
of the massive one-particle state implies, in addition, |p);, = |P)out = |P). The isomorphism
induced by S implies that, at the level of field operators, ¢, (7) = Sdous(x)S~!. The S-
matrix can be used in order to express all the states in terms of the incoming ones, which
we always refer to in what follows, unless specified differently.

Despite the interacting field does not satisfy the free Klein-Gordon equation, the am-

plitude (0|¢(x)[p) does. Indeed, invariance under translations implies
d(z) = P p(0)e P, (2.1.9)
where p is the four-momentum operator, and thus
(Olo()[p) = (0lp(0)|p)e"* (2.1.10)

It then follows that
(O +m?)(0|¢(x)|7) =0, (2.1.11)

even if (O 4+ m?)¢(x) # 0. By using eq.(2.1.7) we notice that

[ #atsta) B 0ot (2.1.12)

!Note that the normalizations of the creation/annihilation operators and of the single- and multi-particle

states introduced here differ from the corresponding ones of ref. [1].



is time-independent. Equation (2.1.3) fixes the analogue amplitude for in and out fields
to be

efipz
0|@in(x = — 2.1.13
Ol = 2.113)

Taking the limit 2 — 400 of eq.(2.1.12) and using eq.(2.1.13) we get

Zin = Zoowt = 7., (2.1.14)

and hence )

1/ e~z

Olo(2)lp) = 2 (2.1.15)

Note that ¢;,(2)|0) generates only the one-particle state, whereas ¢(z)|0) generates,
in addition, multiparticle states because of the interaction. As a result, one expects
|(P1(2)]0)|*> < [{plpin(2)|0)|? and therefore |Z| < 1 and, in particular, |Z| can be inter-
preted as the probability of generating the one-particle state when applying the interacting
field ¢(z) to the vacuum state |0). We will determine Z in sec. 2.1.2.

The limit in eq. (2.1.1) has to be understood in a weak sense because at best it
can hold at the level of matrix elements between fields well separated in space (in the
form of suitable wavepackets), while it cannot hold for operators. Indeed, both the in-
teracting and free fields ¢ have to satisfy the equal-time canonical commutation relations
[p(x0, T), P(x0, @) = —i63(Z— &) which would imply Z = 1 by taking the limit 29 — —oo.

2.1.2 Spectral Representation

Important properties of an interacting quantum field theory emerge from the so-called
spectral representation of vacuum expectation values of suitable quantities. Here we con-
sider both the commutator (0|[¢(z), ¢(x')]|0) and the time-ordered product (0|T'¢(x)d(x’)|0)
of the fields, i.e., the propagator of the theory, where the time-ordering is defined by
To(x)p(z') = 0(xzg — z()p(x)p(x") + 0(xf — xo)d(a')p(x), being §(xg > 0) = 1 and 0
otherwise (note that in case of Fermionic fields, the exchange of their order introduces an
additional — sign). Both these quantities can be expressed in terms of

(Olg()g(a’)]0) =D _(0l(w)|n) (nlé(a')|0) = D e~ P = |(0]g(0) m) [,

n

= [ dtq e S olo() ) Paa - pa) (2.1.16)

d4q —iq(z—a’
=/(27r)3 e 1= p(q)

where in the first line we introduced the completeness relation | = )" |n)(n| in terms of

the multi-particle states |n) with definite (total) momentum p,, (such that p|n) = p,|n))

10



and we used eq. (2.1.9); >, stands both for the sum over the particles number and by the
integral on the corresponding phase space. In the second line we introduced the identity

1= f dtq &4 (¢ — pn) and, in the last, the so-called spectral density
p(g) = (2m)* > (016 (0)[n)[*6* (g — pn); (2.1.17)
n

which is a Lorentz-invariant, positive scalar and therefore is actually a function of ¢2. In ad-
dition, pp, = >_;" | pn; where p,, ; is the momentum of the i-th particle within the n-particle
state |n) and therefore (p, ;)0 > 0 with pii > 0; this implies that (p,)o > 0 and p? > 0
and, in turn, that p(q) vanishes in the backward light cone: p(q) — p(¢®)0(qo) with p(¢® <
0) = 0. In eq. (2.1.17), it is convenient to isolate the contribution of the one-particle state
n = 1, which can be readily calculated by taking into account the normalization (2.1.15):
5 [016(0) M6 (a = pu) = [ d*51(016(0)15)254(a —p) = Z0(a0)d(q? —m?)/(27)?. The
resulting expression for p is

p(q*)0(g0) = Z6(¢” —m*)0(qo) + (27)* > (016 (0)[n)[*6* (g — pn), (2.1.18)
n>1
which reveals its generic structure: it consists of an isolated § corresponding to the mass
of the asymptotic field (including the self-interaction) and of a continuum starting from
the threshold m?h for the production of multi-particle states. In addition, there might be
some bound states in the gap, as depicted in fig. 2.1(a).
In terms of the spectral density, (0|[¢(z), $(0)]|0) can be written as

4 . .
Ol16(e). 60)10) = [ 5 5pla?8a) [ ]
00 4 ‘ -
= /0 do p(o) / (;17335@2 —0)0(qo) [e7'9" — €i97], (2.1.19)

1A (z;0)

where we introduced the identity in the form 1 = fooo do §(q?—o). In the previous equation
0

Y(x;m?) for a free scalar field

one recognizes the expression of (0|[¢g(x), $0(0)]|0) = iA
¢o(x) of mass m. The analogous expression for (0|T'¢(x)$(0)|0) is

4

OTo()o0)10) = [ 555n(a®)0la0) [Blan)e™ +6(=au)e’™].

> 4
- /0 4o (<) / (37%5((12 — 0)0(qo) [0(z0)e " + O(—x)e'™"],

iA% (z;0)
(2.1.20)

11



Figure 2.1: Sketches (a) of the spectral density p(¢?) as a function of ¢, which highlights
the presence of a ¢ corresponding to the physical mass, of possible additional peaks related
to bound states (dashed) and of a continuum associated to multi-particle states. (b)
Analytic structure of the propagator G(2) (q) of a scalar field, as a function of ¢*> € C which
highlights the presence of an isolated pole corresponding to the physical mass, possible

additional poles due to bound states and a branch cut related to multi-particle states.

and involves, instead, the Feynman propagator iA%(z;m?) = (0|T¢o(z)¢0(0)]0) of the
same field. Taking into account eq. (2.1.18) one finds

06,000 = Ziddaim®)+ [ do plo)ibd(ma), (2121
OT@)(0)0) = ZiA%(z:m?) + / O:da p(0)idU(zia),  (21.22)

which provide the Kéllén-Lehmann spectral representation of the commutator and the
propagator, respectively. Occasionally, it might be useful to introduce renormalized fields
br(x) = Z712¢(x) and the renormalized spectral density pr via p = Zpgr. The conse-
quences of these relations can be easily worked out: for example, by taking the derivative
0o = 0/0x¢ of the Lh.s. of eq. (2.1.21) and by eventually setting xg = 0 one recovers
the canonical commutation relation for the field ¢; the same relation for the free field ¢q
implies that 9piAY(z;m?)|z,—0 = —i6°(Z), which appears on the r.h.s. of eq. (2.1.21) and
implies

1=27Z

2
M

1+ /OO dO’pR(O')‘| . (2.1.23)

This expression shows that Z < 1 (pr > 0) and allows one to calculate Z from the

spectral density. Consider now the Fourier transform of the renormalized propagator

12



Gg) (z) = (0|Tér(x)pr(0)|0) = G (x)/Z. Recalling that for the free theory

d4q e qx
AY 3= 2.1.24
F(xam) /(27r)4q2—m2+ie’ ( )
one finds ) .
e Vo) P —— /OO do pr(o) -5 (2.1.25)
R q? — m? +ie m2, q? — o +ie’

As a function of ¢ € C, Gg)(qZ) is characterized by an isolated pole for ¢> = m?, with
residue ¢ and by a branch cut on the positive real axis starting from ¢ = mfh and controlled
by the spectral density, with possible additional poles due to bound states, as depicted in
fig. 2.1(b). Note in particular that Gg)(z) is analytic in the complex plane away from the
real axis. The e prescription in the propagator tells us that the physical sheet lies above
the branch-cut. In sec. 2.4 we provide a physical interpretation of the discontinuity which
arises in Gg) (¢) upon crossing the branch cut. Another relevant relation between the
propagator of the theory and the spectral density can be found from eq. (2.1.25), taking

into account that )

T+ i€

1
=P o iné(x) for e— 0" (2.1.26)

(in the sense of distributions, being P the principal part) and therefore
Im iGg) (¢*) = mpr(d>). (2.1.27)

2.1.3 Spectral Representation for Fermions™*

Here we briefly outline how to construct the spectral representation for Fermions. The
asymptotic theory discussed in sec. 2.1.1 carries over to this case, with the following

normalizations [to be compared with eq. (2.1.15)]:
e*ipac e*ipa:
V(2m)32w;5 v (2m)32w;

with p = (wp,p), wy = /P?>+m?, and where the single-particle state carries also an

additional spin index s and ¢ indicates the charge conjugate. In view of the canonical

O ()7, 5) = Zy*us() (01 (2[5, 5. ¢) = Zy *5.(P) . (2.1.28)

(anti)comutation relations, in this case one focuses on (0[{t)q(x),15(0)}|0) (where a and
(3 are spinor indices) and on (0|T%q (7)1,(0)]|0) (remember that T carries a — sign). As in
the case of the scalar field one derives for (0|, (z)15(2")|0) the analogous expression of

eq. (2.1.16) with a spectral density

pap(@) = (21)° Y (0a(0)[n) (nl5(0)[0)8" (q — pn), (2.1.29)

n

13



which is a 4 matrix in the spinor space. Accordingly, it can be expanded in the natural
basis provided by (a) the identity [ (scalar component), (b) the 4 gamma matrices 7,
(vector), (c) the 6 matrices 0, = i[y,,7]/2 (tensor), (d) the matrix 5 associated to

parity (pseudoscalar) and (e) the 4 matrices 57, (pseudovector):

p(q) = ps(@)l + P (@) v + P (@ o + pps(@)ys + Py ()57 (2.1.30)

Note that, while the spectral density of the scalar field was a Lorentz scalar, in the present
case one can verify that p transforms under a boost A as p(Aq) = S(A)p(q)S~1(A), where
S(A) = e~me" /4 being WM the parameters of the boost. The last requirement of
covariance implies that the coefficients of the expansion in eq. (2.1.30) are, respectively,
scalar, vectors, tensors, pseudoscalar, and pseudovectors under Lorentz transformations

and being only functions of a single vector ¢g* can be written as

ps.ps(q) = fsps(a®)s  ppyv(@) = ¢ fvpv(@®), o7 (a) = ¢"¢" fr(d®), (2.1.31)

and therefore

p(q) = fs(@®) U+ fv(@®) d + frs(a®) s + frv(d®) s 4. (2.1.32)

As in the case of the scalar, one readily conclude on the basis of kinematics that the
support of the various coefficients is in the forward light-cone and therefore, generically
fi(g> < 0) = 0 and f;(¢®) — fi(¢*)0(qo). Depending on possible additional symmetries
of the theory, one can further constrain the coefficients of the expansion in eq. (2.1.32).
For example, if parity is a symmetry of the theory (as we assume below), then one can
formally prove fps = fpy =0 and therefore

d*q
(2m)

In order to proceed to the spectral representation of the propagator and anticommutator,

(0lta (2)5(0)[0) = / Py (@)D + f5(qD)]ag e, (2.1.33)

it is necessary to represent also (0[¢5(z')1s(2)|0) because, due to the Lorentz structure,
this is not trivially related to (0|1 ()15 (2')|0) by a coordinate exchange, as it was the case
for the scalar field. However, these two quantities can be related by using the fundamental
symmetry CPT: involving a charge conjugation it changes v into ', which is what one
needs in order to connect the two expressions. This symmetry is implemented in terms of
an antiunitary operator 6, such that: @i, (z)0~! = i(’y5)a/31/1;r3(—x). Using the invariance
of the vacuum under 0, one can conclude (after a bit of algebra to be done carefully) that
(0]15(2")1ba ()]0) = —(v5(0|1(—2)1b(—2")[0)75 )acta and therefore it has the same spectral
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representation as the one in eq. (2.1.33) but with an overall minus sign. As a result
_ d4q . . X
(OH{%a(x),1s(0)}0) = /W [Fv(@®)id + [s(a%)] 4 (770 — €'97), (2.1.34)

- d4q 2N - 2 —iqT iqx
OTba()5(0)10) = [ %5 [ (a)id + £5(6)]  [ao)e™™0" = O™ (2:1.35)

to be compared with egs. (2.1.19) and (2.1.20) and the rest of the discussion proceeds as

in the case of the scalar field, taking into account that, for free fields,

(0l{tb0,a (), P0,3(0)}0) = (i + m)agiAl(x;m?) = iSos(x,m), (2.1.36)
whereas the propagator is given by
(00,0 (2)100,5(0)[0) = (i@ + m)azi A% (z;m?), (2.1.37)

where iA? and iA% are the same as for the scalar. For example, by introducing the

additional constraint as in eq. (2.1.19) (with, for convenience o — u?), one finds
o0
(OKala). T OH0) = [ du® (1D + F5(4)] 162w ) (2.1.38)

= /0de2 {fv(u?)iSQs (s 1) + [fs(1?) — pfv (1%)] SapilAd(a; p®) } ;

the canonical anticommutation relation {(z), qﬁﬁ(x’)}uo:% = 72553(;?— ') (which ap-

plies both to the free and interacting field) implies

/Ooodu2 fr(p?) =1. (2.1.39)

As in the case of the scalar field, one can isolate from the spectral density p the contri-
bution of the one-particle state and introduce the renormalized density (and therefore the

renormalized fyg), with the result that

1= 2

1 +/ dﬁfV,R(M?)] : (2.1.40)
Min

In order to conclude that 0 < Zy < 1 — as we expect from an interpretation of Zs
analogous to the one given for scalar fields — one need to prove that: (a) fy s are real,
(b) fy > 0, and (c) pfy(u?) — fs(u?) > 0. These conclusions can actually be drawn
with a bit of algebra, by using the fact that pj; = [v°p7°] go implies (a), Tr[y%p] > 0
implies (b) and that, after having formed the modulus square of (i@ — )1, one infers that
Tr [y°(¢ — )p(q)(d — )] > 0 implies (c).

By repeating the analysis for the propagator of the field, one can conclude that

0o 2 9
@ gy = g AT / o ., fvr(?)d + fsr(i?)
G (q) ZquQ “nZ 1 e + m?hd/i 123 = i+ ic (2.1.41)

to be compared with eq. (2.1.25).
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2.2 The Cluster Decomposition Principle and the Connected S-Matrix

In the previous section we briefly mentioned that the the transition amplitudes from an
initial state |¢) to a final state | f) can be calculated as a matrix element of the S-matrix, as
in eq. (2.1.8).2 Let us denote by S, _,, a generic S-matrix element for the transition from
an m-particle incoming state to an n-particle outgoing state. A fundamental principle in
physics states that two spatially separated events should have no correlation among each
other.? In the context of S-matrix, this principle is called cluster decomposition. If the
initial and final m and n particles are grouped in sets {my,...myn}, {n1,...,nx} and the
process m — n consists of a set of N different sub-processes m; — n; (i = 1,...,N),

occurring all far away from each other, then we should demand that

N
Smsn = | [ Smism, - (2.2.1)
=1

We can rephrase eq.(2.2.1) in another way by defining the connected part of the S-matrix,
SC. In perturbation theory, S is defined in terms of connected Feynman diagrams,

namely S¢_ is given, order by order in perturbation theory, by the diagrams where all

m—n

m and n particles are connected with each other. A non-perturbative definition for SS_,

can be given iteratively starting from the 1 — 1 process for which

Sposp = Spyy = (0 = 1), (2.2.2)

p—p’ T

where 6(p—p') = 0(p—p')ds,5/0pn,n includes Kronecker or Dirac delta’s in momentum, spin

and particle species. The 2 — 2 connected matrix element S¢ , ., 1s given as
P1,p2—P1,Ps
_ qC C C C C
Spr1pa—sphphy = SP15P2_>17/1717/2 + Sm—m’l sz—wé + Spl_)p/z sz—m’l (2.2.3)

= Sy pasppt, 001 = P1)S(p3 — p) £ 6(p1 — py)3(p2 — 1),

2The analysis in this section closely follows section 4.3 of ref. [2].

3Strictly speaking this statement is not correct, since quantum entanglement among states provide
correlations that do not decrease as the distance increases (this was at the base of the so called Einstein-
Podolski-Rosen paradox claiming possible violations of causality in quantum mechanics). Such states are
however fragile and short-lived, since decoherence effects given by arbitrarily small external perturbations
will destroy the entanglement among the states asymptotically. A more precise statement would be that
stable long-lived states should satisfy cluster decomposition. In general, cluster decomposition applies
when the vacuum is a pure state, and it fails when it is a mixed state. The phenomenon of spontaneous

symmetry breaking is also related to cluster decomposition, see section 8.1.
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where + refers to an even or odd exchange of fermion particles. Similarly, the 3 — 3

connected matrix element S¢

is given as
p1,p2.p3—p, ph.ply S 8

C

— C /
Spip2,pa—prp2ps = Sm,pz,ps—m’l,p/z,p’g + (Spl,m—mﬁ,pé&(m — P3) £ 8 perms.)

(2.2.4)
+ (8(p1 — p))d(pa — ph)d(ps — phy) £ 5 perms.),

where perms. refer to all other possible ways to combine the in-coming and the out-coming

particles. By further iterating, we can define all higher connected matrix elements S¢

m—m
with m > 3. Similarly, we could define the “off-diagonal” connected elements SS,_,,, with
m # n. In terms of S¢, cluster decomposition implies that

s¢ . =0, (2.2.5)

if any among the m + n particles is far away from the remaining ones. For instance,
suppose that a 3 — 3 scattering consists of an actual 2 — 2 scattering involving particles
1 and 2, with particle 3 far away from the interaction place. In this case, we would expect

from eq.(2.2.2)
53%3 = SQ*}QSIHI = Spl,pgﬁp’hp’z(s(pfi - pIB) ) (226)

with S

P1,p2—D} DY
all connected S matrix elements where particle 3 enters together with particles 1 and 2

given by eq.(2.2.3). When we impose eq.(2.2.5), namely we demand that

vanish, leaves only three terms in eq.(2.2.4), that indeed recombine in the right-hand-side
of eq.(2.2.6).
Since cluster decomposition is formulated in configuration space, we can define a con-

figuration space connected S-matrix ch . Dby taking the Fourier transform of sC

m n
C / Iy 3 3 1 ipy-ay—ipy -2y oC / /
S (@1, Ty, a) = /Hd pin p; e T S (D1 Pms P - D)
i=1 j=1

(2.2.7)
Invariance under space-time translations imply that S$_,, (x,2’) cannot vary if we shift
by a constant four-vector all coordinates. Correspondingly the connected S-matrix should

be proportional to a delta function imposing energy-momentum conservation:

S (01, Do - ) = @)D Qi = D DAY (1, P B pn) s (228)
i i

with A® encoding the remaining part of the scattering process. Cluster decomposition
implies that

Sr?@%n(xla"'xmvxlla'“x{n) —0 (2~2-9)
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if we move apart the in-coming particles |7; — 2| = 00, 1 =1,2,...,m1, j =1,2,...m —
myq, and their associated out-going particles |2;" — #}'| — oo, k = 1,2,...,n1(my), | =
1,2,...n —ni(my), for any choice of m;.

No other delta functions imposing further constraints on the initial and outgoing mo-
menta can enter in AC. If such a constraint would exist, we could move all the particles
subject to the constraint away from the others without affecting eq.(2.2.7), violating the
cluster decomposition property (2.2.9). In contrast, the disconnected element of the full
S-matrix can and do have multiple delta functions. This shows that the connected and
disconnected elements of the S-matrix cannot interfere among each other. We will mostly
focus in what follows to the connected part of the S-matrix, but it should be emphasized
that disconnected S-matrix elements are not negligible, since in actual experiments the

scattering process is often of this type.

2.3 The Reduction Formula for Connected S-Matrix Elements

Scattering experiments are determined by the S-matrix. However, quantum field theory
naturally provides access to time-ordered products of fields and operators and therefore
it is important to understand how to extract from the latter the S-matrix elements. This
connection is provided by the so-called Lehmann-Symanzik-Zimmermann (LSZ) reduction
formulas [4, 5] which we discuss here for the case of a neutral scalar field.

Consider a generic S-matrix element for the transition from the m-particle incoming

state [p1, ... Pm)in to the n-particle outgoing state |qi, . . . qn)out:

Smﬁn = out<il7 cee §n|ﬁ17 .. -ﬁm>in = in<(717 s Jn|5|ﬁ17 .. -ﬁm>ina (231)
where [p1,...0m)in = a'(P1)in|P2s- . Dm)in (see sec. 2.1.1). In turn, a(P)in(oury (and
aT(ﬁ)m(out)) can be expressed in terms of the incoming (outgoing) free field ¢, (ou) as

in eq.(2.1.6). We now write al. = (aT —al, )+ al.  and therefore

Dyin Dyin D,out D,out

Smosn = out{@is - - - Gl (@ (B1)in—a' (1) out) P2y - - - Pn)in+tout(@1s - - - Gula (51)out| P2 - - - P ins

(2.3.2)
where the second term on the r.h.s. does not vanish only if p7 € {q,... 4.}, ie., if it
coincides with one of the outgoing momenta. This contribution represents a process in
which one of the incoming particles does not participate in the scattering and can be
neglected if we are only interested in connected S-matrix elements. In the first contribu-
tion, instead, one can use eq. (2.1.6) in order to express af(f))in and af (1)our in terms

of ¢in(z) and ¢y (), respectively, and the latter, in turn, as limg, s oo Z~7?¢(x) and
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limg, 100 2~ 2¢(x) [see eq. (2.1.1)]:

C —1/2 3= . . - S PNy ., .
Sy o = —iZ /d z (mol—l>n—loo — xol_l}rﬂ(ﬁ) out{q1; - - - @ul i, () Oo G()|P2, - - - Pin)in-
(2.3.3)

The difference between the limits can be obtained as — fjoooo dxg Oy which renders an
xd
integration over space-time [ d'z, while o[h, (x) o ¢(x)] = h (2)(0Op + m?)¢(z) and

therefore
SC . =iz71/? / d*z b (2)(Te + mP)our( @iy - - Gnld(@)| D2, - - Prnins (2.3.4)

which has been now reduced to the matrix element of the field ¢(x) with one less particle
in the incoming state. An analogous reduction can be done for the outgoing state by
expressing out (@1, - - - Gnl a8 out (G2, - - - @nla(qi)out and by using the fact that a(q))ewrd(z) =
[a(q)outP(x) — d(x)al(qi)in] + d(x)al(qi)imn; as before, when inserted in eq. (2.3.4), the
second term on the r.h.s. of this identity corresponds to a disconnected amplitude and can
be neglected. The first, instead, can be simplified by expressing a(q1)ou/in via eq. (2.1.6)
and then by introducing the suitable (weak) limits in order to replace ¢ by ¢;, Jout

a(il)out¢(m) - (ﬁ(x)a(q_i)m

. (2.3.5)
=iz 1/? / B3y {yogriloohal(y) Oy P(y)P(z) —

B () Oy 0(2)6(0) |

due to the presence of the limits, both ¢(y)¢(x) and ¢(x)@(y) can be replaced by their time-

ordered product T'¢p(x)é(y) and therefore the difference between the limits, as before, can
>

be expressed as fjoo dyo Oy, , while Oy [hg, (y) Oy TO(2)0(y)] = hg (y)(Dy+m2)T¢>(m)¢(y),

with the result

out<§1a o ‘fn|¢(‘r)|ﬁ23 .o ﬁm>m =

o ) (2.3.6)
—iz Y / d*y hey ()T + 1) out (s - GulTS@)S) P - Pu)in,

in which the number of particles in the outgoing state has been reduced by one. Together
with eq. (2.3.4) one finds

SO = (iZ7 V2 / dhedty B, (2)hg (4)(Op + m2)(T, + m?) .

X OUt<lj’25 e q’n‘T¢(I)¢(y)|ﬁQ7 . -ﬁm>ina

in which the procedure outlined above can be iteratively repeated till all the particles in

the incoming and outgoing states are reduced to zero and one is left with the vacuum state
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0)in = [0)out = 10):

Sty = (2712 m+n/Hd4xz h (23)(On, +m?) [ [ d*yj ha, (y))(Oy, + m?)
i=1 j=1 (238)

X (O[T ¢(x1) - - (@m)d(y1) - - - H(yn)|0),

which is the LSZ reduction formula.*
In order to connect the r.h.s. of this equation to the N-point correlation function
O|Tp(x1) - - - p(xn)]0) of the fields which is usually calculated in quantum field theory, we

focus on its Fourier transform

N
GV 1o ipy) = [T dar e mniorota) - oan)lo)y (239)

k=1
Due to the space-time translational invariance of the theory, the correlation function on
the r.h.s. depends only on the difference of the coordinates and therefore one can always
factor out (2m)*04(32~_, pr) and actually indicate by GV the remaining factor. Tak-
ing into account the definition of hjy(x) in eq. (2.1.6) one easily recognizes in eq. (2.3.8)
o)t pi— Py ¢))G™ (D, Pm, —q1, - -+ —Gn), while O, and 0y, turn into
—p? and —qu when acting to the left on h;i(xi) and hg, (y;), respectively. Note, however,
that according to eq. (2.1.6) p? = qu = m?, being the incoming and outgoing particles

on-shell, and therefore the factors O + m? vanish; it is then convenient to think of

i /Y;
them as limits:
n m n
4
St = (2m)18%( sz Z% Il e 11
= i:l 2“’* J=14/(2m) 32wq
N . , (2.3.10)
p; —m . Qj —-m (n+m)
X lim —*t—— lim —=———G""™" (D1, Py — Qs - -y —n)-
Moo iz 2 L e i1 (1, Py =1 )

This equation clearly shows that connected S-matrix elements are basically given by the
residues of the poles of the Fourier transform of the T-product of fields (i.e., of their
Green functions) as the incoming and outgoing particles go on-shell. As we discussed
in sec. 2.1.2, G (p?> — m?) = iZ/(p> — m?), which allows one to identify the factors
limyz 2 (p? —m?)/(iZY?) in eq. (2.3.10) as VZ[GP (p? — m?)]~L. In view of this fact it
is convenient to introduce the notion of amputated Green function G((zévn)p, which in terms

of Feynman diagrams, is obtained by stripping the diagram corresponding to GV of the

“Note that in some textbooks, e.g., ref. [1] the factors hjz are actually absorbed in the definition of the

multiparticle states and therefore they are absent in the formula above.

20



external propagators (the latter being the cause of the presence of the poles mentioned

above):
N

1162w

=1

GM(py,....pn) = GO (p1,...,pN). (2.3.11)

n

Accordingly, eq. (2.3.10) becomes
H 1

SC = S p = Y ) [
;p ;q] il;[l\/(%) =1 \/(27r)32wq~j (2.3.12)

X Z(n—o—m)/?G((lmm) (D1, Py —QLy -+ - s —qn)|p?:q]2:m2.

R 2w,

Quantum field theory provides access (e.g., perturbatively) to G,(lj,vn)p on the r.h.s. and

therefore, via this relation, to S¢_  which has to be supplemented by appropriate phase

m—n
space (i.e., kinematic) factors in order to calculate cross sections.

An important consequence of eq. (2.3.12) is the crossing symmetry: in fact, incoming
particles are distinguished from the outgoing ones only by the sign of the four-momentum
as the argument of Gg%m). When the theory involves also antiparticles, the construction
can be straightforwardly generalized in order to conclude that an incoming antiparticle
with momentum p' [and four-momentum p = (—wy, p)] is equivalent to an outgoing particle

with momentum —p'[i.e., with four momentum (wz, —p) = —pl.

2.4 The Optical Theorem

The S-matrix is a unitary mapping between the space of the incoming asymptotic states
and the one of the outgoing states. As such, it satisfies STS = SST = 1. This unitarity
has important consequences, which we investigate here.

In order to factor out from the S-matrix the contribution corresponding to the absence
of interaction between the incoming and the outgoing particles, one usually introduces the
T-matrix:

S =1+41T, (2.4.1)

in terms of which, the condition of unitarity becomes
T-T" =TT (2.4.2)

Consider now a scattering process from an initial state |7) to a final state |f): the previous
relation implies that
Tyi— TfTﬂ. =iy T}, Tni (2.4.3)
n
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for the T-matrix element Ty; = (f|T'|i) between these states, where the sum runs over
all possible intermediate states with definite momentum. Note that the conservation of

energy and momentum requires generically
Top = (a|T|b) = (27)*6* (pa — pb) Aup (2.4.4)

where p, and p, are the momenta of states |a) and |b), respectively, and A,; is the
remaining factor usually calculated via Feynman diagrams. In terms of A, 4, eq. (2.4.3)
becomes

Api— Afp =1 (2m)'6" (pn — sy Afy pAni (2.4.5)

n

This relation has a very simple interpretation for f = 4, i.e., when focussing on the forward
scattering amplitude because in this case the Lh.s. is 2¢Im A; ;, while the r.h.s. involves
|An,i|2:

2Im A;; = > _(2m)*6* (pn — pi)| Anil*. (2.4.6)

n

Consider the case in which the initial state |i) = |ky, ko) is a two-particle state: the r.h.s of
eq. (2.4.6) is then the sum over all possible final states of the probability to obtain these
states from the scattering of the two initial particles. This is related to the total cross

section op. In our conventions, we have®

(27T)62E12E2 - / 3,7 4 / 2
or = d’p(2m)*o(p1 +p2 — > i) Ainl” (2.4.7)
\/(Pl'Pz)Q—m%mggg Z ; o
In the center of mass frame of the two particles we get
eml S om) 5 1 + 2 — ) Anl? (2.48)
(2m)SE.p, " e

n

where we have rewritten more compactly the phase space integral as ) . Accordingly,

the optical theorem implies that

A ko]

2Im Ai,i = m

ar. (249)

Further below we shall check explicitly this relation. On this specific case of a two-particle

initial state we can discuss a general property of the amplitude A;; as a function of the

2

Mandelstam variable s = EZ,, which we let be a complex number. First of all we note that

the diagrams which contribute to A;; in a perturbative expansion are generically real as

®This expression differ from the one presented, e.g., in eq. (4.79) of ref. [1] because of the different

conventions for the normalization of the states.
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long as one can forget about the Feynman prescription of adding +ie at the denominators
of the propagators of the particles involved (think, for example, of scalars). This is the
case if none of the intermediate virtual particles involved in the diagram goes on-shell: in
fact, being the denominator of the corresponding propagator always non-vanishing, one
can safely take ¢ — 0, which makes the imaginary part of the corresponding diagram
vanish. Accordingly, the amplitude A;;(s) is a real function of s for real s < mfm where

mfh is the energy threshold for the production of on-shell multiparticle states:
Ali(s) = Aii(s™). (2.4.10)
Since A;; is real on the real axis for s < m?,, its continuation satisfies eq. (2.4.10), i.e.,

Re Am(s) = Re Ai,i(s*),
Im Am’(s) = —Im Am‘(s*).

(2.4.11)

As a consequence of the continuation outside the real axis, A;;(s) acquires an imaginary
part: upon approaching the real axis s € R from above with s + ic and ¢ = 0 or

from below with s — ie, eq. (2.4.11) implies that A;,(s) has opposite imaginary parts

Im A, ;(s +ie) = —Im A, ;(s — i€) and therefore, upon crossing the real axis, there is a
discontinuity
Disc AZ‘J(S) = Ai,i(s + ie) — Ai,i(s — iG) = 2iIm AM(S + ie), (2412)

which vanishes along the real axis with s < m?. Accordingly, the imaginary part of
the amplitude A;; is alternatively given by its discontinuity upon crossing the real axis,
which might be easier to determine in actual calculations. Note that the presence of this
discontinuity signals the presence of a branch cut running along the real axis for s > mfh,

which is analogous to the one highlighted in fig. 2.1.

2.4.1 Perturbative Unitarity

The results obtained so far are exact, in the sense that they do not rely on a perturbative
expansion. Exact results in QFT are however quite rare (at least in d = 4 space-time
dimensions). In practice we often demand perturbative unitarity, namely we expand in
some small coupling constant both the left and right hand side of eq.(2.4.9) (or more
generally of eq.(2.4.6)) and demand the equality of both terms at each order in perturbation
theory. In order to calculate directly the discontinuity of an amplitude across the cut, one

can take advantage of the so-called Cutkosky (or cutting) rules:
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k/2+q I
(a) (b)

Figure 2.2: (a) Lowest-order correction to the two-particle scattering amplitude A;; in
a A¢* theory. (b) Schematic representation of the optical theorem (2.4.6) applied to the
diagram in panel (a): the imaginary part of the amplitude in panel (a) can be obtained

via the cutting rules by cutting the diagram as indicated in (b) by the dashed line.

1. consider all possible ways of cutting the internal propagators of a diagram in such
a way that the diagram is cut into two disconnected parts and that the particles

whose propagators have been cut can go simultaneously on-shell;

2. in each cut propagator with momentum p substitute the factor 1/(p? —m?+ie) with

—27id(p? — m?) and calculate the resulting diagram;
3. sum over all possible cuts the contributions obtained above.

As an illustrative example, consider the scattering amplitude iAg,z(kQ) for 2—2 particles
with a A¢* interaction. At the lowest (tree) non-trivial order in perturbation theory, the
amplitude is proportional to the coupling A and is manifestly always real. This is in
agreement with eq.(2.4.9), since an imaginary part of order A would not match with the
right hand side which is of order A\?. An imaginary part in the amplitude should then arise
starting from one-loop. The relevant diagram contribution iD(k?) is depicted in fig. 2.2(a).
According to the LSZ formula (2.3.12), iA2 (k%) = iD(k?)/[(27)°k?] (with k = k1 + k2),

where

. i\)? dq i i
D) = U / . 92.4.13
() 2 @2m)* (& — q)2 —m2 +ie (& +q)2 —m2 +ic ( )

One can easily realize that among the three possible scattering channels s, ¢, and u only
in the channel s it is possible to exceed the threshold for particle production such that

the corresponding amplitude acquires an imaginary part. We shall focus on this case. By
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Lorentz invariance Ay, can be calculated in the center-of-mass frame with k = (ko,0)
and it is convenient for the present purposes to perform first the integration over gy using
Cauchy’s theorem, closing the contour at infinity. The integrand is characterized by 4

simple poles at

k k k
EOer@—ie, 770+w57i€, ——OquﬂqLie,

2
5 5 2w+ e (2.4.14)

2

After the integration one finds

2 [ dBg 1 1 1
D(k? / — , 2.4.15
D(k7) = 2 (271')3 dkowg wg — % —ie  wg+ %0 — i€ ( )

Using eq.(2.1.26), an imaginary part can arise only when one of the denominators vanishes.

It is evident that only the first of the two terms on the r.h.s. can possibly vanish (we take
k® > 0) when wz = ko/2 for some values of |g]. This is possible only if ko > 2m = myy,, as

expected on kinematic reasons. We then get

m%/mdwqq/w%— m2 x ﬂé(wq — %)

ko/? — m2

Im D(k?)

(2.4.16)

16/<;

where we used the fact that d3°§ = 4ng?dg = 4r, /wé — m?wgdwg. Note also that for
k% < 2m the location of the poles (2.4.14) allows us to perform a Wick’s rotation gg = iqg.
The two propagators are now complex conjugates of each other and the amplitude Aj 5 is
manifestly real, in agreement with eq.(2.4.10).

The same result can be obtained by using Cutvosky rules. In this case we have

2 4
Disc D(k?) = ;Z /(;1754(27%)26(%/2 — )2 = mHi((k/2 4 q)* — m?), (2.4.17)

where, as before, it is convenient to integrate first on ¢g in the center-of-mass frame. Using
the fact that we can express the second § above as

(S<QO + k0/2 — wq) n (5((]0 + k‘o/2 +wq~)
2wq~ 2&){7‘

5((ko/2+ qo0)* —w?) = , (2.4.18)

one immediately sees that the product of the first § on the r.h.s. of eq. (2.4.17) with the
second term above can never vanish, while the product with the first term, after integration
on qo, is equivalent to (kg (ko —2w§)) = 6(wq— ko/2)/(2ko), such that eq. (2.4.17) becomes

Disc D(k?) =i wg /w2 — m? §(wg — ko /2
"8r k q (g = Fo/2) (2.4.19)

=2ImD k2
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where on the second line we have taken into account the first line of eq. (2.4.16). This
example shows the effectiveness of the rules mentioned above for the calculation of the
imaginary part of an amplitude or, alternatively, of its discontinuity across the cut.

As a final check, let us consider the total cross section op for the lowest-order scat-
tering process of these two particles, which is characterized by the amplitude iDy = —i\.
According to the optical theorem (2.4.9) and to (2.4.12), the imaginary part of the diagram
in fig. 2.2(a) — which can be calculated (up to an i) by cutting the diagram as indicated
by the dashed line fig. 2.2(b) — is equal to the modulus square of the tree-level scattering
amplitude (up to the corresponding phase-space), as schematically indicated by fig. 2.2(b).
By using the standard expression for the differential cross-section in a two-body scattering

(see, e.g., eq. (4.99) in ref. [1]), one has

2
<Z—g)cm = ﬁ X %, (2.4.20)
where the factor 1/2 accounts for the fact that the particles are assumed indistinguishable
and which gives op = A\2/(327E2 ) for the total cross section. By forming the combination
(with Eep = ko)
4| 1 A2
Q)BT " (2m)0k2 ~ Srko

(ko/2)2 — m2 (2.4.21)

and by comparing with eq. (2.4.16), one recognizes 2Im D(k3)/[(27)k3] = 2Im As 5 on
the r.h.s., in agreement with the optical theorem (2.4.9). Alternatively, one can verify
the validity of the optical theorem written in the form of eq. (2.4.6) by comparing the
expression of its L.h.s. in eq. (2.4.16) with the one obtained by specializing its r.h.s. to
the case in which Gg) = i) (and therefore Ay; = \/[(2m)3ko\/(27)3wp, \/(27)3wy, ] from
eq. (2.3.12)) and by taking into account that the two-particle invariant phase space is given

by [ (diﬂ(%r)%‘l(pn — k) = |kem|/(47ko) (see, e.g., eq. (A.58) of ref. [1]).

2m)3 2wy, (2m)3 2wy,

2.5 Unstable Particles

The formalism above is also useful in understanding how unstable particles should be
considered in QFT. These particles cannot appear as asymptotic states in the Hilbert
space and hence their treatment is a bit trickier.® We can distinguish between two kinds
of unstable particles. Those that turn into stable asymptotic states when interactions

are switched off: this is the typical instance of weakly coupled unstable states, that turn

6Clearly, the distinction is dictated by the time scale of the process. Particles with a time decay much
longer than the interacting time of a process are effectively stable and can be effectively described by

asymptotic states.
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into free stable states in the limit, and correspond to all unstable elementary particles
we know. It also applies to bound states, when their instability is not governed by the
same interactions that are at the basis of their formation. For instance the pion mesons in
QCD are stable in the limit in which we switch off the electroweak interactions. A more
complicated situation occurs with bound states that decay due to the same interactions
responsible for their formation. In this case there is not a simple limit where we can
consider them as stable. This is for instance the case of the positronium, a bound state
composed of an electron and a positron in QED. Let us consider the former simpler case
of unstable states admitting a limit in which they are stable. In this case we expect on
general grounds that the particle develops a propagator with a Breit-Wigner form. For

2 we have

p*~m
i
p*—m?+X(p?)’

where m is the mass of the stable particle when interactions are switched off. In presence

A () (2.5.1)

of interactions ¥ develops an imaginary part. In the particle rest frame eq.(2.5.1) implies
an “effective mass”
M ~m —iImX(m?)/(2m), (2.5.2)

where we have neglected ReX and assumed ImY(m?) < m. The wave function ¥ of the
particle evolves as W(t) = e *M!W(0), such that the probability |W(t)|? oc e~1? decreases

exponentially in time with a decay rate

Im> 2 _ 02
po e =m) (2.5.3)
m
In the rest frame of the decaying particle the total decay width equals
= (2n)° ) (2n)"8" (b — p)|Ana (2.5.4)

n

where A;, are the amplitudes for the decay in n particles: 1 — n. Despite it does not
make sense to talk of S-matrix elements for a single-particle state, the link between Im¥
and T' can be formally seen as a consequence of eq.(2.4.6), with |¢) is a single particle state.

When the interactions responsible for the decay are switched off, Gg) has a simple
isolated pole, as expected from the representation (2.1.25), and the operator ¢(x) associ-
ated to this particle has vanishing matrix elements with the decaying product particles.
When interactions are switched on, the operator ¢(z) has non-vanishing matrix elements
with the decaying particles. As a consequence the threshold mass in eq.(2.1.25), which is
given by the lowest energy to produce multi-particle states, decreases and the previously

isolated pole falls within the branch-cut singularity associated to the production of the
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decaying particles. Moreover, the simple pole moves away from the real axis and for small
¥ lies close to the branch-cut singularity. We see from eqs.(2.5.1) and (2.5.3) that the

2

pole sits approximately at p?> ~ m? — imI' and moves in the lower complex half-plane.

At first sight, this result is in contradiction with the analyticity properties derived from
the Kéllén-Lehmann spectral representation (2.1.25), according to which Gg) can have
no singularity away from the real axis. Indeed, this complex pole does not appear as a
pole of Gg) but shows up in its analytic continuation below the branch-cut singularity. In
other words, the pole is not on the physical Riemann sheet, but in the second (or higher)
Riemann sheet. This is understood by recalling that the physical momenta sit above the
cut. Since the pole lies instead below the cut, in moving around the cut Im¥ picks up
a phase. With such phase the propagator has no longer a pole. In order to not get any
phase we have to cross through the cut, which unavoidably leads us to another Riemann

sheet. A concrete example of this phenomenon is described in section 2.7.

2.6 Causality and Analyticity

In subsection 2.1.2 we have briefly discussed the behaviour of the exact propagator Gg) (¢®)
for complex values of ¢> and have seen that it can be analytically continued for complex
values of ¢?. A similar analytic continuation was assumed in section 2.4 where we briefly
discussed the elastic 2-particle scattering. More in general, one could ask whether and
in which sense S-matrix elements or the Green functions G™)(p;) can be analytically
continued for unphysical values of the momenta. We will see that there is a fundamental
connection between causality and analyticity, which points towards a positive answer to
this question.
The key points are best understood from classical considerations. Let Ajn.(z,t) be a
wave packet traveling along the z direction:
+00
Aine(z, 1) = / dw Gine (w)e™@ ) | (2.6.1)
—o0
and scattered by a particle at rest at z = 0. The asymptotic forward scattered wave packet
will be of the form
1 [t ;
Ascatt (2, 1) 2] 00 = 2 /_OO dw Qscars (w)e™ 7Y (2.6.2)
where ageatt (W) = Gine(w) f(w), with f(w) the forward scattering amplitude. Suppose that
this packet represents a signal which vanishes for ¢ < z, so in particular A;,.(0,t) = 0 for

t < 0. By taking the inverse Fourier transform of eq.(2.6.1), we get

us

. — i oe . iwt
ainc (W) = dt Aine(0,t)e™" . (2.6.3)

—00

28



Figure 2.3: Thanks to the analyticity of f(w’), the contour of integration C, can be blown
up in a large semi-circle approaching the real line from above and going at infinity (Coo)

in the upper half-plane.

The function ajnc(w) can be analytically continued for complex w in the upper half-plane.
Indeed, for ¢ > 0, the phase factor is exponentially suppressed, while for ¢ < 0, where
we would have an exponentially increasing factor, the wave packet vanishes. We can
then consider eq.(2.6.1) in the complex w-plane. If we assume that ain(w) does not grow
too much at infinity, so as to compensate the exponential suppression given by eiw(z—t)
we can close the contour at infinity. This is automatically satisfied if we demand that
ainc(w) grows at most as a polynomial in w. Such condition is often denoted as polynomial

boundedness and is typically assumed for QFT amplitudes. For ¢t < 0, we get

j{dw ainc(w)ei‘”(z_t) =0, (2.6.4)
C

implying that ain.(w) should be an analytic function in the upper w half-plane.
The causality principle requires that the scattered wave should also vanish for ¢t < z,

since no wave can be ahead of the incident wave packet:
Ascatt(2,t) =0, for t < z. (2.6.5)

We can now take the inverse Fourier transform of eq.(2.6.2) and repeat the argument

above to conclude that the causality condition (2.6.5) implies the analyticily of ascatt (w)
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— and hence of f(w) — in the upper half-plane.”
Let us see some implications coming from such analyticity properties. Given a point
z in the upper half-plane we can use Cauchy theorem to write

f(z) = L/C M, (2.6.6)

24w w -z

where C, is a small circle around the point z. Since f is analytic over the whole upper
w’ half-plane, we can blow the contour C, until it approaches the real axis and closes at

infinity, like in fig.2.3. When z approaches the real line from above, z = w + i€, we have

+00 / !
f(w)fhmf(w+ze)f11_1>1(1]2l1ﬂ/ %Jr%foo
> (2.6.7)
B 1 +oo dw'f( ) 1
5P TS + g

In the last relation we have used eq.(2.1.26), P stands for the principal part of the integral
and fo/2 denotes the contribution to the integral coming from Cn,. If we assume for the
moment that f(w) — 0 at infinity, so that foo = 0, eq.(2.6.7) gives

1 O dw' f(w')
=—P — . 2.6.8
O (2.6
The real and imaginary parts of eq.(2.6.8) give
1 —+o0 d /I / 1 “+o0 d IR /
Ref(w) = ~P / dImfl) ) = —Lp / WRefW) 960
T J oo w —w T oo w —w

Another commonly used rewriting of these equations is

(@) = lim 1 (7% dw'Tm f (o)

e—=0 T

T —w—ic (2.6.10)
whose real part coincides with the first relation in eq.(2.6.9). We see that, by knowing
the imaginary part of the forward scattering amplitude, we can reconstruct the whole
amplitude. The original derivation of eq.(2.6.10) dates back to Kramers and Kronig that
applied it in classical optics with f(w) being the index of refraction. A frequency depen-
dence of the index of refraction leads to the dispersion of light (like in a rainbow) and
hence eq.(2.6.10) (and their quantum generalizations) is called a dispersion relation. An
imaginary component of the refractive index leads to dissipation, so the dispersion rela-

tions allow us to compute the refractive index of a material (i.e. Re f) from its dissipation

“Unless ainc(w) has zeros that induce poles in f(w), but these are avoidable by simply changing the

(quite arbitrary) incident wave packet.
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properties (Im f). The latter is also related, through a classical optical theorem, to the
total absorption cross section.

If f(w) does not vanish at infinity, as we assumed, but rather
F(@) w00 o Jw VT (2.6.11)

for some N > 0, we can divide f(w) by a given polynomial P,(w) of degree n = [N] and
apply Cauchy theorem to f/P,. By construction, the contribution at infinity vanishes,
but we have to be careful because the zeros of P, give rise to poles whose contribution
should be considered. Choosing for definiteness P, = w™ and repeating the same steps as

before, we get

400 ' /
fwy=w"lim= | (w,dfjn_”;g(l,)n + Qnlw). (2.6.12)
In eq.(2.6.12), the residues due to the poles of P, are encoded in the factor @, which is
a polynomial of degree n in w with coefficients determined in terms of the values of f(w)
and its first (n — 1)-derivatives at w = 0 (more generally, at the specific values of w where
P, =0 ). The function f is thus no longer determined by Im f only, but requires also
the knowledge of such “boundary” data. This is the price we have to pay in order to have
a sufficiently well-behaved function at infinity. Eq.(2.6.12) is called a dispersion relation

with n subtractions, or n-subtracted dispersion relation.

The classical causality condition (2.6.5) in QFT is replaced by the microcausality
condition [6]
[O1(x),02(y)] =0, for (z—y)*><0, (2.6.13)

where O; and Oy are arbitrary bosonic local operators in the QFT. Using eq.(2.6.13)
and the LSZ reduction formulae, the analyticity properties of certain amplitudes can be
proved axiomatically, i.e. at the non-perturbative level and using first principles only,
such as unitarity and Lorentz invariance (in addition to microcausality itself, of course).
Unfortunately, an axiomatic proof for general Green functions in QFT is still not available.
In these cases one has to rely on perturbation theory, where analytic properties can be
directly checked looking at the non-analyticities of Feynman diagrams. All these studies
seem compatible with the conjecture that Green functions are the real-boundary values of
analytic functions. For concreteness, let us consider the elastic scattering of two identical
particles of mass m, that we assume to be the lightest particles present in the theory. The
scalar amplitude M is a function of the four particle momenta p; (i = 1,2, 3,4). Particles
1 and 2 are in-going, particles 3 and 4 are out-going. Momentum conservation and the

on-shell conditions fix p} + ph = p§ + p, p? = m?. Lorentz invariance requires that the
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scalar quantity M can only depend on Lorentz invariant combinations of the momenta.

A useful parametrization is given by the Mandelstam variables

s=(p1+p2)?, t=(p1—p3)*, u=(p1—ps)’. (2.6.14)

It is immediate to verify that s + ¢t + v = 4m?, so that the amplitude is effectively a
function of two independent variables, that we can take to be s and t: M = M(s,t).
Going to the center of mass frame of the two particles, it is straightforward to see that

the kinematically allowed range of the Mandelstam variables is
s>4m?,  t<0  u<0, (1+2—=3+4). (2.6.15)

Studying the analyticity properties of a function of two variables is a difficult task, so let
us take t fixed and consider M as a function of s. Some analytic properties of M can
be deduced from perturbation theory. We can have simple poles at s = p?, where p is
the mass of the possible particle exchanged in the 1-2 interaction, and then a branch-cut
singularity starting from the 2-particle threshold production, i.e. s > 4m?. Using crossing
symmetry, the same amplitude M also describes the scattering process 1 +3 — 2 +4 and
1+4 — 2+ 3. In terms of the variables (2.6.14), the allowed range of s, t and u in the

different channels is

t>4m?, s<0 u<o0, (1+3—=2+4),

o (2.6.16)
u > 4m?, s<0 t<o0, (1+4—2+3).

This implies that, at fixed ¢, if there is a pole in M(s) at s = p? in the 1 +2 — 3 + 4
scattering process (s-channel), a pole should also occur at s = 4m? — p? — t, which
corresponds to the same pole 2 occurring at 4m?> —s —t =u=p?>inthe 1 +4 — 2 +3
process (u-channel).® Similarly, the branch-cut at u > 4m? in the 1 + 4 — 2 + 3 process
implies a branch-cut at s = —t in M(s). The analyticity assumption based on causality
as described above assume that all the singularities of M(s) are associated to physical
processes and, as such, they all lie on the real s-axis. In particular, we might have other
poles at s = p2,u3,... associated to the exchange of other particles (bound states in
general), or branch-cut singularities due to the opening of other multi-particle processes.
For example, another branch-cut is expected to occur for s > 9m? in association to the
production of three-particles (if allowed by the symmetries of the system, of course). These
other branch-cuts will occur on top of the first one that starts at s > 4m? (and s < —t).

The expected analyticity domain of M(s), at fixed t, is depicted in fig.2.4. The physical

8If the same particle can be exchanged in the process, we have u = m, but this is not necessary.

32



qu Am2— ,uz—t
® >
—t Am?

Figure 2.4: The expected singularity structure of the 2 — 2 scattering amplitude M(s)
at fixed t in the complex s-plane. The black points indicate the simple poles associated
to the particles (bound states) exchanged in the s-channel (u?) and in the u-channel

2 _1). The crosses indicate the branch-cut singularities, starting at s = 4m? in

(4m® —
the s-channel and at s = —t in the u-channel. Poles associated to the possible presence of

other bound states have not been indicated.

region in the s channel for s > 4m? lies above the cut. This can be easily seen from the ie
prescription that amounts to a shift m? — m? — ie. Since s + t + u = 4m?, the physical
region in the u-channel sits below the cut s < —t in fig.2.4.

As we said, the above picture can be axiomatically proved only in certain cases, but
being associated to a fundamental principle such as causality, it is often taken for granted.
Once we know the analyticity domain of M(s,t), dispersion relations like eq.(2.6.10) can
be written down. Among other things, these allow us to relate M to the total cross section,
that through the optical theorem can be expressed in terms of Im M.

The analytical properties of Green functions received great attention starting from the
late 50’s until about the early 70’s, in an attempt to describe the strong interactions from
first principles, without relying on a weakly coupled Lagrangian description (S-matrix
bootstrap). This activity quickly faded away after the discovery of Quantum CromoDy-
namics (QCD) as the theory of strong interactions, but left us with several important
results. In the impossibility to review here all such results, let us just mention a general
bound on the cross-section (Froissart-Martin bound), an understanding of certain high
energy scattering limits in strongly coupled gauge theories in terms of so called Regge
trajectories, and the birth of what we now call string theory. More recently, among other
developments, arguments based on the analyticity of amplitudes have allowed us to put
constraint on effective field theories [7] and played an essential role in proving an im-

portant property satisfied by the renormalization group flow of QFTs in four space-time
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dimensions (the so called a-theorem) [8].

A proper understanding of the analytic structure of amplitudes in QFT would also
be important to rigorously establish important properties of amplitudes, such as crossing
symmetry, that are at the moment assumed.” It is not excluded that a fresh look at some
of the old problems left open in the S-matrix bootstrap (together with the vastly increased
numerical power we have today with respect to half-century ago) would lead to a revival

and further progress in this direction.

2.7 Bound States and Resonances™*

We have seen in the previous sections that simple poles of the two-point function or of
the scattering amplitude (S-matrix) are a signal of one-particle states. These can arise
also in correspondence of bound states. We have also seen at the end of section 2.4 that
unstable states, resonances, correspond to simple poles with a non-vanishing imaginary

component, i.e. complex poles. In this section we will show that

e bound states correspond to simple poles of the scattering amplitude

e resonances give rise to poles hidden below the branch-cut.

In order to keep the analysis as simple as possible, we will just work out a simple example
in quantum mechanics (relativistic bound states are a notoriously difficult subject).
The system we consider is a one-dimensional quantum system in a potential well, see
fig.2.5. The Schrédinger equation is
—1 d?
(572 + V(@)¥n() = Eaton(2), (2.7.1)

2m da2

where 1, and F,, are the eigenfunctions and eigenvalues of the system, respectively. The
system is invariant under the Zo parity transformation x — —x, so we can separately
consider even and odd eigenstates. Let us first discuss the bound states, i.e. the states
with energy —V( < F,, < 0, where Vj > 0 is the depth of the well. For the different regions

in fig.2.5 we have, for the parity even states,
Yi(z) = Cek,
¥n(@) = Acos(pr), (2.7.2)
Y(z) = Ce *,

9We briefly discussed crossing symmetry as a “simple” consequence of the LSZ formula (2.3.12) below
that equation. In fact, this property is far from trivial because the crossed amplitudes are functions
defined in disconnected regions in the Mandelstam variables with respect to the original amplitude function.
Proving crossing symmetry is equivalent to prove that the crossed amplitude is the analytic continuation

in the crossed region of the original amplitude.
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Figure 2.5: One-dimensional potential well.

where
k=+v-2mFE, p=+2m(E + Vy), (2.7.3)

and A and C' are undetermined constants so far. Demanding the continuity of the wave
function and its first derivative at @ = a/2 gives the equation that the even eigenfunctions
should satisfy:

k = ptan % , (even). (2.7.4)

Analogously, the equation for the odd eigenfunctions is

k = —pcot % , (odd). (2.7.5)

For illustration, we plot in fig.2.6 the solutions of eqs.(2.7.4) and (2.7.5) for some values of
m, a, and Vj. At fixed m and a, the number of bound states depends on Vj and increases
with Vp, as expected. The deepest bound state (i.e. with the largest negative energy)
is always parity even. For small enough Vj there are no odd bound states and only one
even. Its energy can be computed analytically by expanding eq.(2.7.4). For small V}, the
argument of the tangent is small, tanx ~ x. Taking the square of that equation, we see
that E ~ O(V{) and hence at leading order we get the bound state energy
ma®V
2

FE =~

(2.7.6)

Let us now consider the states with £ > 0. The spectrum is a continuum of waves

and we look for solutions with an incident wave coming from x — —oo. In the different
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Figure 2.6: Solutions of the bound states equations (2.7.4) and (2.7.5) for even and odd
parity, respectively. We plot in red the function k& and in blue ptan(pa/2) (even) and
—pcot(pa/2) (odd). We have taken m = a = 1 and Vj = 100.

regions we have
Gile) = €4 ReioT,
Yr(z) = Bie?* + Bye 7, (2.7.7)
Yui(z) = T,

where ¢ = v/2mE. The coefficients B2, Rand T are to be determined, with the latter two
being identified with the reflection and transmission coefficients of the wave, respectively.
Demanding the continuity of the wave function and its first derivative at « = +a/2 allows
us, after some algebra, to determine these coefficients. In particular, we are interested

here to the transmission coefficient that reads

T(E) = [cos(pa) - %(% + §> sin(pa)] - , (2.7.8)

which is the one-dimensional analogue of a scattering amplitude. Having the luxury of
an explicit expression, the analytic properties of T'(E) in the complex E-plane are easily
determined. The transmission coefficient is analytic over the whole complex plane except
a branch-cut at £ = 0 given by the variable ¢'° and possible poles whenever

cos pa = L (Q + E) sin pa . (2.7.9)
2\p q

When properly normalized, poles in T(E) corresponds to a transmitted wave without

10Note that the possible branch-cut singularities around p = 0 (E = —Vp) eventually cancel between

each other, so that T'(E) is single-valued around p = 0.
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Resonances

Figure 2.7: Analytic structure of the transmission coefficient in the complex E-plane. The
black dots for E < 0 represents the stable bound states of the system, while the red points
are the resonances, that appear as poles in the second Riemann sheet when crossing the

branch-cut.

the corresponding incident wave, that is bound states. Dividing by cos(pa) and using the

1

trigonometric relation tan 2z = 2(cot  — tanz) "+, we can recast eq.(2.7.9) in the form

cot 22— tan 22 = i(g + }—7) , (2.7.10)
2 2 P q
which has two possible set of solutions:
ot 22 =i ot 22 =L, (2.7.11)
2 q 2 p
Let us now write
E = |E|e* (2.7.12)
and take the branch of the square root where
VE = /|E|e"/?. (2.7.13)

In this branch, negative real values of E correspond to ¢ = 7, and thus

q=V2mE — i\/2m|E| = ik, (2.7.14)

with & as in eq.(2.7.3). It is now immediate to see that egs.(2.7.11) turn into the bound
state equations (2.7.4) and (2.7.5), confirming the expectations that simple poles of the
scattering amplitude are associated to stable bound states in the system.
Let us finally discuss unstable resonances. The analogue of the S-matrix is given by
sin? pa ) -1
E E
A7) (1 + %)
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Resonances occur when S is maximal, in this case at

sinpa =0, with £>0, (2.7.16)
corresponding to
w2n?
a\/2m(E + Vo) =nw — E, = 52 Vo >0,. (2.7.17)

for all positive integer values of n for which the last relation in eq(2.7.17) holds. For such
values of E,, the reflection coefficient vanishes and the the wave is totally transmitted.
The transmission coefficient can be written as

. —1
T(E) = — <1%f(E)) : (2.7.18)

cos pa

where f(F) = (¢/p+ p/q) tan pa. Expanding around E,,, we have

d
f(E)=0+ é (E—E,) +0O(FE—-E,)?, cospa=1+0(E—E,)?*, (2.7.19)
En
where J J A
A (2 ¥ ’—’)—p == (2.7.20)
dE |, p q/dE|p Ty
is real and positive. Plugging in T'(E), we finally have, for £ ~ E,,,
1 iT /2
T(E)~ - , 9.7.21
(E) - %%n(E—En) (B — Ey)+il'y/2 ( )

which reproduces the expected Breit-Wigner form of a resonance, with I';, its decay width.
For I'), < Ey, eq.(2.7.21) would indicate that T'(F) has simple poles at

E=E, — %Fn : (2.7.22)

i.e. in the complex plane just below the branch-cut, see fig.2.7. However, a closer inspection
shows that these poles are not associated to the original function T'(E), but to its analytic
continuation below the cut, namely they sit at the second Riemann sheet of the function.
Indeed, the pole equation for T' is given by eq.(2.7.9). Expanding around F,,, where
sin ppa = 0, we get

(E - E,)+ O(E — E,)*. (2.7.23)

1+O(E7En)2:£(g+p>@
Ep

2\p ' ¢/dE
With the choice (2.7.13), a pole in the first Riemann sheet just below the positive real

axis is reached by taking ¢ = 2w, which would give in eq.(2.7.23) ¢ — —¢. In this way,
using eqs.(2.7.20) and (2.7.22), the r.h.s. of eq.(2.7.23) would give —1 instead of +1. The
equation is instead satisfied if we make a clock-wise rotation with ¢ small and negative,
crossing in this way the branch-cut at £ > 0. In conclusion, the complex poles associated
to resonances occur in the second (more in general higher) Riemann sheet of scattering

amplitude functions.
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Chapter 3
Renormalization Theory

Loop amplitudes in quantum field theories are generally divergent. There are at least
three kinds of divergences in QFT: infra-red, collinear and ultra-violet divergences. Here
we only deal with the last kind, the ultra-violet (UV) divergences. They occur when the
momenta of the virtual particles running in the loops go to infinity (hence the name UV).
In order to make sense of these otherwise ill-defined amplitudes, we have to “renormalize”
the theory. Schematically, this process requires two steps. First, we change the theory so
that the amplitudes become finite (regularization) and then we redefine the parameters of
the Lagrangian in order to “hide” the divergences in unphysical quantities. All this process
is called renormalization of the theory. Before discussing the details of this procedure, it
is useful to first classify which amplitudes are potentially divergent.! In this chapter we
will consider a generic QFT, with an arbitrary number of scalar, fermion and gauge fields.

The latter are taken in the unbroken phase, when they are massless.?

3.1 Superficial Degree of Divergence

Consider a generic graph G contributing to a given connected one-particle irreducible (1PT)
amplitude. Our aim will be to compute the superficial degree of divergence of §(G).? ¢ is
defined as the degree of divergence of the graph when all virtual momenta go to infinity at

the same time. Denoting by ¢; all the virtual momenta running and by G(g;) the integrand

!The analysis in this chapter closely follows chapter 12 of ref. [2], with a straightforward generalization

to space-time dimensions different than 4.
2The renormalization of spontaneously broken gauge theories will not be discussed in detail. However,

see the end of section 8.4 for a brief comment.
3This is called D in ref. [2]. We call it &, because we will denote with the symbol D the number of

space-time dimensions in what follows.
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of the L-loop graph, we can define ¢ as
lim A*PG(Ag) o X9 (3.1.1)
A—00

Notice that the rescaling ¢; — A\g; has to be performed also to the loop integrals, and this
explains the M\*” factor in eq. (3.1.1). For instance, a one-loop graph of the form

/ (d4q ! ! (3.1.2)

2m)t (p+q)? — m? ¢* — m?

gives ) .
lim A% - ’ A0 3.1.3
Pl (p+ Aq)2 — m2 \2¢2 — m? X ( )

and hence § = 0. A graph is superficially divergent if 6 > 0 and superficially convergent if

0 < 0. In particular, 6 = 0 corresponds to a logarithmic divergence, while § > 0 gives rise
to a power-like divergence. The superficial degree of divergence of a graph depends clearly
on the structure of the graph, number of internal propagators, vertices, etc. In order to
be as general as possible, let us introduce some notation. We label with ¢ = 1,...,ny the
ny different interactions present in the Lagrangian of the theory, and by d; the number
of derivatives present in each interaction vertex i. We also denote by f = e,~,... the
different fields present in the theory and by n;; the number of fields of type f present in

the interaction vertex i. Any graph G is then characterized by the following quantities:

Iy = number of propagators of type f
E¢ = number of external lines of type f (3.1.4)

N; = number of interaction vertices %

The momentum space propagator behaves as

Ag(p) oc p*> 2 (3.1.5)
where s¢ is the spin of the particle type f. This formula is correct for scalars (sy = 0)
and spin 1/2 fermions (s; = 1/2). For gauge fields with s; = 1, eq. (3.1.5) would give
A¢(p) ~ constant, which is in fact the correct result for a massive vector, but it is not
the correct one, due to gauge invariance, for massless gauge fields, where one has sy = 0.

In the following we will use eq. (3.1.5), with the understanding that s; = 0 for massless

gauge fields. The powers of virtual momenta entering G is easily determined. We have
8(G) =D Ip(2sp =2+ > diNi +4(D I = > Ni+1). (3.1.6)
f i f i

The first, second and third terms in the right-hand side of eq. (3.1.6) represent the propa-

gator, the vertex and the loop contributions, respectively. The loop contribution has been
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written by considering each internal propagator with an independent virtual momentum
and imposing momentum conservation at each vertex. The +1 takes into account the

overall momentum conservation of the external lines. We can rewrite eq. (3.1.6) as

8(G) = I(2s7 +2)+ > Ni(di —4) +4. (3.1.7)
f i

Since each internal (propagator) and external line has to end to a vertex, the internal to
both ends, the external to one end only, the following identities must hold, for any field
type f:
2Ty + Ef =Y Ninij. (3.1.8)
i

We can use eq. (3.1.8) to solve for Iy and plug the result in eq. (3.1.7). In so doing we get

5(G)=4=> Ef(s;+1)=>_ N, {4 —di =Y sy + 1)} . (3.1.9)
f i f

We now show that the expression in square brackets in the second term of the right-hand
side of eq. (3.1.9) coincides with the dimensionality of the coupling constant, call it g;,
multiplying the vertex 4 in the Lagrangian. The latter, indeed, has, by definition, the

schematic form
LD g% Hqs’f”f , (3.1.10)
f

omitting unnecessary details, such as the Lorentz indices and how the derivatives act on

the various fields. Since

[bf] =57+ 1, (3.1.11)
we immediately get
9] =Di=4—di = ni(sp+1). (3.1.12)
f

Using eq. (3.1.12) we finally arrive to the desired expression for the superficial degree of

divergence of a graph:
8(G) =4—=> Ef(sp+1)—>_ NiA;. (3.1.13)
/ i

Remarkably, the key factors determining ¢ are the dimensionality of the coupling constants
A,;. Notice that we are here computing the degree of divergence of single graphs. A given
connected 1PI Green function I'g, is uniquely determined by Ey. In perturbation theory,
g, = >~ G, where the sum runs over all graphs with E¢ external lines. A Green function
I'(Ey) is superficially finite only if all the graphs G entering this sum have 6(G) < 0. We
immediately learn from eq. (3.1.13) that increasing the number of external lines tends to

decrease 6. We classify all QFT’s as follows:
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o If A; >0foralli=1,...,ny, only a finite number of Green functions I'g,, those
for which at most 4 — 37, E¢(sy + 1) > 0, is divergent. We call such theories

renormalizable.

e If at least one A; < 0, an infinite number of Green functions I'(E) is divergent. We

call such theories non-renormalizable.

Among the renormalizable theories, a further distinction is possible: if A; > 0 for all
i =1,...,ny, only a finite number of individual graphs diverges. We call such theories
super-renormalizable. When this distinction occurs, a renormalizable theory is defined as
one in which at least one coupling is dimensionless. The terminology “renormalizable”
and “non-renormalizable” applies also to individual operators or couplings. We denote a
coupling constant as renormalizable if its dimension is positive and non-renormalizable if
it is strictly negative. Similarly, an operator is denoted renormalizable if its dimension is
less or equal to four and non-renormalizable if it is higher than four.

Let us list the possible renormalizable couplings. In a QFT with scalars only, we can
have ¢® and ¢* interactions only. No renormalizable derivative interactions are allowed,
compatibly with Lorentz invariance. In a QFT with scalars and fermions, the only possible
renormalizable interactions are the Yukawa-like of the form ¢ or ¢yysep. Again, no
Lorentz invariant renormalizable derivative interactions are allowed. When gauge fields
are included, we have Yy*A,,, &7”751/}14,“ (qSTaﬂng — QSBuQST)A” and ¢2A#A“. Other
possibly renormalizable interactions like (A,LA”)2 or (nga#(b + qS@#(;ST)A” are forbidden by
gauge invariance.

Multi-loop graphs can be divergent, despite being superficially convergent. This hap-
pens when the divergence arises from a sub-set of all virtual momenta becoming large,
keeping fixed the others. As an example, consider the two two-loop contributions to the
Compton scattering in QED in figure 3.1. In QED we have f = e,y and no index i is
needed, since we have one interaction only, with A = 0 (the theory is renormalizable).

Applying eq. (3.1.13) to these graphs, we get

3
0(Ga) =0(Gr) =4-2x1-2x 5 =~1. (3.1.14)
Both graphs are superficially convergent, but while graph (a) is actually convergent, graph
(b) is divergent. This is seen by keeping fixed the virtual momentum running over the
big external loop while letting the virtual momenta in the small loop go to infinity. In
this situation, the small loop behaves as a sub-graph with effectively E, = 2 and E, = 0,

that has § = 1. Let us see this in some further detail. Neglecting unnecessary factors, the
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(a) (b)

Figure 3.1: Two superficially convergent graphs contributing at two-loop level to the
Compton scattering. Graph (a) is absolutely convergent, graph (b) is divergent, due to

the subintegration associated to the sub-graph enclosed in the dashed red rectangle.

amplitude associated to the graphs (a) and (b) in fig. 3.1 is schematically given by
1 1 1 1 1 1 1

1+¢f1§2f1 + +(1f2£l/1 +¥+ i+ dots +dh ot +
1 1 1 1 1

1
My~ [l i .
P+ @G G +P2+ )2 G i+ d+ deth +
We have denoted by ¢g; and ¢o the virtual momenta of the big and small photon loops,

Ma~/&mf@
(3.1.15)

respectively, by p; and p4 the electron momenta and by ps and ps the photon momenta,
and used momentum conservation to write eq. (3.1.15) in terms of pj, pa and ps. By
rescaling g1 2 — Agi2 in eq. (3.1.15) one immediately recovers 6 = —1 for both graphs.
However, if one keeps ¢ fixed, M, is still finite when integrating in g9, while M, diverges,
with an effective degree of divergence of one, in agreement with the analysis above.

In general, a graph is convergent if § < 0 not only when all the virtual momenta are
taken large, but also when any combination of virtual momenta is taken large, with the
remaining ones kept fixed. When this is the case, we say that the graph is absolutely
convergent.

It is straightforward to generalize to an arbitrary number of space-time dimensions the
computation of the superficial degree of divergence of a graph. Equation (3.1.6) is still

valid provided we replace the factor of 4 with D. In so doing we get
D D
6(9) =D — %:Ef(é’f —1+5) - ZNi(D —d; — Ef:nif(sf —1+ 5)) . (3.1.16)
K3

In D space-time dimensions

[¢f] :Sf—1+§ (3.1.17)
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and consequently the interactions (3.1.10) have dimensions

D
[Qi]ZAi:D_di_;nif(Sf_1+§)~ (3.1.18)

and eq. (3.1.13) becomes
D
3(9) =D—§J;Ef(sf—1+5) - DN (3.1.19)

The renormalizability of a theory in D dimensions is still characterized by the dimensions
of their couplings A;. If all A; > 0 the theory is renormalizable, otherwise it is non-
renormalizable. We notice that when D > 4 most four-dimensional renormalizable theories
turn into non-renormalizable ones, because the dimension of the couplings A; decreases
when D increases. For instance, in D = 5 dimensions, the gauge couplings constants have
dimension A = —1/2. All gauge theories are non-renormalizable for D > 4. The only
renormalizable interaction up to D = 6 is the trilinear ¢3 vertex. For D > 6 there are no
renormalizable vertices. On the contrary, when D < 4, non-renormalizable interactions in
D = 4 turn into renormalizable ones. For instance, ¢% in D = 3. Gauge theories become

super-renormalizable for D < 4.

3.2 Cancellation of divergences and Local Counterterms

Any graph G with E; external lines is a function of the momenta of the external particles.
If G is divergent, one might naively argue that this function is ill-defined and does not
make sense. On the contrary, there is a way to disentangle the divergent part from the
rest, which remains finite and calculable. In order to understand how divergences can be
disentangled, it is enough to consider one-dimensional divergent integrals, toy versions of
the more involved integrals appearing in real amplitudes. Take for instance

- [ 20

The function I(q) is divergent, with 6 = 0. Differentiating with respect to the “external

momentum” ¢ gives a finite integral, with § = —1:
< dk 1
I’q:f/ — = 3.2.2
U Sy (322

Integrating back, we get
I(q) = —logqg+c¢ (3.2.3)

41t is understood here and in the following that these integrals have been “regularized” (i.e. made

finite). In this way derivatives commute with the integration and can act directly on the integrand.
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Evidently, from eq. (3.2.3), the divergence of I(q) is all encoded in the constant ¢, while

the log ¢ term is finite and calculable. Consider another example, with 6 = 1:

I(q) = /OOO qk%. (3.2.4)

We now need to differentiate twice with respect to ¢ to get a finite result. Integrating
back twice gives

I(q) =qlogg+aq+b. (3.2.5)

As before all the divergences are encoded in the two coefficients a and b, while the non-
polynomial glog ¢ term is perfectly finite. The generalization of these results is obvious.
A graph with 6 > 0 can be made convergent by taking § + 1 derivatives with respect to
the external momenta and all the divergences are encoded in the coefficients of a polyno-
mial of degree § in the external momenta. Notice that in general the graph will be only
superficially, and not absolutely, convergent. We will ignore for the moment this problem,
postponing its solution for later. Terms polynomial in momenta can be written, in configu-
ration space, as derivatives of a local Lagrangian density. In other words, divergences only
affect terms that can be written as local interactions® in a Lagrangian. The divergences of
a graph with degree of divergence ¢ can be reabsorbed by adding to the Lagrangian § + 1

vertices with n;y = Ey, of the form
c Kl ST 3.2.6
Sag][op +md][ey +.. +asd’ [[ o) (3.2.6)
f f f

If the theory already contains such interactions, the divergences simply amount to a re-
definitions of the corresponding couplings, or to a redefinition of the field themselves for
2-point functions. If they were not present, they are induced by quantum effects. In a
non-renormalizable theory, where Green functions eventually diverge for any Ey, cancel-
lation of the divergences imposes to us to add to the Lagrangian all possible terms of the
form (3.2.6). Of course, not every possible term is generated, but only those compatible
with the possible global symmetries of the Lagrangian. In a renormalizable theory, the
number of terms in eq. (3.2.6) is finite. Moreover, the dimension of the couplings a; in

eq. (3.2.6) induced by the divergences is

[an] =4—Y Ef(s;+1)—n, n=0,...,0. (3.2.7)
!

For a renormalizable theory, we have § <4 — 3" Ef(sy + 1) and hence

[ap] >6—n>0, n=0,...,0. (3.2.8)

By interactions we here mean also terms quadratic in the fields.
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The couplings induced by quantum effects in a renormalizable theory are themselves renor-
malizable. These theories are self-consistent at the quantum level, provided we write down
all the couplings with A; > 0 allowed by symmetries. In renormalizable theories the finite
number of local counter-terms a,, is enough to remove all divergences and make the theory
finite. Since these terms were already present in the original Lagrangian, we see that all

the divergences can be buried into a redefinition of the interactions, masses and fields.

3.3 Regularization and Renormalization: QED Case

Dealing with divergent Green functions can lead to subtleties and misleading results. For
this reason it is highly desirable to modify the original theory so that divergences no longer
appear. This process is called regularization. There are various ways to do that and we
will not list all of them. The regularization process should be done in a way such that the
modified Lagrangian has all the symmetries present in the original one.5

We only mention two relevant types of regularization, that will be used throughout
the course: cut-off regularization and dimensional regularization. The first is certainly
the simplest and most physical way of regularizing a theory. It amounts of truncating
the integration over the virtual momenta, in principle running up to infinity, to a limiting
value A. In this way all UV divergences are clearly removed and Green functions become
A-dependent. divergences will now appear as power-like or logarithmic terms in A in an
expansion for A — oco. The physical and very reasonable assumption underlying cut-
off regularization is that at short distances L ~ 1/A our theory is no longer valid, and
we parametrize our ignorance by cutting the momenta at that scale. The regularized
theory differs from the original one only in the UV, while their IR behaviours are similar,
a welcome feature. Cut-off regularization has however a serious drawback: it does not
respect gauge invariance.

Dimensional regularization (DR) is a bit more exotic: it amounts in changing the
space-time dimensions from 4 to 4 — ¢, with € < 1. We make sense of the notion of a non-
integer number of dimensions by analytic continuation. In the dimensionally regulated
Lagrangian UV divergences no longer appear. In an expansion for small e they are given
by poles in 1/€"”, with n > 1. Dimensional regularization respects gauge invariance and
is practically one of the simplest regulators to use. Most of the computations in the

literature, mainly when dealing with gauge theories, are performed using DR. In addition,

6As we will see, there are symmetries that are not respected by any regulator. When this happens,
the symmetry is called anomalous, since it is no longer there at the quantum level. Anomalies will be the

subject of chapter 9.
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DR has the great virtue of respecting dimensional analysis and is hence the most suitable
regularization in the context of effective field theories. More on this point in section 7.7.
Dimensional regularization has a (minor) drawback: it modifies the theory to all scales,
not only in the UV, and for this reason it has to be used with some care, when mass
scales are present. More on this point in section 5.6. Further technical details on how
to use DR are discussed in subsection 3.4. Of course, introducing a regulator is not the
whole story to deal with divergences, since divergences strike back when we recover the
original theory! However, in the regularized theory we can meaningfully manipulate the
Green functions, now finite. As we have seen in section 3.2, divergences only appear in
local terms in Green functions and can be removed by redefining the fields, couplings and
masses of the original Lagrangian. This process is called renormalization. It is clear that
such a redefinition implies that the masses and coupling constants appearing in the initial
Largangian (sometimes called bare parameters) cannot be the physical ones. We have
seen that the Kéllen-Lehmann representation for the exact propagators in an interacting
theory provides us with a definition of physical mass and properly normalized quantum
field. There is not a generic and unique procedure for defining the coupling constants,
that depends on the specific theory we are dealing with. As we will see in great detail
in the rest of these lectures, coupling constants are commonly defined by demanding that
the 1PI Green functions associated to them have a specific value (determined from the
experiment) in a given point in momentum space.

Let us consider as an example the renormalization of QED, namely one charged massive
fermion (electron) interacting with a photon. First of all, let us use eq. (3.1.13) to classify
the possible divergent Green functions. We have only one dimensionless coupling constant
and f =e, 7, so

§=4- gEe - E,. (3.3.1)
The divergent Green functions contain graphs with 6 > 0. Given eq. (3.3.1), they are
(E.=0,FE,=0,1,2,3,4), (E. =1, E,=0,1,2), (E. =2, E, =0,1). Lorentz invariance
forbids Green functions with an odd number of electron lines, while charge conjugation
implies that (E. = 0, E, = 1,3) vanishes. We neglect the quartically divergent vacuum
amplitude (Ey = E, = 0) since it is irrelevant in a QFT where gravity is not dynamical.
In total, we are left with four cases: (F. =0, E, =2,4), (E. =2, £, =0,1).

E.=2,E, =1 We denote this Green function by sz(p7 p’), where a, b are spinor indices
and p and p’ are the momenta of the electron lines. It corresponds to the basic QED
interaction given by minimal coupling. Since 6(I",) = 0, the divergence can only appear in

a constant term, independent of p and p’. Given the Lorentz structure of I',,, we necessarily
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have (omitting spinor indices from now on)
iCu(p,p') = iely! +il)"(p,p') (3.3.2)

where L is a divergent constant, possibly reabsorbed in the definition of the electric charge.

E. =2,E, =0 We denote this Green function by X(p). It corresponds to the electron
propagator. We have §(X) = 1, so divergences proportional to a constant and to a term

linear in momentum can appear. The Lorentz structure implies
iX(p) = iA + iByf + ixT™ite(p) | (3.3.3)

where A and B are divergent constants. Gauge invariance imposes the identity B = L to

all orders in perturbation theory.

Ec. =0,E, =2 We denote this Green function by II,,(¢). It corresponds to the photon
propagator. We have §(IT) = 2, so divergences up to terms quadratic in ¢ might appear.

Lorentz invariance forbids terms linear in ¢, so we have
M (q) = iC1n0 + iC2q* Ny + iCs3quq, + AT (q) . (3.3.4)

Dimensional arguments only would imply the appearance of three independent divergent

constants. However, gauge invariance implies the following identity:”
¢ (q) = ¢"Mw(q) = 0. (3.3.5)
Using eq. (3.3.5) we have

0120, CQZ—C?,EC,

/inite _ 2 1/inite (2 (3.3.6)
(@) = (wd” — quaw) (¢%)

and hence
i (q) = (Muwd® = quay) (iC + i1 (¢%)) . (3.3.7)

We notice how symmetries (gauge invariance) are crucial to establish relations among
divergences and to possibly lower the degree of divergence of a Green function from its

power counting value (in our case, from § = 2 to 6 = 0).

"The identity (3.3.5) is proved in section 4.4.3. Its non-abelian generalization is proved in section 6.3.
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Ec =0,E, =4 We denote this Green function by M, ,(p;), with p; (i = 1,2,3,4) the
momenta of the external photons. It corresponds to the 2 — 2 photon scattering. We
have 6(M) = 0, implying a possible divergence in the constant factor. Lorentz invariance

and Bose symmetry of the external legs fix the Green function to be

M;Wpo(pi) = K(n;wnpo + NppMve + 77;w77up) + M;{izge(pi) (3.3.8)

with K the divergent constant. Once again, gauge invariance imposes other constraints

and requires that®

P Myuvpo (pi) = D5 Mo (0i) = D5 Myupe (pi) = D5 Myuwps(pi) = 0. (3.3.9)

The above relation implies that K = 0 and that a relation similar to eq. (3.3.9) applies
with M — M /[inite

Summarizing, taking gauge invariance into account, three Green functions diverge in
QED, the photon and electron propagators and the interaction vertex, with a total of three
independent divergences, encoded in the constants L, A and C' in egs. (3.3.2), (3.3.3), and
(3.3.7).

Let us now see how these divergences can be cancelled, to all orders in perturbation
theory, by suitable local counter-terms. The QED Lagrangian reads

1 v - .
Lorp = —ZFB,WFg + ¢p(iPp(AB) — mp)Yp. (3.3.10)

Here Dp,(Ap) = 0, — iepAp,, is the covariant derivative and the subscript B reminds
us that the fields, mass and coupling constant are the bare ones. The physical fields are
defined as

v =22, Ap,=\Z34,, (3.3.11)
We then have

1 _ _ .
Loep = —ZZ:;FWFW + Zohip — mp Zoh) + epZon/ Zsp Ayt (3.3.12)
and define renormalized mass and electric charge as

epZoN/Z3 = Zie, mply=m+dm. (3.3.13)

8Identities such as eq. (3.3.9) are shown to hold in section 4.4.2.
°It is easy to understand why gauge invariance forbids the presence of the factor K in eq.(3.3.8) or

C4 in eq.(3.3.4). If present, these divergences would require a counter-term in the Lagrangian of the form

(A AH )2 or A, A" respectively, which obviously does not respect gauge invariance.
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Figure 3.2: Feynman rules for the QED counter-terms defined in eq. (3.3.14).

In terms of the physical fields and parameters, the QED Lagrangian (3.3.10) can be rewrit-

ten as

Lapp = — {Fu ™ + 5(iD(A) — m)y
1

— Z(Z3 — 1)F F"™ + (Zy — V)i dp — dmapnp + e(Z1 — 1) Ayt

(3.3.14)

The first line in eq. (3.3.14) is the QED Lagrangian written now in terms of the physi-
cal field and parameters, and the second line contains the counter-terms. The latter are
unphysical local terms which are there just to cancel the divergences appearing in the
loop diagrams. They also include terms quadratic in the fields. However, contrary to
the canonical kinetic terms in the first line, they should be considered as new effective
vertices. This is clear by noticing that for e = 0 (free theory), no divergences occur and all
counter-terms vanish. For e < 1, all the counter-terms can be Taylor expanded and are
given by positive powers of e. As such, they should be considered as interaction terms. In
evaluating Feynman diagrams, we should take into account the new contributions given
by the counter-terms. The Feynman rules associated to these interactions is straightfor-
wardly derived and reported in fig. 3.2. The four counter-terms 7, Z5, Z3 and dm in the

Lagrangian (3.3.14) are not all independent. In particular, gauge invariance requires
Zy =2y, (3.3.15)

which is equivalent to the condition B = L mentioned before. This will be proved in section
4.4.3. Order by order in perturbation theory, the values of the counter-terms Z; = Zs,
Z3 and dm is suitably chosen to cancel the divergences appearing in L = B, C' and A,

respectively. For instance, at one-loop level, we have L = 1 —|—€2L(1) +...,C= 620(1) +...
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A= eQA(l) +.... Adding the counter-term contributions, the tree-level + one-loop Green

functions read

Lu(p,p) = ey (1+ eQL(l) +Z1—1)+ Fﬁi”ite(p,p’) ,
S(p) = (14 €Ly + Zo — L — m + € Agyy — dm + S (p) | (3.3.16)
W (q) = (uwd® — quaw) (€2Cray — Zs + 1+ T (g?)) .

from which we get the values of the counter-terms up to order e?:
Zy—1=—eLyy, Zy=121, Zz=1+¢eCyy, om=e*Agy). (3.3.17)

It is now time to come back to a problem we encountered in section 3.2, related to the fact
that in general taking derivatives with respect to external momentum does not necessarily
make the graph absolutely convergent. An example of a graph of this sort is given by
the two-loop graph (b) in fig. 3.1. If we take derivatives with respect to the external
momenta of M, in eq. (3.1.15), say p1 or p4, we see that when the derivative acts on the
go-independent propagators we do not improve the convergence of the go-loop integration,
that in fact remains divergent. This problem is easily solved by noticing that, together
with the graph (b) of fig. 3.1, we should also consider the graph in which the one-loop
enclosed in the red rectangle is replaced by the fermion propagator counter-term. The
divergence in the small loop is cancelled when summing the two diagrams. This example
makes clear that counter-terms have to be considered in evaluating Feynman diagrams
like ordinary interaction vertices and should be inserted in graphs consistently to the
order in perturbation theory one is considering. In this way divergences are removed even
in the more tricky situation of divergent sub-graphs that share a common line, the so
called overlapping divergences. An example of this sort in QED is given by the two-loop
correction to the photon propagator shown in fig. 3.3. In order to remove all divergences
from this graph, one has to consider the one-loop graphs where one vertex is replaced by
a counter-term, up to order 2. Then a remaining local divergence is finally cancelled by
considering the photon propagator counter-term at order e?.

The considerations made here apply of course to any local QFT and are not restricted
to the QED case, that we have taken as an example. The proof that all divergences are
cancelled by the counter-terms is not trivial at all and is known as the BPHZ theorem,
from the authors Bogoliubov, Parasiuk, Hepp and Zimmermann that at different stages
have proved this statement.

Renormalizability puts stringent constraints on the possible interactions appearing
in the Lagrangian. However, upon including all possible interactions, all theories become

renormalizable, in the sense that we can get rid of all possible infinities. The key difference
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Figure 3.3: Two-loop graph contributing to the photon propagator and its additional
graphs including counter-terms canceling all the divergences. The e? and e* factors denote

the order in which the counter-terms Zy and Zs enter the various graphs.

between renormalizable and non-renormalizable theories is in their predictivity. There is
nothing wrong with non-renormalizable theories. If we have a coupling constant g with
scaling dimension A < 0, we can always write it as

1

g

In scattering amplitudes, by dimensional analysis, the coupling g will always appear as
(E/M)Al, where E is the energy scale of the process under consideration. For E < M,
the coupling g is irrelevant (in fact, non-renormalizable couplings are also called irrelevant
couplings, see section 5.1). Despite the fact that the theory is formally non-renormalizable
and requires an infinite number of counter-terms, in practice at sufficiently low energies
most of these interactions are negligible and make the non-renormalizable theory useful
and predictive enough. A relevant example of non-renormalizable theory is gravity. Seen
as a QFT, gravity is among the most non-renormalizable theories. The mass scale entering
the non-renormalizable couplings like in eq. (3.3.18) is Mp; ~ 10'® GeV. We do not know
which is the quantum theory of gravity (although we have some candidates, most notably
string theory). Unfortunately (or fortunately, depending on the point of view), in all
practical cases, Mp; is so large that gravity effects are always negligible in high energy
physics. Non-renormalizable theories might also appear from renormalizable ones when
some massive fields are integrated out. A relevant case is the four-fermion electroweak
interaction, approximation of the Standard Model when one integrates out the W and Z
bosons. At sufficiently low energies £ < My, Mz, the Fermi theory provides an excellent
description of the physics.

In the modern approach to QFT we consider all theories except, maybe, the possible
ultimate theory of nature (string theory?) as effective field theories, namely theories valid

up to some energy scales. More on effective field theories in chapter 7.
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3.4 Dimensional Regularization

Dimensional regularization can be formally introduced via a set of axioms, as explained,
e.g., in ref. [9]. Here we briefly discuss its practical aspects, starting from the simple

example of the (Euclidean) integral (tadpole of ¢* theory)

_ d’p 1 _ a2l —d/2)

(where m is the mass of the scalar) which converges in the IR as long as m? # 0 and
in the UV only for d < 2. In this case, the r.h.s. is easily calculated by recalling that
1/A = fooodt e ' which turns Ty into a Gaussian integral in d-dimensions that, once
calculated, allows to express Ty in terms of I'(z) = fooodt t*~le~!, which converges for
x > 0. Note that, while in the intermediate steps of the calculation d has been treated as
an integer number, the r.h.s. of eq. (3.4.1) is well defined (via the analytic continuation
of the T' function'®) for any complex d which is not an even integer. This simple obser-
vation constitutes, in practice, a reqularization of the integral T,; because it now assumes
a finite value (given by the r.h.s. of eq. (3.4.1)) for (almost) all d, analogously to what
happens when the regularization is done by other techniques, such as the introduction of
a large-momentum cutoff A. However, a reminder of the divergent nature of the original
integral is in the fact that the r.h.s. itself diverges if d approaches even integer values > 2.
An important and general property of this regularization method is that the regularized

integral (3.4.1) in the massless case m — 0 vanishes for d > 2, leading to the relation

d
/(;TZ))d]% =0. (3.4.2)
This is due to the fact that, because of the absence of a mass scale, the IR and UV
behaviors of the original integral are the same and therefore there is no value of d for which
the integral converges in the absence of suitable cutoffs. In general, DR sets consistently to
0 all the integrals of this kind, i.e., those which are homogeneous functions of the momenta
and therefore lack a mass scale.

As stated above, dimensionally regularized integrals are characterized by dimensional
poles. In order to understand their meaning consider Ty in d = 4 with a cutoff regu-
larization: power counting (or a direct analysis) suggests that T4(A) (A > m) = aA? +
apm?In(A/m) + finite, where A is the cutoff. In DR, instead, T, shows (among other

terms) a dimensional pole ~ 1/e for d = 4 — ¢ — 4. Interestingly enough, on the basis of

10As we discuss below, the analytic continuation of integrals such as eq. (3.4.1) can be done without

invoking I' functions and their properties.
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the approach discussed further below one can show that the residue at this pole is agm?,

i.e., the coefficient of In(A/m) in T, iA). In this sense, dimensional poles appear in an inte-
gral in DR if and only if the same integral regularized with a cutoff shows a logarithmic
term ~ In(A/m), either as a leading or subleading dependence on A > m. This is the
reason why T, has also a dimensional pole in d = 2: in fact, one can easily see that TQ(A)
has a leading dependence on In(A/m), the coefficient of which is given by the residue of Ty
for d — 2. This is also the reason why an integral such as the one in eq. (3.4.2) vanishes:
if calculated with a cutoff one has [ dip1 /p? o A%2 which, for generic dimensionality
d, shows no logarithmic dependence on A and therefore the corresponding dimensionally
regularized integral has no poles. The absence of poles (plus additional requirements of
boundedness) is heuristically the reason why the corresponding dimensionally regularized
integral can be taken vanishing.

Dimensional reqularization without T' functions—Here we discuss a practical way of
determining the leading dimensional pole of a generic loop integral without expressing it
in terms of the I' functions which are typically associated with DR (see, e.g., ref. [1]). In
order to be concrete, consider again Ty in eq. (3.4.1) which can be expressed in terms of
the I function, as briefly discussed above. Being I'(x) an analytic function with isolated
simple poles for x = 0, —1, —2, ..., one concludes that Ty develops a dimensional pole
~ 2m?/(4m)? x 1/e for € = 4 — d — 0. This conclusion can actually be drawn without
invoking the properties of I'(x), as we explain below. Additional details can be found in
ref. [9].

The main point of DR is to assign a mathematical meaning to integrals performed in

a non-integer (or even complex) number of dimensions d, i.e., to quantities like

I = / dipf (7)), (3.4.3)

where f is a sufficiently smooth function. For integer d = 1, 2, ..., the integral can be

done in spherical coordinates and therefore

I; = Qd/o dp p*~' £ (p), (3.4.4)
where 4/
2T
4= T(d/2) (3.4.5)

is the solid angle in d-dimensions.!’ The r.h.s. of eq. (3.4.4) is actually well-defined also

for complex values of d € C, as long as the remaining integral converges. In fact, Qg in

1104 can be determined by calculating I, in eq. (3.4.3) with f(|]) = exp{— "%, p?} both in cartesian
and in spherical coordinates (see eq. (3.4.4)), which give Iy = 7¥? and I = QqI'(d/2)/2, respectively, and
therefore eq. (3.4.5).
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eq. (3.4.5) is also well-defined for d € C, due to the properties of the I" function. Upon

increasing the value of Re d, however, the “radial” integral

Ry= /O Zdp () (3.4.6)

might not converge for p — co. In order to be concrete assume, for example, that
flp—=o0)=a_1p ' +asp?+... with finite f(0). (3.4.7)

Accordingly, Ry converges within the strip S7 in the complex plane with 0 < Re d < 1.
For larger values of Re d, one can simply define Ry via its analytic continuation, which
can be determined by observing that the following identity

A o] a_
Ry :/0 dp p*~ £ (p) +/A dpp* [f(p) = acp™'] - S AT (3.4.8)

holds for arbitrary A > 0 and d € S, the latter being a necessary condition for the last

d—1 1

integral to converge. In fact, the last term above is nothing but fjo dpp®~ xa_1p~", sub-

tracted from the preceding term. The original integration [ has been split as fOA + [

L of its expansion

because, otherwise, the subtraction from f(p) of the leading term a_;p~
for large p would have spoiled the convergence of the integral for p — 0. Now we note that
the first integral on the r.h.s. of eq. (3.4.8) is finite as long as Re d > 0, while the integrand
of the second integral behaves as ~ a_sp~2 for large p and therefore it converges as long as
d is within the strip So with 0 < Re d < 2, which extends up to Re d = 2. The third term,
instead, is characterized by an isolated pole (on the real axis) for d = 1, with a residue
—a_1 independent of the value of A. Overall, Ry written as in eq. (3.4.8) converges within
the strip Sy, which is larger than the original one S;. As a consequence of this extension
a dimensional pole at d = 1 with residue —a_; emerges within S5, at the boundary of
S1. The procedure outlined above can be repeated: in fact, the domain of convergence of
the integral of f(p) —a_1p~" in eq. (3.4.8) can be further extended by subtracting (and
adding) the leading behavior of the integrand for p — oo, i.e., a_sp~2. As a result, within
the strip Sz, Rq in eq. (3.4.8) can also be written as

a_

A oo
— _ - — a—1 — _
Rq = / dp p* 1f(10)+/ dpp™ ' [f(p) —aip™! —aop P - AT - AT,
0 A d—1 d—2

(3.4.9)

which actually converges within the larger strip S35 extending up to Re d = 3. As in the
previous case, this further extension leaves behind a dimensional pole at d = 2, with a
residue —a_o that is independent of A. Proceeding further one can analytically continue

Ry in eq. (3.4.6) to arbitrarily large values of Re d, leaving behind a set of poles for d equal
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to the opposite powers of p which appear in the large-p expansion of f(p) (see eq. (3.4.7));
the residue at each of these poles is the opposite of the corresponding coefficient of this
expansion. Given that I; = Q4Rg (compare eqs. (3.4.4) and (3.4.6)), the same applies to
14, the residues of which carry the additional factor £2;. These are actually the dimensional
poles that are encoded in the I" functions in terms of which, very often, one is able to cast

the integral of the form (3.4.3) which are encountered in field-theoretical calculations.

As a simple application of the procedure discussed above, consider the integral in

eq. (3.4.1): by expanding the integrand for p? > m?, one has

1 1 m?  m*
—_— = —— 4+ —+0((p " 3.4.10
P2 tm2  p? p4+pb+ @) ( )
and therefore the integral has dimensional poles for d = 2, 4, 6, ..., with residues
—0o/(27)2, m2Qy/(2m)*, —m*Qg/(27)5, .... Taking into account the expression of Qg4

in eq. (3.4.5), one readily verifies that these are the same poles as those of the I" function
on the r.hus. of eq. (3.4.1).

As a less trivial example, consider the integral that one encounters in the calcula-
tion of the one-loop vacuum polarization in QED. After having introduced the Feynman

parameterization and done the Wick’s rotation, it takes the form

dip Ap*+ B Ap +B A B -—24A
—— ith —————=—-+—"—40(p%. 3.4.11
/(277)(1 (P2 + A)? wi PP+ A2 p? + ol +0(p™) ( )
According to the discussion above, the dimensional pole for d = 4 — € is simply given by
1 Qy
— X —— x (-1)(B - 24A 4.12
- oyt % 1 ) (3:4.12)

without the need of invoking I' functions. Similarly, when calculating the renormalization
of the QED vertex at one loop, one encounters the integral

/ d'k =i . f+k+m o PEtm

(2m)* k2 R (q+ k)% — m2 (p+ k)2 — m2

In order to determine the dimensional pole for d — 4, we need to know the coefficient of

(3.4.13)

the term ~ 1/k* in the large-k expansion of the integrand, which, in this case, coincides
with its leading term:

—i_ KK K

ﬁ%ﬂﬁ%ﬂﬁ'yu F (k2)3 (3.4.14)
where we used the algebra of v matrices and the fact that k,k, = (k*/4)n,.,. After a
Wick’s rotation, the dimensional pole for € = 4 —d — 0 of the integral (3.4.13) is therefore
given by

o 11

L 1
7 X ’L’)/M X _—6 X W X (—1) = —’YHEW (3415)
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Chapter 4

External Fields and (GGenerating

Functionals

It is often useful to study the properties of QFT’s coupled with external sources. Consider
a set of classical sources J,.(x) coupled to some fields ¢,.(x). The fields ¢, can be scalars,
fermions or vectors, and will correspondingly couple to scalar, fermion or vector currents
Jr. In general ¢, can also be composite fields, although we take them elementary for

simplicity. We can define the J-dependent vacuum functional
0[0); = Z[J] = /Dqﬁr oiS($)+i [ d*aTr(2)dr(z) (4.0.1)

All correlation functions of the theory will be given by functional derivatives of Z[J] with

respect to J,., evaluated at J, = 0:

1 5" Z[J]

Z6Jp (1) ... 0y, ()

= (O [ 61, (21) .. &y, ()| 0) (4.0.2)

Jr=0
The functional Z[J] is the generator of all amplitudes, connected and disconnected. We
can define a similar functional generating connected amplitudes only, W[J]. This is simply
given by

WIJ] = —ilog Z[J] . (4.0.3)

Connected Green functions are defined similarly to eq.(4.0.2):

5 WL o |
5 (@) 0 (@) Ly OT o, (1) - b (@n)|[[0) . (400
For instance, for a single field ¢, we have
WL _ 1 0Z B
5J () |, = ’>Z—5J(I) e (0l¢()[0) , (4.0.5)
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and hence

(0] (2)|0)c = (0]¢(2)]0) - (4.0.6)
Taking one further functional derivative gives
FW1J] (i) (1 8z 1 6z 8z )
8J(2)0J(y) | ;- o Z6J(x)0J(y)  Z20J(x)0J(y)) |,_0 (4.0.7)

=i ((0IT16()8(w)0) ~ ©0l9)I0) (06(x)I0))
from which we find the connected time-ordered two-point function
(0T [p(x)d(y)]|0)e = (OIT[p(x)(y)]|0) — (0l¢(x)|0) (O[6(y)]0) - (4.0.8)

Continuing in this way iteratively allows us to find all connected higher point functions.

4.1 The 1PI Effective Action

We can proceed further and define a functional T'[®] that generates 1-particle irreducible
amplitudes only.! The source ®(z) is defined as (omitting for simplicity the index r from

now on)
oW J]
0J(x)

B(z) = (4.1.1)

and is then a (in general very complicated) functional of the external sources J.2 The 1PI

generator is defined as

r[®] = W[J] - /d4x<I>(x)J(x) . (4.1.2)

It is the Legendre transform of W[.J], very much like the Lagrangian is the Legendre trans-
form of the Hamiltonian. In eq. (4.1.2) it is understood that we have inverted eq. (4.1.1)
so that J = J[®]. We have

or oW 57 (y) -
6P (x) /d@(m N (I)(y)) 5®(z) J(x) = —J(z). (4.1.3)

When J = 0, eq. (4.1.3) can be seen as an equation of motion of ® with action I'. T is in

fact the quantum generalization of the action and is also denoted the quantum effective
action. It is an effective action in the sense that all loop amplitudes can be calculated as

sum of connected tree diagrams obtained using I'[®] instead of S[#].> Thus, all loop effects

'Recall that a 1PI amplitude is defined as the amplitude whose defining graphs cannot be divided in
two by cutting one internal line.

*The analysis in this section closely follows section 16.1 of ref. [2].

3Tt is important to keep in mind that I, contrary to S, is not in general a local functional of the fields:

T[®] # [d*z Legs(B()), see eq.(4.1.11).
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are encoded in I'[®]. In order to see this, let us define the functional generator Wr[J] as

the generator of connected amplitudes obtained starting from an action given by I':

eWrldgl — / D exp (g(r[qspr / dia J(m)¢(x)>). (4.1.4)

In (4.1.4) we have introduced a parameter g, that plays the role of /i and is a loop-counting

parameter. For connected graphs the number of loops L is given by
L=1-V+1, (4.1.5)

where [ is the total number of propagators and V is the total number of vertices in the
graph. Indeed, this coincides with the number of independent virtual momenta entering
the graph, the 4+1 coming from the conservation of the overall external momenta. We
have already used this relation in eq. (3.1.6). We see from eq. (4.1.4) that the propagator
of each field is proportional to g (inverse of the action), while any vertex goes like 1/g.
Thus the L-loop contribution to Wr, WIEL), goes like g/~ = ¢gF~1. In a loop expansion

we can write

WrlJ, g] = f: g Wi, (4.1.6)
L=0

Consider now in eq. (4.1.4) the tree-level contribution only, which can be selected by taking

the limit ¢ — 0. By using a saddle point approximation we have

lim ¢?Wrlhal — eéWF(O)[J] = exp (; (F[cb] + /d4x J(x)fb(x))) ’ (4.1.7)

g—0

where ®(z) extremizes the exponential, namely

or
— | +J@)=0. (4.1.8)
dp(x) p=D
Comparing eq. (4.1.2) with eq. (4.1.7) and eq. (4.1.3) with (4.1.8), we conclude that
w0l = wlJ]. (4.1.9)
Stated differently, we can write
iW[J] = / D L@+ To (4.1.10)
Connected

tree graphs

Since any connected graph is a tree with 1PI vertices, we conclude that I'(¢) generates all

1PI amplitudes:
1
Do)=Y = [dz... [d'%, T (z1,... 2,)0(x1) ... d(zn). (4.1.11)
;n!/ 1 / 1 1
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The quantum effective action I' can also be computed directly starting from the action S,

without passing through W[J]. One has

(@) Do £iS(do+¢) , (4.1.12)
1P

where 1PI means that we should only consider 1PI graphs in evaluating the path integral
and ¢g is an arbitrary field configuration. This formula is a direct consequence of the fact
that I is the quantum version of S. Given a classical configuration ¢g, the quantum action
of ¢p is given by integrating out quantum fluctuations ¢ around the classical configuration
¢o. We invite the reader to check the validity (and the usefulness) of eq. (4.1.12) by
formally computing I'(¢) at one-loop level using eq. (4.1.12) and directly from the definition
(4.1.2).

4.2 The Coleman-Weinberg Effective Potential

The effective potential Vs is defined as the quantum action I', evaluated for constant
field configurations ¢g:*
(¢ = ¢o) = —VaVess(do), (4.2.1)

where Vj is the volume of space-time, coming from [ d*z. It is the quantum analogue of
the classical potential Vg defined as S(¢ = ¢o) = —ViVo(do). Let us explicitly compute
Vesy at one-loop level for the simple scalar theory

AB

Zaf}g. (4.2.2)

£(6) = 5(0,08)(0"0p) — 3mio% -

First of all, we express the Lagrangian in terms of the physical parameters and fields:

op=VZp, miZ=m?+0m*, ApZ®= I\, (4.2.3)
so that ) ) \
£(8) = 5(0,0)(0"0) — 5m°6* — 26" + Lo (9), (42.49)
where the counter-term Lagrangian reads
1 1 A
Ler(9) = 5(Z —1)(0,)(0"¢) — §5m2¢2 iz o' (4.2.5)

We compute the effective potential starting from eq. (4.1.12) with ¢y constant. We get

A A
L(6o+6) =~ ymPdh — o+ 6(-m*d — S60)
1 o \ \ A\ (4.2.6)
+ 5(0u0)(9"6) = 5% (m* + 560) — £600° — 16" + Lo (90 +0).

4The analysis in this section closely follows section 16.2 of ref. [2].
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We have ordered the terms according to the powers of quantum fluctuations ¢. The first
three terms in the first row of eq. (4.2.6) reproduce the initial tree-level potential. Terms
cubic or quartic in ¢ cannot contribute at one-loop level and start contributing at two-
loops. The term linear in ¢ can be neglected altogether: it can only enter one-particle
reducible graphs and never 1PI amplitudes. The counter-terms are non-vanishing only at
loop order, so at one-loop level we should only keep L. (¢g). The relevant terms of the

Lagrangian (4.2.6) are then

Lo+ 0) D~y — 6k + L(Ou)(00) — Ju (000 + Lerldn),  (427)

where we have defined the ¢g-dependent mass

W2(00) = m* + 563 (1.2.38)
Up to one-loop level we have
Verr(¢o) = Vo(do) + Vi(do) + Ver.(do) , (4.2.9)
with
Ve (do) = %6m2¢8 + %(ZA — 1) (4.2.10)
and

o—iVaVi(¢0) :/qu &I (%(aﬂqs)(aw)f%p?(%w)
(4.2.11)

—Ndet™3 (D + M2(¢O)) _ Ne*%Trlog (D+,u2(¢0)) .

The determinant or the trace of the differential operator 0+ 1%(¢g) is easily computed in

momentum space, where the operator is diagonal. We have

log (0 4+ 122(60) ) (p. @) = 8(p — @) log (— p* + 1*(60)) (42.12)

and hence )
—iVaVi(¢o) = —50(0) / d'plog (—p* + 12(0)) - (4.2.13)

The 6 (0) accounts for the space-time volume, 6 (0) — V4/(27)*. Wick rotating py =
ipg, we finally get

4
Vi(o) = %/éﬁ)’i log (pk + 1%(90)) (4.2.14)

where pQE = p% —|—p§ + pg + pi. The integral in eq. (4.2.14) is highly divergent. In terms of

the degree of divergence defined in section 3.1 it has § = 4. We can lower this divergence
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by taking derivative with respect to 1%(¢g). Since each derivative lowers § by two, we have

to derive three times to get a finite result:

d*Vi (o) :/d4pE 1 _ /Oodﬂ Py _ 1 (4.2.15)
(dp?)? 2m)* (pg, + 12(00))®  Jo 87 (f + u2(d0))® 3272 12 (¢o)
Integrating back three times gives, modulo an irrelevant constant factor,
1
Vilo) = = u" (é0) log 11* (60) + A*(d0) + B (o) - (4.2.16)

T 64n2

In analogy to the case of loop amplitudes considered in section 3.2, the effective potential
is the sum of a non-analytic (in ¢g) and finite piece, the first term in eq.(4.2.16), plus
local divergent terms. The divergences hidden in the constants A and B are cancelled by
a proper choice of the counter-terms dm? and Z in eq.(4.2.10). Putting all together, we
finally get the total tree+one-loop level potential:

L oo Ay L 4 2
Vers(do) = 5m d + 30 + g1 (¢o) log 17 (o) (4.2.17)
When the mass vanishes, the potential (4.2.17) becomes®
v, _ e X i gt 42.18
ef1(P0) = 1300 + 5pa—5 %0108 95 (4.2.18)

The effective potential, often also denoted by Coleman-Weinberg (CW) potential, from
the authors that first discussed it [10], is a useful tool in QFT. It is in particular crucial
to determine the correct vacuum of a theory when the tree level potential does not fix it.
We will come back to the CW potential in section 5.10 and in the final chapter 11.

4.3 A Subtlety about Effective Potentials™

In this section we will discuss a subtlety regarding effective potentials. In eq.(4.1.2) we
have defined the 1PI action I'[®] as the Legendre transform of W/[J]. It can be shown
that the effective potential, defined as in eq.(4.2.1) with T'[®] above, must necessarily be
a convex function [11, 12]. This is however puzzling, since the classical potential might
clearly be non-convex to start with. If the system is parametrically weakly coupled, it is
hard to imagine that quantum corrections could significantly modify the classical potential.

The resolution of the puzzle is a bit tricky and is related to the fact that in general the 1PI

5Strictly speaking, the coupling constant A appearing in eq. (4.2.18) is not the same as that appearing
in eq. (4.2.17) because of a shift induced by the one-loop term. We neglect these finite corrections, possibly
relevant when a careful definition of the coupling A is provided. We postpone to chapter 5 a more careful

discussion of the definition of coupling constants.
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action defined in eq.(4.1.2) does not correspond to that defined in eq.(4.1.12). In particular,
the effective potential Vip; coming from eq.(4.1.12) is the natural extension of the classical
potential Vj and can in general be non-convex, while the effective potential V¢ s, defined as
the constant field configurations of eq.(4.1.2) is the one that must necessarily be convex.
Starting from eq.(4.1.12), we can define W[.J] as the Legendre transform of I'[®];pr, which
is the I" appearing on the left-hand-side of eq.(4.1.12). Taking now the Legendre transform
of the so derived W[J] we get I'[®].;r. We then see that Viss is the double Legendre
transform of Vipr, also called its convex envelope. Only for convex functions we are
ensured that V.yy = Vipr. Physically, Verf(¢o) represents the expectation value of the
energy density in the state |¥) that minimizes (V|H|¥) and such that (¥|é(z)|¥) = .
This quantity is always real and, as we said, must be convex everywhere. The key point on
how Vef¢(¢o) is convex starting form a non-convex classical potential is understood from a
purely classical analysis, where (¥|¢(x)| V) represents the spatial average of the field ¢(Z).
Consider a classical potential V, like that depicted in the left panel of fig.4.1, with two
minima at ¢(Z) = +o. For |¢g| > o, the field configuration minimizing the energy is given
by ¢(Z) = ¢o over the whole space, and Ve¢¢(do) = Ve(¢o). For |¢o| < o the mininum

energy is given by an inhomogeneous state where ¢(Z) = o in a fraction (o + ¢¢)/20 of

space, and ¢(#) = —o in the remaining (o — ¢)/20 fraction of space, so that the spatial
average of the field is
o+ do og—¢o
o X Y + (—0o) x Sy ®0 (4.3.1)

as it should be. The energy density in such inhomogeneous state is all concentrated in
the regions between the two phases. In the infinite volume limit the boundary energy
contribution becomes negligible, and hence V. ¢s(¢o) = 0 for |¢o| < o. The potential V¢,
depicted in the right panel of fig.4.1 is then everywhere convex.

In the quantum case, the inhomogeneous state is replaced by a linear combination of
the two vacua at +o, call them |£). For |¢g| < o the mininum energy is given by a state
of the form a|+) + B|—), with |a|? + |32 = 1, and |a|?> — |8]?> = ¢o. The ending result
is the same, giving rise to a flat effective potential Vs for [¢g| < 0. As we will see in
more detail in chapter 8 in the context of spontaneous symmetry breaking, inhomogeneous
states of the form «a|+) + 3]|—) violate cluster decomposition and should not be considered
viable vacua for a QFT. If the vacua are degenerate, like in fig.4.1, the system will be
unstable under any external small perturbation and will fall in either the vacuum |+) or
|—), depending on the perturbation. In this case the relevant effective potential is given

by Vipr, in agreement with our naive intuition.
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Vc Veﬂ

Figure 4.1: Classical (left) and effective (right) potentials V, and V.

4.4 Functional Relations

The formalism based on the generating functions introduced and discussed above is par-
ticularly useful for practical applications because it can make the derivation of important
relationships rather straightforward. This is particularly true if one proceeds heuristi-
cally, as we will do, without taking into account the effects of renormalization. In other
words, we will effectively be dealing in this section with bare quantities, without intro-
ducing counterterms. This is justified by the fact that eventually the same results apply
for the renormalized expressions, but in a much simpler way! See e.g. ref.[9] for a proper

derivation where renormalization is taken into account.

4.4.1 Schwinger-Dyson Equation

The Schwinger-Dyson equations are the quantum mechanical analogue of the classical
equations of motion. They are derived from the observation (based on the extension of
the concept of ordinary differentiation and integration to the case of functional differen-
tiation and integration) that the functional integral of a functional derivative vanishes if
one can neglect boundary terms, which is always assumed here. Accordingly, taking the

exponential in eq. (4.0.1) as the function to be differentiated, one concludes that

— 0 iS(@)+i [ dia' J@)o() _ / 0) iS(¢)+i [ d*a'J (@) p(x')
O—/D¢>5¢($)e = [ D¢ 15¢(x)+1J(:v) e (44.1)

Setting J = 0 in eq.(4.4.1) gives
58

e

which is the strict quantum-mechanical analogue of the classical equations of motion.

) =0, (4.4.2)

Applying n functional derivatives with respect to the source J to eq.(4.4.1), and then
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setting J = 0, gives the Schwinger-Dyson equations

., 48 . ;

Z<W¢(z1) p(an)) ==Y (@ —z)(b(z1) ... d(xi) ... p(zn)) (4.4.3)
i=1

where the hat means that that operator should be omitted from the correlator. We see

that at the quantum level the equations of motion turn into an infinite set of relations

among different Green functions. We will make use of eqs.(4.4.3) later on in these lectures.

4.4.2 Symmetries and Ward-Takahashi Identities

Symmetries are important in QFT because they constrain the form of amplitudes, corre-
lation functions, and establish relationships among them. This can be rather easily seen
within the functional formalism, as we discuss below in generality. It is important to
realize, however, that the formal manipulations presented here assume that it is possible
to regularize the theory — therefore providing a meaning to the functional integral — in
such a way that the original symmetry of the theory is preserved.

Let us consider a local field theory characterized by a Lagrangian £. An infinitesimal

transformation
6(2) = ¢ (2) = 6(z) + eAd(a) (4.4.4)

parameterized by a parameter € is a symmetry of the theory if, correspondingly, the action
S = fd4x L(¢,0,¢) associated with £ does not change. In order to be so, the variation
of the Lagrangian induced by eq. (4.4.4) has to take the form of a total derivative. This

requirement can be translated in requiring that there exists some “current” J* such that
L6 0,0') = L£(6.0,8) + 0, T* + O(). (4.4.5)

(Note that J* can also be a Lorentz tensor, as in the specific case discussed in sec. 9.7.) A
direct calculation of the variation of the Lagrangian induced by the transformation shows
that 5r 5r

o J' = —A —0,A¢. 4.4.6
By rewriting the second term on the r.h.s. as 9,[A¢pdL/00,,¢] — ApD,IL /50, ¢ one finds

that

oL oL
o 9 =
OuJ A¢ {5(? ”68,@} , (4.4.7)
where we introduced the current
oL
p = _ Tk
jH(x) = (58H¢A¢ J". (4.4.8)
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The r.h.s. of eq. (4.4.7) vanishes on the field configuration which minimizes the action (i.e.,
without quantum fluctuations) and which satisfies Euler-Lagrange equation: accordingly
Ju is nothing but the classical Noether’s current associated with the symmetry (4.4.4)
and j, is the corresponding conserved current from which one can derive the conserved
charge. In the case of QFT, where quantum fluctuations are inevitably present, relations
such as eq. (4.4.7) have to be properly interpreted and acquire a definite meaning only
when inserted in correlation functions. For the purpose of understanding the consequence
of the symmetry (4.4.4) on the generating functions, it is convenient to consider how
the Lagrangian density changes when the parameter € in eq. (4.4.4) is assumed to be
space-dependent (and, in general, the local transformation is no longer a symmetry of the

theory): by direct calculation one can verify that

L(¢),0,0") = L(},0,0) + €(x)0, T" + £A(;saue(x) + O(é%),
00, (4.4.9)

F L(6,0u0) + " (2)pe(x) + O(e),

where # indicates that the equality is valid after integration over the space, i.e., at the level
of the action (under the assumption of vanishing boundary terms). Though the discussion
so far is completely general, we shall focus below on the case in which the symmetry is
linearly realized, meaning that A¢ is an arbitrary linear function of ¢. This is the case,

for example of global U(1) or other internal symmetries for multiplets such as

di(z) = ¢y(z) = d(x) + €*(ta)] dm(), (4.4.10)

where {t } are the generators of the symmetry in a suitable representation. Alternatively,
for infinitesimal space-time translations, €eA¢ in eq. (4.4.4) is replaced by €"0,¢. This
case is discussed in detail in sec. 9.7. In order to work out the consequences of the
symmetry, consider again the generating function Z[J] in eq. (4.0.1) and denote by ¢’ the
“integration variable” in the functional integral, with the aim of eventually performing
a change of variable towards the field ¢ which ¢’ is connected to via eq. (4.4.4) with a

space-dependent parameter € = ¢(x):

Z[J] _ /'Dd)/ eiS(¢/)+ifd4zJ(m)¢/(az) _ /D¢/ eiS(¢)+i Jdz j 0ue(x)+i [diz J(x)[p(x)+eAd(z))

- [s (1 bi [ de(w) 0,0 (@) + J(@)Ao(a)] + o<e2>)ew<¢>+i s S@oa)

= 210)+i [doe(w) (= 0" @) + T@) Do) ) + O),
(4.4.11)
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where on the second line we expanded up to first order in € and used the fact that,
being the symmetry realized linearly, the Jacobian of the change of variable ¢’ — ¢ in
the functional integration measure is independent of the fields and can be absorbed in
the overall normalization of the measure. The previous equation has to be valid for an

arbitrary choice of e(x) and therefore it implies that
(Oui*(x)) s = J(x)(Ad(x)).s - (4.4.12)

This relation is an example of a Ward-Takahashi (WT) identity associated with the sym-
metry (4.4.4) and constitutes the equivalent of the Noether theorem in QFT. By taking
functional derivatives with respect to J, this equation implies an infinite set of relationships
between correlation functions of the fields ¢ on the r.h.s. and those of the fields with an
insertion of the current operator j, () on the Lh.s. As an explicit example, consider the in-
ternal symmetry (4.4.10), where the associated current is given by jo , = (0u0)i(ta)]" dm-
By differentiating eq.(4.4.12) with respect to J,,(z1) and J,,(x2) and by then setting
J =0 we get

10, (h () dn, (1) Py (12)) =

(4.4.13)
= 0(x — 21)(ta)my (Pm (1) Py (¥2)) + 6(2 — 22) (ta)m, (P (22)dn, (21)).

We point out that, from the point of view of QFT, the current j,(z) defined in
eq. (4.4.8) is a so-called composite operator because it involves the product of various
quantum fields taken at the same point in space-time. After the renormalization of the
theory, correlation functions with the insertion of composite fields still show ultraviolet
divergences and need to be additionally renormalized by introducing suitable renormal-
ization constants for these operators. As we shall discuss in more detail in sec. 5.9, the
presence of these non-trivial additional renormalization constants implies that the com-
posite operators acquire an anomalous dimension. However, conserved currents j,(x)
associated to symmetries of the theory do not need to be renormalized and therefore they
do not acquire an anomalous dimension. This is clear from the example in eq.(4.4.13).
Correlation functions with one insertion of j, can be expressed in terms of correlation
functions without the current. When the latter are properly renormalized by the intro-
duction of suitable counter-terms and renormalization constants, the former will also be
finite. In other words, a conserved current into a correlation function does not cause
additional divergences to appear.

It is important to point out here that the effective action I is not always invariant under
the same field transformations for which the classical action S is. The transformations of

S and T" coincide only when they act at most linearly on fields. Let us discuss in more
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detail this important point. Consider a transformation of the form

d(z) = ¢ (x) = ¢(x) + eF[¢(x)], (4.4.14)

where F[¢] is a generic functional of the field ¢, not necessarily linear. We shall encounter
non-linear transformations in section 6.3 when we will study the BRST symmetries in the
context of non-abelian gauge theories. Assume now that both the action S(¢) and the
integration measure are invariant under the transformation ¢ — ¢, such that S(¢) = S(¢')
and D¢’ = D¢. In terms of the generating function Z[.J] one finds

Z[J] = / Dl 5@+ [ dad(@)¢ (@) _ / D S@+i [da J(@){6() +eF[o(x)])

(4.4.15)
= /D¢> {1 + i€ /d4:v J(z)Flp(x)] + 0(62)} eiS@)+i [d'z J(@)d(x)
which implies
/d4z (Flp(x)])sJ(x) =0. (4.4.16)
Using eq.(4.1.3), we can rewrite eq.(4.4.16) as
or
[t Pl s g7 = 0 (44.17)
which implies that the 1PI action is invariant for ® — @ + e(F[¢(z)]) j(a):
or
N¢+dﬂdwh@ﬂ=N@+f/ﬁMﬂMMM@5R5=F@% (1.4.18)
Notice that, in general,
(Flo(x)]) @) # F(P). (4.4.19)

They coincide only for transformations that are at most linear in the fields, namely forS

nw:dm+/&wmmwm. (4.4.20)

In this case, and only in this case, we have

Flo@aw) = 5(@) + [ dyta,n)(6@) o) = @) + [dytle.n)l) = F(®),
(4.4.21)
where the second identity is a consequence of the definition of ®.
The general approach described above can be used in order to derive the consequences
of the global U(1) symmetry of QED on the correlation functions of the field. This will

be the subject of next section.

5The usual purely linear transformations of the fields are obtained from eq.(4.4.20) by taking s(z) = 0
and t(x,y) = té(x — y).
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4.4.3 WT Identities in QED

Gauge invariance in QED requires the addition of a gauge-fixing term

1
2%

where ¢ is an arbitrary real parameter.” The total Lagrangian density is then

Lo.g. =~ (0,4")7, (4.4.22)

‘C(A,ua ?/1, 1/_)) = L:QED(A/L, ?/1, 11_)) + ﬁg.f,(Au) y (4.4.23)

where Lgogp is given in eq.(3.3.14) and the functional integration is done both on the
vector field A, and the spinors 1 and 1. The source term at the exponential has a density
of the form

T (x) Ay () + J(@)y (@) + (@) I (2), (4.4.24)

where J and J are Grassmann-valued (and hence anticommuting) functions. If we make

the infinitesimal change of variable associated to a gauge transformation,

U(x) = () +iee(z)p(x), P(x) = P(x) —iee(@)Pp(z),  Au(x) = Au(z) + due(z),
(4.4.25)

the measure and Lggp remain invariant, while £, ;. and the source term will change:

_ - OMrA
‘C(Alhdij) — ﬁ(AM7wa¢) - é— k

JEA, + T +pd — JFA, + T+ + JHOe + iede — iepJe.  (4.4.26)

Oe.

By bringing down the O(e) terms from the exponential and taking a functional derivative

with respect to e(z), we get the identity
10, J"(2)Z = e(P(x)) 1] (x) — e (2)((z)) s — 2D8M<A"(x)>J . (4.4.27)

We also have®

- . 0Z . 0Z A
(W(@))s = i) (W(@)s = T (A(z)) s = @ (4.4.28)
and thus we can rewrite eq.(4.4.27) in terms of W = —ilog Z as
) ow - ow 1 ow
10, J" (x) = —emJ(x) - eJ(a:)m - EE@MW . (4.4.29)

"The derivation of Ly.s. from a functional point of view, for both abelian and non-abelian theories, is

discussed in section 6.2.
8Pay attention to the anticommuting nature of the Grassmann fields to get the signs right!
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We can go further and write the WT Identity (4.4.29) in terms of the 1PI generator I'
defined as

P—W— / d'a () I (@) + T(@)U(x) + () (2)) (4.4.30)
where W W W
Aule) = S V@ = 5 ¥ = s (4.4.31)
and correspondingly
() = j;x), J(z) = — 5\32), () = 552). (4.4.32)

In terms of I, eq.(4.4.28) reads

or - or ol i
10y ~———=e¥(r)—— +e—-—VU —-090,A"(x) . 4.4.33
By taking arbitrary functional derivatives of eqs.(4.4.27), (4.4.29) and (4.4.33) with re-
spect to the sources we get an infinite set of WT identities between connected and 1PI
amplitudes, respectively.
Let us see more closely the WT identities that will allow us to prove three assertions

in section 3.3 when studying the renormalizability of this theory:

1. A relation linking the electron two-point function with the vertex, eventually proving
eq.(3.3.15).

2. The transversality of the photon propagator, eq.(3.3.5).

3. Decoupling of unphysical photon polarization states, eq.(3.3.9) (and its generaliza-

tion to any other scattering amplitude involving at least one photon).

Relation 1 is obtained by taking one functional derivative with respect to ¥ and ¥ of

eq.(4.4.33). In this way one has
83T 5T 52T

' . —ed(r—w9) o —ef(r— 1) (4.4.34
Za“axp(xl)aq/(xg)mu(x) e =22 S et @) O T ety Y

In momentum space eq.(4.4.34) becomes,
¢'Tu(p,q) = eT'@ (g +p) — eI P (p) (4.4.35)

where I, is precisely the function vertex defined in eq.(3.3.2) and I'® =y —m+ 2(p) is
the inverse of the electron propagator, with ¥ defined in eq.(3.3.3). Using eq.(4.4.35) and
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P Pm P1 pi+q Pm P1 DPi DPm

Figure 4.2: Diagrammatic representation of the WT identity for QED, which generalizes
eq. (4.4.35) for connected ampltudes involving additional 2m fermionic and an arbitrary
number n of photon external lines. The extra photon line in the diagram in the Lh.s. is

amputated.

the above definitions, it is straightforward to derive the identity (3.3.15). We see that a
similar identity halso holds for the finite parts:

q,uI\[Lim'te(p’ q) _ Efim’te(p + q) o Efim’te(p) ) (4436)

Relation 2 is obtained by setting ¥ = ¥ = 0 and taking one derivative with respect to A,

of eq.(4.4.33). This gives, in momentum space

1
qVFuV(Q) = EQQQM (4'4'37)

where I, is the inverse photon propagator. We decompose I'y,(q) = F,(f,),)(q) + 1L (q)
in terms of its tree-level and quantum corrections, where II,,(¢) is the same entering

eq.(3.3.5). From the classical action we readily get

I'9(q) = Nuwd® — quav + %qqu (4.4.38)
We notice that Fl(f,),) alone saturates the identity (4.4.37), automatically implying eq.(3.3.5)
to all orders in perturbation theory. The fundamental importance of this conclusion relies
on the fact that it ensures that the photon does not acquire a mass as a consequence
of interactions, being protected by gauge invariance. An analogous conclusion is drawn
in chapter 6 for non-abelian gauge theories, where a relation very similar to eq.(4.4.37),

eq.(6.3.33), will be proved starting from the so called BRST symmetries.

71



Let us now consider relation 3. In order to relate the resulting WT identities directly
with S-matrix amplitudes, that are associated to amputated connected Green functions,
it is better to start from eq.(4.4.29). In absence of fermion fields, we can set J = J = 0
and take an arbitrary number n of functional derivatives of eq.(4.4.29) with respect to JH.
In this way the L.h.s. and the first two terms in the r.h.s. of eq.(4.4.29) vanish and we
trivially get

0" Gay .on (@1, -, n) = 0. (4.4.39)

for the n+1 connected amplitudes involving photons only. The factor of ¢? in eq.(4.4.39) is
removed when we amputate the amplitude, see below. In this way we get the generalization
of eq.(3.3.9) for any number of external photon fields.

When external fermions are present, the analysis is slightly more complicated. If 2m
external fermion lines are present, we have to take m functional derivatives of eq.(4.4.29)
with respect to J and .J (in addition to the ones necessary for the photon ones as above). In
this way we derive WT identities for connected correlation functions involving an arbitrary
number of gauge and fermion fields. The term in the Lh.s. still vanishes, but the first two

terms in the r.h.s. are non-zero now. In momentum space we have

m
gq G (i ki) = Z (G(gm" (pi+q, ki, q;) — GO (pivki—%qj)) , (4.4.40)
where G2™") schematically represent the connected Green functions for 2m external
fermions and n external photons and we have made explicit in G2™7+1) only the Lorentz
index contracted with g,. As we mentioned, physical S-matrix amplitudes are related to
amputated connected Green functions. Let us start by amputating the Green function
GCmnt1) i the Lhus. of eq.(4.4.40) of its additional photon line. One has

GEmntl) = G, (q)Guiimnth) (4.4.41)
where G, is the (all-orders) photon propagator G}, I'"? = —ié}, and nggb’"ﬂ) refers to

the amputation of this photon line only. Given eq.(4.4.37), one immediately gets
2¢"G],(q) = —ikqy . (4.4.42)

Plugging eq.(4.4.42) in eq.(4.4.40) we get

m

"Gt (pi ki q) =€y (G(Qm’") (pi + ¢, ki q5) — G (pi ki — q, qg‘)) o (44.43)
=1

This relation is diagrammatically represented in fig. 4.2, where n physical photons and 2m

fermions are indicated by wiggly and straight lines, respectively, and ¢* denotes the wiggly
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line of the amputated photon with polarization €,(¢) = g,. The grey circle stands for all
possible diagrams which can be constructed with the specified external legs. By using
the LSZ reduction formula, the correlation functions (4.4.43) are directly related to the
physical S-matrix amplitudes. The latter is in particular proportional to the total residue
given by the 2m + n poles in the correlation function (see eq. (2.3.10)), since we still have
to amputate the additional 2m + n external states. However, we now notice that on the
r.hs. of eq.(4.4.43) one fermion momentum is always shifted from its on-shell value. If
p? = k? = m?, generically (p; + )%, (ki — q)? # m?. Hence the correlation functions on
the r.h.s. can only have 2m +n — 1 poles and hence eq. (2.3.10) necessarily vanishes. We
conclude that any physical amplitude involving an arbitrary number of photon and fermion
fields must vanish when any of the external photon polarizations is taken proportional to

the photon momentum:

€ (P1) - “Puj - Cpupa (Prg1) MHPLHmt = (4.4.44)
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Chapter 5
The Renormalization Group

The renormalization group is a key concept in quantum field theory. It essentially tells us
that instead of describing a physical system by some constant parameters in a Lagrangian,
it is more convenient to let the parameters vary and keep only some of them, depending
on the energy scale at which we are looking at the system. Intuitively this is quite obvious
and is at the basis of the usual reductionism used in physics. We do not need the SM
Lagrangian to study the energy levels of the hydrogen atom! The latter are well described
by a much simpler Schrodinger equation, which captures the effective dynamics entering
at the eV scale, namely the Coulomb potential between the electron and the proton. In
general, however, the microscopic short distance behaviour of a system is not completely
negligible. When this is the case, if we are interested in processes occurring at some
energy scale E, we can “integrate out”, rather than simply neglect, all states with higher
frequencies and retain only the effective degrees of freedom of interest. Historically, the
renormalization group was developed by Gell-Mann and Low in ref.[13] as a way to improve
the perturbative expansion in QED. Although, as we will see, in the context of particle
physics the original approach of ref.[13] is essentially still used today, the relation to the
idea of integrating out degrees of freedom and the use of effective theories was pioneered
several years after by K.G. Wilson [14, 15].

5.1 Relevant, Marginal and Irrelevant Couplings

In this section we consider the renormalization group in the spirit of Wilson’s original idea,
focusing on a particular model, the ¢* theory in four space-time dimensions, Wick rotated
in euclidean space.! Wilson’s approach has the main advantage of being conceptually very

clear. It assumes the presence of a physical cut-off A in the theory, above which no mode

'The analysis in this section closely follows section 12.1 of ref. [1].
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can be excited. Imagine we are interested in processes occurring at scales of order bA, with
b < 1. We label all modes ¢(k) as “heavy” and “light”, depending on their momentum k.
We write

o(k) = on(k)0(bA — [k[) + or (k)O(|k] —bA),  [k] <A (5.1.1)

and we correspondingly decompose the action of the ¢* theory as follows:2
S =SL+ Sy + Sint (5.1.2)

where
1 1 A
1= / d4x<—(a¢L)2 +5miel + szi) :

s = / o §(06m? + ).

S = [[ a0k + 100 + 40401, + 6647, (513)

It is clear from eq. (5.1.1) that the quadratic terms of the form ¢z ¢y, vanish. The modes
¢ cannot be excited for processes at scales below or of order bA, so at first approximation
they can be ignored, in which case we just recover the ¢* theory Sy, for the light mode only.
Quantum mechanically, however, the modes ¢y contribute as virtual particles. Instead
of neglecting them, we should more properly integrate them out, getting in this way an

effective action for the light modes ¢p:
o= Sers(61) — g=S1(61) /D¢H(,€)6759,<¢H)—sm(m,¢H>, (5.1.4)

The effective action Serr(¢r) takes into account of the effects of the heavy fields at the
full quantum level. In this sense, it resembles the 1PI action I'(¢) defied in section 4.1,
but only for the heavy fields. This makes a crucial difference: while the functional I'(¢)
is in general non-local and is expanded as in eq.(4.1.11), the action Scf¢(¢r), admits an
expansion in terms of a local action, though in general containing an infinite number
of terms. In eq. (5.1.4) the modes ¢y act like external fields. It is not difficult to see
that the tree-level exchange of the ¢y modes generates effective ¢, couplings of the form
(A2/m?)¢8 (from two ¢p¢? vertices) plus an infinite set of higher derivative couplings
involving six ¢y, fields. Similar considerations can be made for all other couplings. At

some order in perturbation theory all possible couplings compatible with the symmetries

2Strictly speaking, the actions (5.1.3) should be written in momentum space using eq. (5.1.1) and
recalling the overall bound |k| < A. This results in unnecessarily long expressions that are avoided in the

rough, but more brief form (5.1.3).
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will be generated. The effective action Seyf(¢r) reads as

A+06A
4!

Sets(dL) = / d4x(%(1+5Z)(8¢L)2+%(m2+5m2)¢%+ GL+02104+025(001) "+ )

(5.1.5)
where ... stands for higher dimensional operators. Recall that ¢, contains only momenta
k < bA. The rescaled momentum k' = k/b satisfies the same constraint as the original
system, k' < A. Correspondingly we redefine coordinates as #’ = xb. We also have to

redefine the field ¢ so that it has a canonically normalized kinetic term:

PP =b" "1+ 6Z¢r . (5.1.6)
The action Sef¢ reads now (redefining " — z and ¢$*" — ¢r,)
1 1 A(b
Sups(on) = [ (30007 + 500 + Lot + 5210065 +62(0)00)! + .. ).
(5.1.7)
where?
oy _ L m?+om? _ 1 A+6A
w0 =p Tz 0 " =warae
57, 575
Zy(b) = b ——s Zo(b) = b ———. 1.
040 =T 7 02:(0) =V 7y (5.18)

The process of integrating out heavy degrees of freedom and rescale the momentum is
called “renormalization group” (RG).

The action (5.1.7) is the proper action for describing processes at scales E < bA. It
is straightforward to see that a coupling co of a generic operator O of dimension A (in
mass) scales as

co(b) = 2o . (5.1.9)

At lower and lower energies (smaller and smaller b) among all infinite operators appearing
in eq. (5.1.7), only the finite subset of those with A < 4 do actually matter, all the others
being “irrelevant”. This is a very remarkable result, which dramatically simplifies the

physical description of a system. We define as
e [rrelevant the operators with A > 4
e Relevant the operators with A < 4

e Marginal the operators with A =4

3The couplings §Z, §m?, etc. appearing in eq. (5.1.5), after the redefinition k — bk, can depend on b,
as we will explicitly see in what follows. However, in order to avoid confusion with the couplings defined

in egs. (5.1.8), we have omitted to write this b-dependence.
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Correspondingly, we define as
o [rrelevant the couplings with mass dimensions < 0
e Relevant the couplings with mass dimensions > 0
e Marginal the couplings with mass dimensions = 0

Relevant couplings grow in the IR and dominate the physics. In our ¢* example, the
only relevant coupling is the mass term, which is indeed the most important parameter
governing the dynamics of a particle at low energies (in perturbation theory). When all
relevant couplings vanish, the IR theory is controlled by marginal couplings only, in which
case we say that the theory is (classically, see below) scale invariant, namely the form of
the action does not change under the RG flow.

The fate of marginal operators under the renormalization group cannot be deduced
from classical scaling and requires a quantum computation. In the ¢* example, the only
marginal operator is A and its b-dependence is determined by that of §Z and d\. It is very
useful to determine A(b) at the lowest non-trivial order in perturbation theory, which is
one-loop. At one-loop level the exchange of ¢ fields modifies the ¢‘i coupling by means
of two qb%q’)%{ interactions. No correction arises in 67 at one-loop order, so that we can
neglect it. By denoting the heavy fields with a wavy line, the relevant Feynman graph to

consider is

k
+ 2perms. =—§ 3\’ A’k ! !
rms. =—0) = —— ,
P AT sa<k<n (2m)* k2 +m? (p+ k)2 + m?
bk (5.1.10)

where p is the incoming external momentum and “perms.” refer to two other diagrams
obtained by permuting the external lines. When the external momentum and the mass m

are much smaller than bA, §, is easily computed:

oy =

32 Ak 3221
_ A A P 111
3274 /,,ASkSA et 1672 2 (5.1.11)

The effective quartic interaction between the light modes is then

3\
= = —1 . 112
AD) =A+0y =1+ 6.2 ogb (5 )
As we can seen from eq. (5.1.12), A(b) decreases at larger distances (smaller b), so we
say that the coupling A\ is marginally irrelevant, meaning in this way that it decreases

in the IR, although not as quickly as a classically irrelevant operator. Similarly, we call
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marginally relevant a classically marginal coupling that increases at larger distance due
to quantum effects. Classically marginal couplings that remain marginal at the quantum
level are called exactly marginal.

At the quantum level, as we have just seen, all the terms 67, dm? etc., appearing in
egs. (5.1.7) and (5.1.8), can depend on b. This implies that the scaling dimension of an
operator in general receives corrections with respect to its classical value determined from
the powers of b appearing in eq. (5.1.7). The difference between the quantum contribution
to the scaling dimension of an operator from its classical value is called the anomalous
dimension of the operator. We will come back to it later on in this chapter.

We started our analysis from the UV action (5.1.2) but it should be now clear that if
we had started already at the UV with the most general (non-renormalizable) action of the
form (5.1.5), under the renormalization group flow we would have always ended up with the
usual ¢* theory, plus an infinite number of irrelevant operators. From the Wilsonian RG
point of view, then, renormalizable theories can be seen as critical surfaces, in parameter
space, where a much larger class of theories flow to. It is important to stress here that our
classification of the operators in relevant, irrelevant and marginal is based on the classical
dimension of fields, valid at parametrically weak coupling in perturbation theory around
free field theories. At strong coupling, it might happen that, say, an operator that is
classically irrelevant becomes marginal due to non-perturbative effects.

The Wilsonian picture of the RG flow is very intuitive and physical but, pragmatically
speaking, it is not the best way to proceed in high energy physics. Distinguishing light and
heavy modes in a single field can give rise to complicated expressions and in Minkowski
space is not a Lorentz invariant notion.* Cut-off regularization is often unavailable, like in
gauge theories. Moreover, the Wilsonian RG flow requires, as a starting point, some UV-
regulated Lagrangian, while in high energy physics we prefer to hide our ignorance about
the UV physics in the renormalization of the parameters entering into the Lagrangian. For
all these reasons, in the remaining of this chapter we will change perspective and consider
the RG flow from an “high energy physics” point of view. As we will see, in a perturbative
context, it essentially gives us a way of improving the perturbative expansion, in the spirit
of ref.[13].

4On the contrary, when the mass of the field is sufficiently large, all frequency modes, i.e. the whole
field, can and should be integrated out. In this case the Wilsonian picture is the way to go and results in

a simplification of the physical system. More on this in chapter 7.
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5.2 The Sliding Scale and the Summation of Leading Logs

The RG flow technique is very useful in standard four dimensional (weakly interacting)
theories in high energy physics. In particular, it improves the perturbative expansion,
allowing us to sum whole series of higher order effects. An example will clarify the problem
and its resolution.

Consider the 1PI 4-point function at one-loop level in our usual ¢* theory in d = 4

space-time dimensions. Using a cut-off A in the momenta, we get

k
pr CE ix2 /ld (1 A? 1)
erms. = —— og —————~ —
p2 pa ber 3272 J, T\ e sz(l — )
k
prfpet Fo(sot) (s ), (5.2.1)

where s, t and w are the Mandelstam variabled defined in eq.(2.6.14). As we already
discussed at length, we need a renormalization condition that fixes the counter-terms
needed to remove the logarithmic divergence in eq. (5.2.1). Let us define the coupling

constant \ as the value of T (p;) at the (unphysical) symmetric point s = t = u = 4m?/3:
iTW (s =t =u=4m?/3) = —i\. (5.2.2)

In this way, the finite, renormalized 1PI four-point function reads

m?(1 — 4z(1 — )/3)
m2 — sz(1 — )

2 1
P (s, tu) = — A+ 32—2/ dz log Fo+ (o). (5.2.3)
™ Jo

At high energies, when the absolute values of the Mandelstam variables are much greater
than m, large logs ~ logm?/E? appear.® If E is sufficiently high, it can happen that the
log m?/E? term is so large to compensate for the one-loop suppression given by ~ \/(1672),
breaking down the perturbative expansion. Similarly, at two-loop level, terms of the form
M log? m?/E? and \3log m?/E? appear. In general, at I-loop level, all terms of the form
M+ ogt m?/E2, At log Y m2/E2, ..., X+llogm?/E? can appear. It is clear that if
A < 1, but Aog E?/m? ~ 1, the terms of the form A(A log! m?/E?) are all of the same
order. Logs of this form are called leading logs (LL) for obvious reasons. The terms of
the form A2(\'log! m?/E?) are denoted next-to-leading logs (NLL) and so on. There is

®Since s+t +u = 4m?, the Mandelstam variables will necessarily have, at high energies, different signs,
so that the argument of some of the logs in eq. (5.2.3) will be negative with branch cuts singularities. This
is of course expected, since by the optical theorem ' should have an imaginary part. In order to avoid
branch cut-singularities and imaginary amplitudes, that will not change the discussion that follows, we

consider off-shell amplitudes at euclidean values of the momenta, where s, ¢t and u are all negative.
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actually a simple way to avoid the explicit appearance of large logs in T, The idea is
based on the fact that we can choose the renormalization condition for the coupling as we

wish. If we define the coupling constant at an energy scale u ~ E, replacing eq. (5.2.2) by
T (s =t =u=—p?) = i), (5.2.4)

the finite, 1PT four-point function (5.2.3) would now read

M) [ m? + pa(l - x)
4) - _
'Y (s, t,u) AMp) + 92 /0 dxlog o +(s—=t)+(s—u), (5.2.5)

and no large log term appears anymore. The arbitrary scale p is denoted the sliding or
renormalization scale. The coupling A(x) is determined by noting that the physics cannot

depend on our arbitrary choice of scale u. We must require that

dr® ) my 0
_ |, Y A — ) —|T®W =9 5.2.6
= [uaﬂw(m)m} 7 (5.2.6)
where we have defined the function S as
m dA
— ) =nu—". 2.
B(x, H) h, (5.2.7)

The behaviour of A as a function of u, as given by the first-order differential equation
(5.2.7), is called the renormalizaion group (RG) flow of \. It is straightforward to compute
f given the explicit form (5.2.5) of T, We get

my 32 ! (1l — ) 3
ﬁ(A, ;) == /0 by H O (5.2.8)

The coupling (i) is determined by the first-order differential equation (5.2.7). In the
extreme high (UV) and low (IR) energy regimes pu > m, p < m, eq. (5.2.8) simplifies

considerably, giving®

3\2
5UV — 1671'2 )
A2 2
~ ——(—) ~0 5.2.9
Prr 3272 (m) ’ ( )
whose solutions are simply
A
Avv(p) =~ w(+o)’ o, ft >, (5.2.10)
1 — 22L Jog -
1672 o
Arr(p) =~ constant, nLm. (5.2.11)

SNotice that Sy in eq. (5.2.9) coincides with bdA(b)/db in eq. (5.1.12), as expected, being the same
thing.
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Strictly speaking, egs. (5.2.10) and (5.2.11) are valid only in the asymptotic UV and
IR regimes, but as a first crude approximation we can take py = m in eq. (5.2.10) and
A(p) =~ A(m) for any pu < m in eq. (5.2.11). We will perform a refined approximation
in section 5.3, but for the moment this suffices to understand the main point of the RG
analysis. Let us compare the two equivalent 1PI 4-point functions (5.2.3) and (5.2.5) in
the euclidean UV point s =t = u = —E? > m?*:

rE) ~ —a- 22 0. E o0 (no RG) (5.2.12)

- 1672 % ’ o

r(E) ~ —\E)=- 3;\ —+0(\?), (RG) (5.2.13)
L= g5z log o7

where A ~ A(m). Expanding in A, we see that eq. (5.2.13) reproduces the one-loop
result in eq. (5.2.12) but, in addition, automatically gives us all the LL logs of the form
M log! E/m (this will be proved in section 5.7). This is the key point of the RG evolution
in perturbation theory: a powerful way to improve the perturbative expansion.

Various approximations have been made in comparing egs. (5.2.3) and (5.2.5), such as
A(m) =~ A(2m/+/3) and pig = m. All these approximations change I'(E) at O(A\21log® E/M)
and are hidden in the O()\?) terms in egs. (5.2.12) and (5.2.13). When E > m, these
terms can consistently be neglected, being sub-leading with respect to the \?log E/M
terms. They are important if we want to go beyond the LL approximation, in which case
they are the first terms in the A2(\'"'log!~! E/M) (NLL) series. Resumming these logs
require the knowledge of the A% log E/M term, i.e. a two-loop perturbative computation.

The sliding scale p and the RG evolution of the coupling are also useful in the IR.
For instance, when m = 0, we immediately see that there is an IR singularity in the 1PI
4-point function (5.2.3), singularity which is avoided in eq. (5.2.5), which is well defined
for m = 0.

Going back to egs. (5.2.10) and (5.2.11), the RG evolution implies that the effective
coupling constant in a QFT (i.e the one which does not give rise to large logs in amplitudes)
depends on the energy scale, namely it is a “running” coupling constant. In particular
eq. (5.2.10) implies that A1) > A(po) for p1 > po (in agreement with the results derived
using the Wilsonian RG flow) and predicts a pole at the scale

_16m%
WL = pho €32 o) (5.2.14)
where the coupling diverges (Landau pole).” The scale uy, should not be taken too seri-
ously, since at energies below py,, when the denominator in eq. (5.2.10) starts to signifi-

cantly differ from one, perturbation theory breaks down and higher loop corrections are

"The scale dependence of iz, on po is only apparent. One can check that dur,/dpo = 0.
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no longer negligible. However, eq. (5.2.14) indicates that, no matter how small A(uo) is
in the IR, at energies of order u perturbation theory breaks down. On the other hand,
perturbativity improves at low energies. When m = 0, and eq. (5.2.10) is valid for any
range of ug and p, we see that A(u) — 0 as u — 0. In other words, provided the theory is
in a perturbative regime at some scale g, in the far IR it asymptotes a free field theory.
Theories of this sort are denoted IR free. When m # 0, the running instead essentially
stops for p < m. This is in agreement with the fact that at low energies no large logs
to be resummed appear, see eq. (5.2.3). This is a manifestation of a much more general
principle, actually a theorem (Appelquist-Carazzone), according to which the effects of
massive particles at low energies should be negligible and go to zero when m — 00.® This
is a key principle in QFT (and physics in general), allowing to reliably describe physical
processes at some scale without necessarily knowing the “true” (if any) physical theory
underlying all processes. In this sense any QFT should always be seen as an “effective”
theory. We will come back to this point in chapter 7, where we will systematically study

effective field theories.

5.3 Asymptotic Behaviours of g-Functions

The B-function is the crucial object to determine the evolution of a coupling constant.
In general, in a theory with n couplings g;, we have to solve a set of coupled differential
equations of the kind

dy

ME;:&JZL”wn, (5.3.1)

where the §; in eq. (5.3.1) depend on all the other couplings and masses of the theory.
We can get rid of the masses by focusing only on the universal UV relevant coefficients,
so that 8; = B;(g;). Yet, it is not possible to describe the main properties of the solutions
gi = gi(u), because the system (5.3.1) is in general too complicated. We can further
simplify the situation by considering a single coupling g. In perturbation theory, 8(g)

admits an expansion as follows:

B(9) = Bog® + Br1g” + O(g") . (5.3.2)

Note that it is always possible, by a proper coupling redefinition, to write the S-function ex-
pansion as in eq. (5.3.2). For instance, in QED S(e) starts at cubic, rather than quadratic,

order in the coupling, but it is enough to consider 3 = B(e?) rather than S(e) to put the

8There can be exceptions to this theorem when the particle mass arises from a spontaneous breaking

of a symmetry, in which case it is governed by a coupling.
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Figure 5.1: (Left panel) Schematic picture of the S-function of an IR stable fixed point
(Right panel) Schematic picture of the S-function of an UV stable fixed point. In both

cases we have taken g* = 3/2. The units in both axes are arbitrary and irrelevant.

B in the form (5.3.2). At leading order, i.e. neglecting 81, eq. (5.3.2) is solved by

_ 90
1 — gofo log(u/ o)’
where go = g(u0). The fate of g(u) is entirely governed by the sign of Sy. When Sy > 0,

9(n) (5.3.3)

like in the ¢* or QED cases, g(u1) is marginally irrelevant, it increases in the UV and at
some high energy scale the theory is no longer perturbative.

When £y < 0, on the other hand, the opposite happens. The coupling is marginally
relevant and it decreases in the UV. In the limit of infinite energy, the coupling van-
ishes. Theories with (all) couplings of this kind are called asymptotically free. The low
energy regime of these theories (including the spectrum of particles) is not perturbatively

accessible. The coupling formally diverges at the scale
1
A = Mem . (534)

This scale, which is RG invariant, is said to be a dynamically generated scale, since there
is no trace of it in the classical theory. It is a purely quantum effect. The most famous
theory belonging to this class of theories is QCD.

It is useful to consider two other more exotic forms of S-function, that correspond to
a perturbative expansion around a non-trivial value of the coupling (see figs. 5.1). Let us
assume that there exists a critical value of the coupling, ¢g*, such that S(g*) = 0. If ¢ is

sufficiently close to g*, we can expand [ as follows:

Blg) = B¢+ (9—9)+0(g—3g) =B (9—9)+Og—g°)*. (5.3.5)
The solution of eq. (5.3.1), with /5 as in eq. (5.3.5), is
g
9(1) = 9" + (9(o) — g") (ﬂ) +0(g—g*)*. (5.3.6)
Ho
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Independently of g(ug), when S* < 0 the coupling approaches ¢g* in the UV, while for
B* > 0 it approaches ¢* in the IR. In the former case, g* is called an ultraviolet stable
fixed point of the RG flow, in the latter an infrared stable fixed point of the RG flow. When
g = ¢* and 3 vanishes, no running occurs. In this case the theory is invariant under scaling
transformations. More in general, it can be shown that it is invariant also under conformal
transformations. A theory of this sort is called a Conformal Field Theory (CFT). Trivial
CFT’s are free theories of massless particles, for which ¢ = 0 and ( vanishes. Non-trivial
CFT’s are generally strongly coupled, because a non-trivial zero of a S-function requires
a cancellation among different orders in the perturbative expansion. But this signals a
break down of perturbation theory, where by definition a term of order n + 1 should
be parametrically smaller than the one of order n. There is however a way to possibly
get weakly coupled CFTs. Suppose that in a theory the coefficient 3y of the one-loop
function is accidentally small. If so, setting to zero eq.(5.3.2) we get, aside from g = 0,
the non-trivial solution 8
* 0

g = 5 (5.3.7)
This solution (5.3.6) can be trusted only when 5y/51 < 1, our working hypothesis, other-
wise higher order terms would destabilize it and bring ¢g* at a generically strongly coupled
value. The fixed point (5.3.6) is called of the Banks-Zaks kind [16]. In non-abelian gauge
theories with a large gauge group and a large number of matter fields one can tune 3y to
be parametrically small. With a proper number of matter fields, a Banks-Zaks fixed point
can be obtained also in QCD. The clearest example is the one of QCD with 16 fermions,
in which case 5y < 0 and in modulus is the smallest possible. Lattice simulations show
that, contrary to “real world” QCD, at large distances this theory does not confine and
approaches a fixed-point, with a S-function qualitatively as the one depicted in the left

panel of fig.5.1.

We now show that the coefficients Sy and f; in eq. (5.3.2) do not depend on the
renormalization scheme chosen, while higher order terms are scheme dependent. The
coupling constants in two different schemes, call them schemes g and g, are equal at
lowest order, but they start to differ at higher orders in the coupling (see eq. (5.6.12) for a
concrete relation between coupling constants defined in different renormalization schemes).
In general we have

i(9) = g+ag>+O(g%), (5.3.8)

where a is a constant. Their associated S-functions are related as

B(~)_ ﬁ_ d_g@_ @

B(9) g (5.3.9)
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Taking 5(g) as in eq. (5.3.2) we have

B(3) = (Bog® + B1g° + O(g")) (1 + 2ag + O(¢?))
= (Bo(§ — ag®)* + B13° + O(G*) (1 + 2a7 + O(3%))
= 6o’ + P13 + O(7), (5.3.10)

where the O(j*) terms are different from the O(g*) terms in 3(g). Hence we have proved
the scheme independence of the coefficients 8y and 5.

We will see in the following that even at one- (and two-) loop level the detailed form
of a p-function in a theory depends on the renormalization scheme chosen, although its
UV behaviour is universal and governed by the coefficients 5y and 81 above.

The generalization of egs. (5.3.2) and (5.3.8) for multiple couplings are

0 1
Bilg;) = ﬂi(jggjgk + ﬁgjzzgjgkgz +0(g}), (5.3.11)
3i(95) = 9i + aijrgigr + O(g°) .
Proceeding as before, we get
300) _ 5(0)
Bijk = Biji»
2 (5.3.12)

Bz(;l)cl = 51(]1121 + 3 (aislﬁj(z)s - asklﬂi(](‘)é)- + 2 perms. in (j, k, l)) .

The two-loop coefficients of the B-function for multiple couplings are in general scheme-

dependent.

5.4 The Callan-Symanzik RG Equations

We have seen that at the quantum level we are necessarily led to introduce the sliding
scale u. It is often useful to define (renormalize) at the same scale p not only the coupling
constant but also the fields themselves. For instance, as we will see in subsection 5.5, in
renormalization schemes that make use of dimensional regularization, the scale p shows
up in a different way and affects all Green functions. In particular, the mass renormal-
ized in those schemes does not coincide with the physical mass and the wave function
renormalization factor Z is no longer the one appearing in the LSZ reduction formulae.
Changing the definition of Z, now a function of u, Z = Z(u), will however make external
legs contribute to physical processes, because the Z entering the LSZ reduction formulae is
the physical p-independent one. This is quite clear from eq.(2.3.10). Aside from irrelevant

factors, the S-matrix reads

]- n-+m
S’rg—)n ~ Zn+m GSBJF )(Pia*qj') = anz(ﬂ) 2

G(n+m) (pia 7qjaﬂ) ) (541)
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where Ggf+m) and G are the bare and renormalized connected Green functions,
respectively. Since S-matrix elements do not depend on i, we see that the bare, rather than
the renormalized, Green functions are those that are independent of p. A similar reasoning
applies of course also to the 1PI amplitudes. Due to the amputation of the external legs,
one has the opposite power of Z’s relating bare and renormalized 1PI amplitudes. Taking

again the \¢* theory as our working example, we have

) = 273 () (), (5.4.2)
and hence
d(z-irm) 9 s 9 -
AN my Ty o) = 4.
—— : [uaﬂ (02 g (v M)} 0, (543)
where
(A T):l dlog 2 (5.4.4)
"\ T) = 4.

is the anomalous dimension of the field ¢. Egs.(5.4.3) are called the Callan-Symanzik
(CS) equations.” For simplicity, in eq.(5.4.3) we have assumed that m is the physical
p-independent mass, otherwise we would also get a term proportional to the S-function
of the mass. We will consider the RG flow of the mass term, and more in general of
dimensionful couplings, in section 5.9.

The CS equations (5.4.3) can be solved as follows in the UV regime where we can
neglect the m/u dependence of 5 and . As a first step, we can get rid of the last term in
eq. (5.4.3) by defining a new Green function .

A v (N L
T (pi, A, m, 1) = 0N B () (pi, Ay, 1) (5.4.5)
such that
0 9\ ~m)
M@ + ,6’()\)5 ' (p;, A\,m,pu) =0. (5.4.6)

The above equation is solved by introducing an auxiliary variable ¢ and t-dependent func-
tions p(t) and A(t) with
p(t) =etu,  A0) = \. (5.4.7)

We then demand that A(t) is such that

PO (i, AH),m, (1)) = 0. (5.4.8)

9 Actually, the original Callan [17] and Symanzik [18] equations were a bit different. There was no sliding

scale u, the physical mass playing essentially the role of u, and the equations were not homogeneous in
'™ . The more modern version of the Callan Symanzik equations (5.4.3) in terms of p were developed
shortly later, see refs.[19] and [20].
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When eq. (5.4.8) is satisfied, I (p;, \(),m, u(t)) is independent of ¢. Evaluating it at
t = 0, we see that it coincides with our original Green function f‘(")(pi, A, m, u). Using the

chain rule of derivatives, eq. (5.4.8) equals

0 d\ 0\ =
— + 2 ) Ty, A(¢ ) =0. 4.
(1 + G35 ) B A B, ) =0 (549
Comparing egs. (5.4.9) and (5.4.6), we see that the following equation should hold:
d(t
% = B(A()) . (5.4.10)

For any t, provided that \(¢) satisfies eq. (5.4.10), we have

In terms of the original Green functions I'™ and changing variable d\A — dt inside the

integral appearing in eq.(5.4.5), eq.(5.4.11) reads
e " Ji V(t/)dtlr(n)(m, Amap) =e Ji V(t/)dtlr(n)(pi, A(t),m, el ). (5.4.12)
Rescaling p — e!p, eq.(5.4.12) is rewritten as
™ (etps, A, m, 1) = e o VA PO (ehpg (), m, et p) . (5.4.13)
Recall that the classical dimension of I'™ is 4 —n, so that
T (ebpi, M(t),m, etp) = AT (p, (1), e, ) . (5.4.14)
Combining egs.(5.4.13) and (5.4.14) we finally get

F(n) (etpiv >\a m, ,u) = et(47n)fn f(f ’y(t')dt/r(n) (piv A(t)7 eitm7 :u) . (5415)

Equation (5.4.15) tells us that a Green function at some energy scale e'p, modulo an
overall factor, equals the same Green function evaluated at the energy scale p, provided
we replace the coupling A with its running counterpart A(¢), solution of eq. (5.4.10). In
the high energy regime t — 0o, mass corrections in the Green functions are negligible, in
agreement with our expectations for an (IR) relevant coupling. The anomalous dimension
~ affects the effective scaling dimension of the Green function, as expected.

The UV behaviour of T'™ is particularly simple for theories with an UV stable fixed
point A*. In this case, [y[A(t)|dt' ~ [~(X\*)dt' = ty*, with v* = y(A\*). The UV

behaviour of T'™ reduces then to
T (e pi, A, m, ) = IR (s X% 0, p1) (5.4.16)
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Another interesting situation arises for UV free theories (like QCD) where the (one-loop)
running of the coupling is given by eq. (5.3.3) with 5y < 0. Assuming that v(t) = y0g, we
have [y[g(t")ldt" = [ 7(9)/8(g')dg" = 0/Bolog g(t)/g and thus for large ¢

ny
™) (e'pi, g, m, p) ~ A=) (i) TOQF(") (pi, 0, 1) . (5.4.17)
9(t)

5.5 Minimal Subtraction

The sliding scale i does not necessarily appear as the momenta where we renormalize the
Green functions. In particular, in DR, it arises due to the departure from d = 4 space-time
dimensions. Let gp(d) be a dimensionless coupling constant in 4 space-time dimensions.

In d dimensions the coupling will acquire a mass dimension
A(d)=(4—-d)p, (5.5.1)

where p is a coupling dependent coefficient. Since divergences appear as poles in (d — 4),

a dimensionless renormalized coupling constant can be defined as

gB(d)p D = g(p,d) + (4= d) "ba(g(p, d)). (5.5.2)

n=1

Let us now take a derivative with respect to ud/du of eq. (5.5.2). We get
00 . e} . 8bn
~ (= dp(g+ (4= D) balo)) = ale) + (4~ )" Bug (5.5.3)
n=1 n=1

where for simplicity g = g(p,d). Eq. (5.5.3) should apply to any d, and hence we get an
independent relation for any power of d — 4. At O(4 — d) we have

Ba(g) = —(4 —d)pg + B(9) , (5.5.4)

where (§(g) does not vanish for d — 4 and is the actual four-dimensional S-function. At
O(d — 4)° we have
B(g) = —pb1 + % (5.5.5)
9) = —pbr+pg7 - 5.

We see that the 8(g) is determined by looking at the simple poles in eq. (5.5.2). Such
a scheme is denoted Minimal Subtraction (MS). Since d — 4 poles arise typically in the

combination L d )
r(%)(zxw)% —isa 7 — 75 + log (5.5.6)

where yg ~ 0.577 is the Euler-Mascheroni constant, sometimes it is convenient to subtract,

together with the pole 1/(d —4), the finite pieces given by vg/2 —1/2log 4w. Such scheme

is called modified Minimal Subtraction and is denoted as MS.
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In contrast to the definition of 3 given in eq. (5.2.8), the MS or MS S-functions do not
depend on masses but only on coupling constants. A similar results applies to the field
anomalous dimensions. For this reason, such schemes are called mass-independent. We
will explain in next section why and how these two results are not in contradiction with

each other.

5.6 Scheme Dependence

The detailed form of the S-function of couplings and anomalous dimensions ~y of fields has
not per se an intrinsic physical meaning, since it depends on the renormalization scheme
chosen. Only physical quantities are scheme-independent, and hence if distinct schemes
give different expressions for physical amplitudes, necessarily the evolution of the couplings
should compensate for the difference. For instance, as we have just seen in section 5.5, in
MS or MS schemes, 3 and 7 are mass-independent, as opposed to momentum subtraction
used in section 5.2 (hereafter denoted by MOM) and more in general to all schemes where
[ and v depend on the masses of the particles. Is it then meaningful to talk about running
coupling? If so, how do we determine the “correct” running? In order to answer these
questions, it is useful to focus on a concrete example and work it out in some detail.
As usual, we take the ¢* theory and compare the 1PI 4-point function (5.2.5), evaluated
using MOM, with the expression one obtains in MS. By denoting d = 4 — ¢, and recalling
egs. (4.2.3) and (5.5.2), one has

Ap(d)p =X+ (éfl)/\z)\+5,\. (5.6.1)

We compute

pr Ps (—M,uE)Q/ d’k /1dx —i
po pa 2 2m)? Jo T [kE +m? — sz(1—2))?

p1+p2+k

i)\2ﬂ26 1 dx
B 2(47r)d/2r(€/2)/0 [m? — sz(1 —x)]</2"

(5.6.2)
According to eq. (5.5.6), the MS scheme is defined by adding the counter-term

3% (2
The counterterm above is related to the coefficient by in eq.(5.5.2), dy = by /e. Summing

over the ¢ and u channel contributions, we get the finite, renormalized 4-point function

F@(s t,u) = —A(p) + X /1dxlog'u—2+(sﬁt)+(5%u) (5.6.4)
MSH N 0 m2 — sx(l —z) ' o
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Notice how the numerators of the log term in eqgs. (5.2.5) and (5.6.4) differ, the latter
being simply ;2. Demanding the j-independence of the amplitude, as in section 4.1, we

get
3\2
Bris = 62’ (5.6.5)

for any value of p, independently of m. Of course, the same result would have been
obtained directly using eq. (5.5.5) with p = 1 and b; given by eq. (5.6.3). Thus, Byg in
eq. (5.6.5) differs from Syowm in eq. (5.2.8), although their UV behaviour is identical and
given by eq. (5.2.10). This is a general result: the detailed form of § is scheme-dependent,
its UV behaviour, given by mass-independent coefficients, is scheme-independent, as we
have shown in section 5.3. As far as the LL summation is concerned, both renormalization
schemes are valid. At low energies, however, the two schemes lead to different behaviours:
in MOM, X essentially stops running below the scale m, in MS the running never stops
and would lead to a free theory when g — 0! In the IR the physical picture is best
given by MOM. This can be seen by noticing that eq. (5.2.5) is regular when 1 — 0, while
eq. (5.6.4) seems IR divergent. This “fake” IR divergence and the corresponding large logs
associated to it, are easily evaded by noticing that at arbitrarily low energies s, t,u < m?2,
the large logs are avoided by taking p? ~ m?2. In other words, in the MS, the necessity of
avoiding spurious large logs forces us to never use the IR evolution of the coupling, being
1~ m the correct sliding scale in the IR. We thus conclude that the “correct” IR running
behaviour is the one given by the MOM scheme. However, provided that one keeps in
mind that the IR running in mass-independent schemes is fake, the latter can reliably be
used. The best way to automatically get rid of this non-decoupling of heavy particles in
mass-independent schemes is provided by using them in an effective field theory approach
(more on effective field theories in chapter 7), where one integrates out the heavy particle
so that, for u < m, the heavy state is no longer in the spectrum and does not contribute
to the running anymore.

Amplitudes are easier to compute in mass-independent rather than in mass-dependent
schemes. However, physical couplings are typically defined by processes occurring at some
energy scale and are directly related to the more physical mass-dependent schemes. It
is important to understand how to match couplings in mass-independent schemes with
the physical couplings. Again, this is best illustrated with the specific instance of the ¢*
theory. First of all, let us find an approximation to the RG evolution of A in MOM which
is more refined than eqgs. (5.2.10) and (5.2.11). We proceed as follows. The solution of
eq. (5.2.7), for p > m, is given by

_ 3
A () = —ngﬂ +ec, (5.6.6)
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where ¢ is an integration constant. This is fixed by matching eq. (5.6.6) with the exact
flow implied by eq. (5.2.7):

i) = Aa) + [ (5.6.7)
MO

Let us take pg = 0, A(0) = X and p = m, ie. slightly larger than pu, so that we can still
neglect m with respect to p, but small enough that no large log(u/m) term appears. In

the range [ug, ], A(1t) = A, and eq. (5.6.7) is well approximated by

prr(l—z) 32 no
- 2/ dalog =2+ 15 (log = — 1), (5.6.8)

A
() =~ 1672

from which ¢ = A~! 4 3/(1672)(1 + log m) and hence
—1 ~1 3
A L) = At - —(log L. 1)9@ —m)  (MOM). (5.6.9)
T m
Notice that A(u) in eq. (5.6.9) is discontinuous in m:

lim A7 () = A7 % lim A7) = A+ 3/(1672). (5.6.10)

pn—m= p—mt

This discontinuity essentially takes into account the mass term disturbance to the UV
running for g > m. The constant 3/(167?) is often called mass threshold effect. It can be
verified that eq. (5.6.9) is an excellent approximation to the exact one-loop running given
by eq. (5.2.7) far away from the threshold region y =~ m. The running coupling in the MS

scheme is simply given by

A ) = A - g £ L 6(u—m) (MS), (5.6.11)

1672
where the step function 6(x — m) is put by hand, for the reasons explained before. Com-
paring eqs. (5.6.9) with (5.6.11), we get, for p > m,

3

o (5.6.12)

Avtont (1) = Agp(m) +

We can finally answer the previous questions: is it meaningful to talk about running
coupling? If so, how do we determine the “correct” running? There is no notion of
“correct” coupling. The running given by any sensible scheme is meaningful, provided
we consistently associate it to expressions computed in that scheme. The simplest mass-
independent schemes and their associated simple running, can reliably be used in the
UV, and then matched, by means of formulae analogous to eq. (5.6.12), to the physically
defined coupling constants. Unless differently specified, in the rest of these lecture notes

we will adopt the MS renormalization scheme.

91



5.7 Leading Logs and Callan-Symanzik Equations

In section 5.2 we have seen that the [-function allows us to improve the perturbative
expansion by resumming large logs. However, it was not clear from our derivation that
the resummed expression (5.2.13) captures exactly all higher-loops leading logs. The
Callan-Symanzik equations allow us to fill this gap. Although this result is effectively
encoded in eq.(5.4.15), it is more transparent to work out the explicit form of the solution
(5.4.15) in perturbation theory, which is what we will do in this section. As usual, for
concreteness we consider I'® in the A¢* theory, though the derivation is more general. At
high energies, neglecting masses and taking s =t = u = —E? > m? T (E) is a function

of A and p/E. In perturbation theory we can then write

r(E) = -x i MNe(u/E), (5.7.1)
=0

where ¢; are functions to be determined, and ¢y = 1. This expression should satisfy the
Callan-Symanzik equation

d o
9 4 _ @ (g —
(’“‘aﬂ By 47> rE) =o0. (5.7.2)

In perturbation theory, 8 = BoA? + B3 + O\, v = 1A + 1A% + O()\3) and eq.(5.7.2)
should be satisfied order by order. At the first non-trivial order O(\?) we have, recalling
that v =0,

uoucr = =By — a1 = —PFo log% +Cq, (5.7.3)

where C} is an integration constant. At O(A\3) we get

10uca = —2Bpc1—P1+4y1 =0 — g = B3 log? %+(47175172ﬂ001) log %H}Q. (5.7.4)

Proceeding in this way allows us to establish an important result. At loop order [ the
Green function is a polynomial of degree | in log u/E. At high energies the most relevant

terms at loop [ are the log! terms (the leading logs). These are entirely determined in

terms of Sy:
— (VN nel -1 K
= (=fo) log' & + 0(log E) . (5.7.5)
Resumming these terms give
FO(E) = - (oM logl (/) = — 2 (5.7.6)
=0 1 — BoAlog m

If we take 1 = m in eq.(5.7.6) and recall that By = 3/(1672) we precisely recover

eq.(5.2.13). This proves that there are no extra leading logs contributions that are not
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captured by the g-function. More in general, the leading log contributions of a correlation
function also depends on the anomalous dimension coefficient ~p.

This analysis can be repeated to sub-leading orders (next-to leading logs, etc.). For
example, by knowing the two-loop coefficients p1, 71 and the integration constant Cy
allows us to determine the next-to-leading logs, such as the log term in eq.(5.7.4), at any

l—n

loop order. More in general, the series of logs of the form log at loop order [ can be

determined from the knowledge of By, ..., Bn, Y05+ --5Yn, C1y--.,Chp.

5.8 “Irrelevant” RG Flow of Dimensionful Couplings

Depending on the energy scale, relevant and irrelevant operators parametrically either
dominate the physics or are negligible. For instance, in the IR relevant operators, such
as masses, are the dominant effect, while in the UV irrelevant operators make a theory
ill-defined. We focus here on a perturbative situation in which the (ir)relevant operators
can be seen as a small deformation in the theory. For instance, the effect of a mass term
in the UV or the insertion of an irrelevant operator in the IR.

The concept of sliding scale and running coupling can be extended to relevant or
irrelevant couplings, but care should be paid in this case to the scheme dependence of the
results. Let us first consider irrelevant couplings, assuming that no relevant couplings are
present or that their effect is negligible. In general, in presence of marginal and irrelevant
couplings, the S-function coefficients are scheme-dependent even in the limit where mass
effects are neglected. If we denote by g; and g; two coupling constants with classical mass

dimension A; in two different schemes, we have

Gi = gi + air()gign + O(g°) (5.8.1)
where by dimensional analysis

aiji(p) = B By, (5.8.2)

and c;;;, constant coefficients. The perturbative expansion of the S-functions for the g;’s

read
Bi = u% = 85" () gjge + O(g°) (5.8.3)
where
() = A A=Ak pigk (5.8.4)

On the other hand, in the other scheme we have

o d_.az _ Dijk

Bi=nigy =B (039 + 0@). (5.85)
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where
Bk () = i Ba= gk R gk (A — A — A). (5.8.6)

Universal coefficients arise only when A; — A; — Ay, = 0. Renormalization schemes where
classical dimensional analysis is preserved at the quantum level (i.e. where no powers of
 can be generated from quantum corrections), like MS or MS in DR, give automatically
béj ¥ = 0 when A; — Aj — Ay # 0, and only keep the scheme-independent coeflicients.
This is related to the property of dimensional regularization of setting to zero all power-
like divergences, keeping only the logarithmic ones. Logarithmic divergences are special,
because they are the only ones not saturated by UV physics, and sample uniformly all
energy scales, up to the IR. Since the IR physics should be insensitive to the details of
the different renormalization schemes, it follows that the associated S-function coefficients
should be scheme-independent.

For illustration and in order to be concrete, consider again the \¢* theory, but this
time in five space-time dimensions, and let us compute the one-loop RG evolution of .
In five dimensions the ¢* theory is non-renormalizable and A is an irrelevant coupling
of mass dimension —1. In presence of irrelevant couplings, dimensional regularization
can no longer be considered a mass-independent scheme, since by dimensional analysis
the g-functions can have a dependence on masses. If we neglect mass terms, however,
dimensional analysis dictates that the irrelevant coupling with the smallest dimensions, A

itself in this example, has a vanishing S-functions to all orders in perturbation theory:
A
Y =o. (5.8.7)

There is no analogue of the log resummation needed in treating marginal couplings and
hence no need to improve the perturbative expansion.

Let us see what happens in a mass-dependent scheme. It is convenient to introduce a
mass scale M and write the interaction as \/M¢*, with A dimensionless and of O(1). The
scale M is the scale below which this theory makes sense as an effective field theory. We
assume that the size of all dimensionful operators is governed by this scale, that is any
dimensionful coupling of mass dimension —n can be written as a dimensionless coupling
of order one times 1/M™. Let us focus on the 1PI 4-point function. This is linearly
divergent in a cut-off regularization and can be renormalized by momentum subtraction
using eq. (5.2.4), with A — A/M. The finite, 1PI four-point function, the 5d analogue of
eq. (5.2.3), is

2 1
Fé%i)(svtu) = _% - 32)\7‘_#]\;2/0 dx (\/m2 —S.%‘(l — x) - \/m2 +M2x(1 —x))

+(s—=t)+(s—u). (5.8.8)
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The logs are replaced by square roots in 5d. In order to see that the sliding scale is not
of great help, fix, say, 4 = 0 and consider the high energy regime —s > m?. Like the 4d
case (5.2.4), the one-loop term grows and can in principle be comparable to the tree-level
term. This will occur at energies \y/|s|/(3272M) ~ 1, which implies |s| > M?. But this
is beyond the regime in which the effective field theory makes sense, which is |s| < M?!
There is no energy regime in which the perturbative expansion can be improved by some
RG resummation. The theory is simply weakly coupled for energies below M and becomes
strongly coupled for energies above M. Nevertheless, there is nothing intrinsically wrong
in introducing the sliding scale p, so we can keep going and compute the S-function for A

by using the CS equations (5.4.3). In this way we get the 5d analogue of eq. (5.2.8):

32 ! wra(l —x)

da +0(\3). 5.8.9
32m2M Jo  /m2 4 p2x(1 — x) 9 ( :

A
5§d) =

For 1 > m this simplifies to

W) 3NV
~ 2AVIT . 8.1
Bsi = opgars  H>M (5:8.10)

The approximate solution of the RG flow is

A
Aoy (p) =~ " 3“”552) % [0, p1 > M, (5.8.11)
~ 2567 \H T Ho
Arr(pn) =~ constant, pLm. (5.8.12)

Let us finally compare the Fg;) one obtains with and without the use of the RG technique

at high energies (the analogue of eqs. (5.2.12) and (5.2.13)) for s =t = u = —E% > m?:

A 3NE
F(4) ~

5d (B) - " weap O\, (no RG) (5.8.13)
i) (B) =~ —A](\f) = 1?@% +0(\). (RG) (5.8.14)
2567 M

Like in 4d, eq. (5.8.14) reproduces the one-loop result (5.8.13) and, in addition, encodes
higher order terms. However, in contrast to the 4d case, the higher order terms are
scheme-dependent and are not “special” in the perturbative expansion. They are of order
NFAL(E/M)!, which is the order expected for a generic I-loop computation. There is no
analogue of the logarithmic enhancement found in the 4d case. Hence eq. (5.8.14) should
only be trusted at O(A?), in which case it merely reproduces the perturbative result
obtained with no RG technique.

The vanishing of 5;2) in DR at one-loop level is immediately seen by noting that the

one-loop integral is proportional to I'(2 — d/2). No divergence then occurs because the
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(analytic continuation of the) Gamma function is well-behaved for negative half-integers
values of its argument.

Scheme-independent [-functions can occur in this example for higher dimensional cou-
plings. Consider for instance the dimension 9 operator ¢%, that will be generated at some
order in perturbation theory due to the non-renormalizability of the theory. Its coupling
g has classical dimension —4, so by dimensional analysis we expect in a mass-independent
scheme

BY) — eat, (5.8.15)

where ¢ is a generally non-vanishing constant.'® Since A does not run, the solution to
eq.(5.8.15) is simply

9(1) = g(po) + cA*log (%) : (5.8.16)

We see that log terms can appear but in a rather dull way. Moreover, we should keep in
mind that log’s grow slowly and the range of energies we can explore is limited by the

range of validity of the non-renormalizable effective theory.

A similar analysis can also be made for relevant couplings, with the obvious crucial
difference that their effect decreases, rather than increases, in the UV. An example is once
again provided by the ¢* theory, this time in three dimensions, where the theory is super-
renormalizable. The coupling A has classical mass dimension 41 and in mass-independent

schemes, and to all orders in perturbation theory, we have
Y=o, (5.8.17)

while in mass-dependent schemes 512,2) £ 0.1

5.9 “Relevant” RG Flow of Dimensionful Couplings and Renormaliza-

tion of Composite Operators

We have seen in section 5.8 that the use of RG techniques applied to relevant and irrelevant
couplings is not always as useful as in the standard situation where we have marginal
couplings only. We have provided an example, the ¢* theory in 5 space-time dimensions,

where all couplings are irrelevant. In presence of marginal couplings, the situation changes.

0By dimensional analysis other terms could appear in eq.(5.8.15), proportional to couplings associated
to operators of dimension 7 and 8. These operators are however redundant and by the equations of motion

(or equivalently a field redefinition) can be removed. We will discuss redundant operators in section 7.8.
HRG techniques can be used in this theory in another way, by introducing the so called e-expansion

[21]. This is a very interesting and useful technique, which will not be discussed here due to lack of time.
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In a theory where marginal and (ir)relevant couplings are present together, the former can
lead to large logs effects on the latter that should be summed. In other words, the quantum
RG flow of (ir)relevant operators, induced by marginal couplings, can and should be taken
into account. This is what we mean by “relevant” RG flow in the title of this section.

If we denote by ¢ the coupling constant associated to the classically lowest dimensional
irrelevant operator O, assuming it to be unique for the moment, dimensional analysis

requires that to all orders in perturbation theory'2

Be = f(Xi)e, (5.9.1)

where we have denoted by \; all the marginal couplings in the theory. Note that (5. can
have only a linear dependence on the coupling constant ¢, but an arbitrary dependence on
the marginal couplings \;, parametrized in eq.(5.9.1) by the function f. The function f
corresponds to the anomalous dimension of the operator O.. Before showing this result,
let us first introduce the concept of composite operator and its corresponding anomalous
dimension.

Composite operators are obtained by taking products of elementary fields (and their
derivatives) at the same space-time point. At the quantum level, when two fields approach
the same space-time point, UV divergences arise. Naive product of fields does not hold, i.e.
#?(x) # (¢(z))?. Indeed, we know that (¢?(z)) # ({(¢(z)))?.1? For this reason, correlations
functions involving composite operators are divergent, even in a renormalized theory where
the infinities have been already buried in the counter-terms. Such additional divergences
are removed by a renormalization of the composite operators themselves, generalization of
the wave-function renormalization of the elementary fields. Composite operators can be
relevant, marginal or irrelevant: ¢2, ¢*, (9¢)?, ¢°, (9¢)*, 0,90, 9, 8,18V8p¢4, etc. are all
composite operators. They can in general carry Lorentz quantum numbers (spin), so we
can have scalar operators, as well as tensor operators, like the last two illustrated above.
If we denote by O a generic composite operator, in analogy to the elementary field case,
we write the bare operator OF = O(u)Z ().

Let G be a generic n-point connected Green function of n operators ©;:

n

G (w1, o) = (OF (1) .. OZ(p)) = [[ 2O WE W (01, pa) . (5.92)

i=1

12 Again, this is only true in a mass-independent scheme. From now on, the use of a mass-independent

scheme will be assumed.
13In the operatorial formalism, where ¢ is an operator in the Hilbert space, some (in general not all)

divergences of composite fields are removed by the normal ordering procedure.

Composite or elementary. In the latter case Z%(u) = /Z ().
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The straightforward generalization of the CS egs. (5.4.3) — which are also valid for con-

nected, rather than 1PI, Green functions — are

9 ) i - O; (n) _
where Jlog 70
Oi(y) — og L™
19 = = (594

is the anomalous dimension of the operator O;. In general, the situation is more com-
plicated, because operators with the same quantum numbers typically mix under renor-
malization.'® The anomalous dimension becomes then a matrix of anomalous dimensions:
OF = Z3(1)0;(p) and
dz2.
O\—1 k
150 = (29 gL (59.5)

We can now come back to our original problem of studying the RG evolution of an

irrelevant coupling driven by marginal couplings, and show that the function f appearing
in eq.(5.9.1) can be identified with the anomalous dimension of its corresponding operator
O.. Let us denote by G a generic n-point Green function obtained from a Lagrangian
containing, besides marginal interactions, the term c¢O.. We can bring down from the

action the term ¢QO,. so that (in momentum space)

G (epryeeipn) = (@(p1) - Spa))e = Y (@(p1) - 6(Pn)O2(0))o

G"R(0,p1,....pn).  (5.9.6)

Il
Mg
~
e
AN AL
ES)

k=0
The CS egs. satisfied by the G*) are
9 9 0 (n.k)
u@ + ﬂi()\)ﬁ +ny+EkyCe(N) ) GVM(0,p1, ... pa) = 0. (5.9.7)

We can multiply eq. (5.9.7) by (i) /k! and sum over k to write

3 . 9 Oc ﬁ (n) .
<M3M+Bz(/\)mi+m+cv (\) )G (¢,p1y...pn) =0, (5.9.8)

oc

where we used that cdG™ /0c = 3, k(ic)* /kIG™F). The B-function for ¢ can be identified
by looking at the term multiplying 0/9c. We then have

Be = (N), (5.9.9)

15The degree of mixing depends on the renormalization scheme. In particular, operators with different

classical dimensions cannot mix in mass-independent schemes in theories with marginal couplings only.
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where the anomalous dimension WO()\Z-) is computed in the theory with ¢ = 0. Comparing
eq.(5.9.9) with (5.9.1), we see that

f=7°. (5.9.10)
Let us solve the RG flow eqution (5.9.9) in the case in which we have only one marginal
coupling A, with Y9 () =40\ + ..., Br(A) = boA? +.... In this case, using the chain rule,
we can rewrite eq.(5.9.9) as

LEH0) =), (5.9.11)

that, at leading order in A\, admits the solution

(1) = (o) ( Q%) " (5.9.12)

We see how the RG flow of the marginal coupling A(u) drives an RG flow for the irrelevant
coupling ¢, with an effect that sensitively depends on the anomalous dimension of the
operator O, (determined by 7p) and of course on the running of A (determined by by),
that enters both explicitly and implicitly in defining A(u) in eq.(5.9.12).

More in general, if the lowest dimensional irrelevant operator is not unique, we can
have a set of operators ¢,O, that mix under renormalization. Repeating the analysis
above, we get

Ben = Yam(A)cm - (5.9.13)
In many cases eq.(5.9.13) is enough to have a good description of the physics because, by
definition, irrelevant couplings are small in the IR and the lowest dimensional ones capture
the main effects we want to study.'®

Irrelevant operators can also come from an underlying renormalizable theory when
some degrees of freedom are integrated out. We will study this topic in chapter 7, where
we will also consider an explicit example of RG flow of an irrelevant coupling.

The above analysis can be repeated in the case in which c is a relevant operator. We
will not repeat the general analysis for relevant operators, but focus on the particular
case of the mass term, which is a relevant operator. The physical mass, defined in a
mass-dependent scheme as I'?) (p> = m?) = 0, cannot depend on the energy scale. But
non-physical masses in mass-independent schemes do have such a dependence. This is
particularly simple in a theory with no irrelevant couplings where, by dimensional analysis

and to all orders in perturbation theory, we have

Bz = ym(Ni)m?, (5.9.14)

16 Unless selection rules require to consider higher dimensional operators. Moreover, this is only true

in a perturbative context. At strong coupling everything can possibly happen, e.g. a classically irrelevant

operator might turn into a marginal or even a relevant operator.
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where 7, is the anomalous dimension of the mass operator. In the ¢* theory the composite
operator associated to the mass is ¢?, v, = 7¢2. It is a useful exercise to determine 7¢2
at one-loop level. This can be derived by studying the Green function GZ1) = (ppp?).
Since Z = 1 at one-loop, we have G = (Z¢2)_1Gg’l). The divergent part of G21) is

readily computed by setting the external momentum to zero. We have

d 2
CR VP B ) 1
GB,dlv(O) ? / (27T)d (p2)2 1671'26’ (59 5)
and hence \
70 1.~ 5.9.16
1672¢ ( )
Recalling that S(A) = —eX + O(1) in d dimensions , one gets
»? A
d)z:dlogZ _ 5017
dlog 1672 (5:9.17)
Using eq. (5.9.14), we conclude that
A
_ 2

We can also get eq.(5.9.18) directly, by-passing the above analysis. The one-loop mass
correction in the ¢* theory is given by the tadpole graph in fig. 5.2. In DR, the one-loop
1PI 2-point function reads

. d . .
(2) :—z,u)\/dk‘ i Y S (%) [2-d/2) 4., .
i (p) 5 n) =2 10 SAAE (1= d)/2) m 0 . (5.9.19)

In the MS scheme the counter-term is

2

m2\

so that the tree+1-loop 1PI 2-point function reads

m2\ w2
F(Q) (p) _ p2 _ mi/TS_F 392 (1 + log W) . (5.9.21)

In the physical scheme we simply have
@ (p) = p* —m?, (5.9.22)

with no finite one-loop corrections left, where m is the physical, p-independent, mass.
Matching eqs.(5.9.21) and (5.9.22) gives

m2\

3272

2

(1 +log %) , (5.9.23)

m? = mi(n) —
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Figure 5.2: One-loop tadpole graph contributing to the renormalization of the mass in the
¢* theory.

and hence
0= 8 _ g, mA
_Md,u — Pt T 16m2

which reproduces eq.(5.9.18), as expected.

2 A

2 _
+O()‘ ):ﬂmQ_m 1672 °

(5.9.24)

The use of pu-dependent masses is unavoidable when using mass-independent schemes
such as MS or MS. There is nothing wrong in computing amplitudes in terms of unphysical
masses (like the mass terms in the MS scheme), in which case RG flow techniques should
be used to relate mass terms at different energy scales. Eventually one relates these masses
to the physical ones, using formulae like eq. (5.9.23). As a matter of fact, MS masses are
often used in the literature, being the MS scheme one of the most popular schemes in
perturbative computations. For particles like quarks that do not appear in asymptotic
states and for which the direct physical mass definition is unavailable, the story is more
complicated. The MS quark mass, for example, can be defined to be mlg\/TS(M ), evaluated
at some indirectly derived “pole” mass M. For a heavy quark, for which M > Agcp, the
mass M can roughly be computed as the mass of the meson bound states QQ divided by
two. For light quarks, M can be computed using chiral perturbation theory, as explained

in section 8.7. For M ~ Agcp, more complicated procedures are needed.

5.10 RG Improved Effective Potential

The RG technique is also useful in the context of effective potentials. The summation
of LL leads to so called RG improved Effective Potentials. Our favorite ¢* theory is
particularly instructive in this case, since it shows how RG improved potentials help us in
correcting fake perturbative results. We have seen in section 4.2 that the CW potential
for a massless ¢* theory reads (omitting the irrelevant constant term):

#?

log 2. 5.10.1
556,27 18 52 ( )

A
Verp(®) = I¢4 +
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where ¢ is an arbitrary fixed energy scale. Let us look for the extrema of ¢:

d e 3 - w2
= V(Z;w) = 32’47);2 (6472 + 3\ + 6Alog % /¢3) = ¢ = 0,6 = £ = tgpe (it 53 ).
(5.10.2)

The classical minimum at ¢ = 0 turns into a maximum and two new symmetric minima

0

arise at +¢. The one-loop truncation of the potential is reliable provided the tree-level

term is greater than the one-loop term, namely for field values such that
3\
— 1 1. .10.
16211089l < (5.10.3)

The condition (5.10.3) is manifestly violated at the minima |¢|, so we cannot trust the
result we have found for such small values of ¢. This problem is easily solved by RG

arguments. Let us define a running coupling A(u) by

A
Vers(¢ = p) = —Eff) ut. (5.10.4)
In terms of A(u) the potential reads
\ 22 ¢2
Vors() = ot + S otog 4. (5.10.5)

We already know how A(y) flows with the energy scale, but it is instructive to see how
the B-function for A can be computed by demanding the p-invariance of Veyr. Recalling

that 74 = 0 up to one-loop level, we get

 dVigy ot A2t 3 S
By choosing p1 = ¢ in eq. (5.10.5), we can get rid of the log term and write
M) 4 Ao ¢!
Vers(9) = —7¢" = —x TR (5.10.7)
4 1 — 5% log - 4!

where ¢q is an arbitrary scale. The minima at ¢ = 4¢ have disappeared in the poten-
tial (5.10.7), which manifestly increases monotonically when ¢ increases. The potential
(5.10.7) is the RG improved version of the effective potential (5.10.1). Expanding the log
term in eq. (5.10.7), we recover eq. (5.10.1) plus all the LL terms summed by the RG
technique. The origin of the fake result (5.10.2) should now be clear. The minima at
¢ = +¢ were obtained by forgetting the large log’s that appear for so small values of ¢
(small energies). Being the ¢* theory free in the IR, the effective coupling at such small

energies becomes smaller and smaller and the actual minimum is in fact the tree-level one.
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5.11 Anomalous Dimension of the Photon and QED S-function

The WT identities imply that the radiative corrections to the photon propagator are
transverse to all orders in perturbation theory, as described by eq. (3.3.5). It is useful to
explicitly check this result at one-loop order. In so doing, we will determine the one-loop
counter-term Z3 defined in eq.(3.3.11). Once Z3 is known, we can compute the photon
anomalous dimension and g-function for e. The only one-loop graph contributing to the

photon propagator is the electron loop:

k
y B 9. dk il +m) i +#+m)
wqw@wm = M) = (DT [t T
q+k

(5.11.1)

We can bring together the two electron propagators appearing in eq.(5.11.1) by introducing

the Feynman parameter x:

-2

% = /01 dx [ax +o(1—2)| . (5.11.2)

Performing also the Dirac algebra, we have

d 2 .
) = —deu / /dk ku(k + @)y + ky(k+ @) + (m° — k- (g + k)1 (5.11.3)
k2

2
—m?)(1 —z) + z(q + k)2 — xm?
Let us now redefine k — k — g, so that the odd term k- ¢ in the denominator is cancelled.
By symmetry, after the momentum shift, the terms in the numerator odd in k vanish. We
have then

d?k 2(kuky — ququr (1 — 2)) + N (m? + ¢?x(1 — 2) — k?)
(1 _ 2 € nlv s
I, de,u/ / (Z—A)2 .

(5.11.4)
where A = m? — ¢?2(1 — z). Recall that k,k, £ (k*/d)n,, and perform then the Wick
rotation to euclidean signature: k¥ — iky, k? — —k?. After these steps, eq.(5.11.4) is

rewritten as

(1 —2/d)k*n,, + (m2 + ¢?x(1 — z))nuu —2quqpx(l — )
H = — .
1 ide*p / dx/ EWNE
(5.11.5)
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Let us now focus on the divergent part of eq.(5.11.5), i.e. to the 1/e pole. Using the tricks

described in section 3.4, we immediately get

1
Z'H(l)div. — _Z'de_z/ dx (1 _ 2)7] 1/(_2A) + (mZ +q2x(1 _x))n . _2q q,,x(l —33)
1224 87‘(26 0 d 122 12 1
, e? 4N 1
= (e’ — quqy)@( - g) - (5.11.6)

The one-loop correction HE},} is in the transverse form expected from the WT identity

(3.3.5). The value of the counter-term Z3 needed to cancel the divergence (5.11.6) is (see

fig.3.2) ,
e” 1
J3=1— —— 5.11.7
3 6m2 e’ ( )

where we used here the MS subtraction scheme. The photon anomalous dimension is
_ 1dlog Z3 e éd) 1

= = - 5.11.8
2 dlog i 672 € ( )

YA

where ﬂéd) is the QED S-function in d (and not 4) dimensions. This is easily determined
from eq.(3.3.13), that in DR reads ep = Z;I/Q,ue/% (recall the identity Z; = Zs). Since

the bare charge ep does not depend on p, we have

0= M‘f—j - Z;”Q( —evat %ee n 5&”) = p = f%ee Feva. (5.11.9)
Plugging eq.(5.11.9) in eq.(5.11.8) gives, up to order €2,
o2
VA= T3 (5.11.10)
In turn, eq.(5.11.10) allows us to determine the actual 4D S-function S.:
3
fe=era= 157 (5.11.11)

It is useful to write the RG behavior in terms of o = €2 /(47) and solve for its inverse.
One gets, for ug, u > m,

2
- —1

- - 7
a () = o Huo) 308 (5.11.12)

For 1 < m, instead, like for the coupling A in the ¢* theory, o does not run and its value is
approximately given by a(m). We are clearly assuming here that there is a single charged
particle. In presence of more charged particles with different masses, o stops running at
the scale given by the lowest charged particle. Notice that in the real world, where the
electron is the lightest charged particle, the absence of massless charged particles is crucial
to prevent the electric charge (and hence all electrodynamical interactions) to vanish in
the far IR.
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Chapter 6
Non-Abelian Gauge Theories

6.1 Introduction and Classical Analysis

Non-abelian gauge theories are at the base of our current understanding of particle physics.
Both the strong and the electroweak interactions are described in terms of them. These
theories are based on a generalization of the QED U(1) gauge symmetry, where two trans-
formations do not necessarily commute with each other (hence the name non-abelian).
Before describing them, let us quickly review the role of the U(1) symmetry in QED. We
assume an invariance of the Lagrangian under local (i.e. space-time dependent) trans-
formations parametrized by a function A(x), under which any field ¢ carrying charge ¢

transforms as

() — @ y(z) . (6.1.1)

Due to the space-time dependence of the transformation, the derivative of the field 9,4

does not transform covariantly:
B (x) — M@ (aﬂw(x) + iqw(m‘)aﬂ)\(x)) . (6.1.2)
We then add a gauge field (photon) A, that transforms inhomogeneously:
Ay(z) = Ay(x) + A (), (6.1.3)

that allows us to define a new (covariant) derivative transforming covariantly under U(1)

gauge transformations:
Dyt(w) = 8,(x) — igAu()b(@) » XD D,p(w) (6.1.4)
Under infinitesimal U(1) transformations parametrized by e(z) < 1, we have
5ab(@) = ige(@)dl(e), 6 Au(x) = Duc(a). (6.1.5
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The QED Lagrangian is constructed by forming gauge invariant combinations of v, D,
and of the field strength
F,, =0,A,—0,A,. (6.1.6)

Non-abelian gauge theories are constructed by generalizing the above construction to a
set of fields (scalars or fermions) v, with [ labeling the different fields. We assume that

under an infinitesimal gauge transformation, the v; are rotated among each other:
dethi(w) = i€ (ta)]" hm(2) , (6.1.7)
where t, are a set of constant matrices, labelled by the index «, satisfying the relation
[ta,ts] = iCgty - (6.1.8)

The coefficients C’gﬁ are a set of real parameters denoted the structure constants. They
are manifestly antisymmetric in the two lower indices: Cgﬁ = —Cga. We have written
the index v upstairs, because in principle there might be a non-trivial metric g,5 in group
space, to raise and lower the group indices. In the physically most interesting cases, this
metric can be chosen to be the identity. From now on, we will assume a trivial group
metric. Correspondingly, the position of the indices «, 3, etc. will be irrelevant. In this
case, it can be shown that the structure constants Cg, become antisymmetric in all three
indices.

Matrices satisfying the condition (6.1.8) form a so-called Lie algebra, namely they
define infinitesimal transformations of a so called Lie group. Differently from the QED
case, the group of transformations (6.1.7) is multidimensional and this explains the origin
of the index «, that runs from 1 up to dim G, the number of dimensions of the group.
The matrices t, are nothing else than a set of generators of the Lie group, meaning that
any group transformation can be written in terms of these matrices, that are linearly
independent from each other. Like any set of matrices, the t,’s also satisfy the so called
Jacobi identity

[ta:t6). ] + ([t tal. 5] + (1752 ). 0] = 0. (6.1.9)

Using eq. (6.1.8), this identity implies the following constraints among the structure con-
stants:
“sCl + C2,Cls + Cy.CO, = 0. (6.1.10)

Depending on how many fields ¢; we have, the matrices t, are said to be in different
representations of the Lie algebra. In general, there is an infinite set of matrices (of
different size), satisfying egs. (6.1.8) and (6.1.9). Among these, a special role is played by

the “adjoint” representation. This is the representation in which the generators 39 are
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dim G x dim G matrices, i.e. the indices [,m coincide with the indices «, 8. An explicit

form of this representation is given by
Adj .
(A9 =ich,. (6.1.11)
Indeed, it is straightforward to check that the Jacobi identity (6.1.10) can be rewritten as
[tad t5Y) = CO gt (6.1.12)

We do not enter here in any detail concerning the definition of Lie algebras, Lie groups,
etc., because all this will be extensively treated in the group theory course. However, we
need to introduce another relevant representation, the fundamental. It might be useful to
consider a simple example of non-abelian Lie group, G = SU(2). SU(2) is defined by the
set of 2 x 2 unitary matrices UT = U~! with unit determinant (that’s why the name S(for
special, with unit determinant)U(for unitary)(2)). It is straightforward to check that this

set is in fact a group and it is three dimensional. Any SU(2) matrix U can be written as
U=e¢ewWala =123, (6.1.13)

where t, = 0,/2 and o, are the usual Pauli matrices

01 0 — 1 0
g1 = s g9 = s 03 = . (6114)
10 1 0 0 -1

The structure constants are
Capy = €apy > (6.1.15)

where €,4, is the completely antisymmetric tensor, with €123 = +1. The above 2 x 2 matri-
ces tq, that enter the definition of the group SU(2), form the fundamental representation.
The 3 x 3 matrices (6.1.11) define instead the adjoint representation. We can then have
field “doublets” D; (I = 1,2), that transforms as D; — Uy, Dy, with U as in eq. (6.1.13)
or field “triplets” T; (I = 1,2, 3), transforming as T) — (UA%Y),,, D,,,, where

UAY — giwata® =123, (6.1.16)

In addition to the fundamental and adjoint representations, there are an infinite number
of other irreducible representations, labelled by the angular momentum J, of dimension
2J + 1, with J any positive integer or semi-integer number.

Similar considerations apply for more general groups, such as SU(N), with N > 2, or
SO(N), with N > 3. Instead of defining dimr x dimr matrices U", for each different

1The group SO(3) is locally isomorphic to SU(2) and is defined by the same 3 generators t4%" introduced
above for SU(2). The group SO(2) is isomorphic to U(1).
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representation r, it is practically more convenient to write the transformation properties of
r in terms of, say, the matrices U in the fundamental representation. All we need to know
is how the representation r in question appears in the tensor product of fundamentals.
For instance, for SU(N) groups, we have N ®@ N = N? — 1 @ 1, where N and N are the
fundamental and anti-fundamental (i.e. complex conjugate) representations, and N2 — 1
is the adjoint one. A field ¥ in the adjoint representation of SU(N) can correspondingly

be written as an N x N matrix field 1);;, transforming as
Y — UyUT. (6.1.17)

Coming back to physics, given the transformation (6.1.7), we add gauge fields A}, one
for each independent direction in field space, so that we can form a covariant derivative.
In analogy to the U(1) case, the transformations of the gauge fields Af; must contain a
term of the form 0,e*. Contrary to the U(1) case, this cannot be the end of the story,
since « is an index in the adjoint representation. The natural guess for the infinitesimal

transformation of Afj is then
. 3, ,Adj.
SAS = Due +ieP (1503 A) = 0™ + Cg Al (6.1.18)
The covariant derivative is defined as
Dﬂiﬁl = au’(/)l - iAzf(ta);n’(/)m . (6119)

It is straightforward to show that this guess is in fact correct and the covariant derivative

transforms as it should:
§(Dprh)i = i€ (ta)]" (Dpt)m- (6.1.20)

It is often convenient to write the components of the gauge fields A7 in matrix form by
defining
Ay = At (6.1.21)

For simplicity of notation we have omitted, and from now on will be done most of the
time, the gauge group indices in eq. (6.1.21). The finite form of eq. (6.1.18) is easily found
by demanding that the gauge transformed connection A — AV, is such that

D, (A = UD, (A (6.1.22)

for any field in a given representation 7, transforming as v — Y = U, where U is
defined as
U(z) = ette@ta (6.1.23)



We have
(Ou—iA) Y — 0,(Uy)—iAY Ut = U (0,1 —iAuh) +(0,U) e+ (iU A, —iATU ) . (6.1.24)
Demanding that the last three terms in eq. (6.1.22) vanish uniquely fixes

Al =UAU —i(0U)U ! (6.1.25)

The first term in eq. (6.1.25) is the one expected from a field in the adjoint representation
(see eq. (6.1.17)), while the second is the inohomogenous one characterizing a gauge con-
nection. For the U(1) case the index « is trivial and eq. (6.1.25) reduces to eq. (6.1.3), with
A = X. For infinitesimal transformations, A, = €4, the transformation (6.1.25) correctly
reproduces eq. (6.1.18), as it should.

The generalization of the U(1) field strength F,, = 9,4, — 0,4, can be found by
recalling that for any field i) with charge ¢, the field strength is proportional to the
(commutator part of the) action of two covariant derivatives acting on the field itself.

Taking ¢ = 1, we have
D, D) = (0, —iA,) (0, —iA,)Y = (0,0, — 10, Ay, — 1A, 0, —i1A,0, — AyAL)Y . (6.1.26)

Only the second term in the above equation survives when we take the antisymmetric
combination in y <> v:
(D, Dyt = —iF1. (6.1.27)

The field strength in a non-abelian gauge theory can be defined by generalizing eq. (6.1.27).
Denoting ¢ a field in an arbitrary representation of the gauge group, eq. (6.1.26) still

applies, but now the last term does not vanish, since A, is a matrix. We have
(D, Dy = —i(0, A, — 0, A, —i[A, Ay = —iF1). (6.1.28)
In components, F,, = Fﬁytc¥7 with
Fg, = 0,AS — 0,A% + Cop, AD A . (6.1.29)

Contrary to the abelian case, the field strength F},, is not gauge invariant. Its transfor-

mation properties can easily be found by considering the gauge transform of eq. (6.1.28):
[Dyy, D)t = U[Dy, DyJth = —iUFpptp = —iF Y (6.1.30)

from which we immediately get
Fo, =UF,U". (6.1.31)
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In non-abelian gauge theories the gauge field strength transforms in the adjoint represen-
tation of the gauge group. The most general gauge-invariant Lagrangian can be written as
a Lorentz invariant functional of matter fields and their covariant derivatives, and of the
field strengths F),, and their covariant derivatives. At the level of dimension 4 (or less)

operators, we have

L= Ly + Litatter (6.1.32)
where
1 17
EYM = —@’I‘r F[LIJF“ 5 (6133)
Liatter = Z@z(@ — m ) + Z |Dud; > — V(i 05) - (6.1.34)
? J

In eq. (6.1.33), we have introduced a dimensionless parameter g that is identified as the

gauge coupling constant of the non-abelian theory. By rescaling the gauge fields as
AL — gAy (6.1.35)

we get canonical kinetic terms, having normalized the generators as

528
TP = — (6.1.36)

in the fundamental representation. The coupling g now appears in all covariant deriva-
tives in the matter sector and in the self-coupling of the gauge fields in the Yang-Mills
(YM) Lagrangian. Gauge invariance requires that the same coupling g governs all these
interactions. In eq. (6.1.34) ¢ and j run over all fermions and scalars in the theory, D,
are the covariant derivatives in the appropriate representations and V' encodes the scalar
potential of the scalar fields ¢; and their Yukawa interactions with the fermions ;. Gauge
invariance requires that 6.V = 0.

The carriers of the force associated to the non-abelian group, that we generally denote
by “gluons”, are themselves subject to the force they carry. The equations of motion

(e.om.) for A deduced from the Lagrangian (6.1.32) are

6£M atter

— B
G“Féw = —gCalg’yAuFf;l/ — W

=-J (6.1.37)
where J are the dim G conserved currents associated to the symmetry group G:
0uJY = 0. (6.1.38)

The e.om. (6.1.37), written in terms of J' are not covariant. It is convenient to shift the

gluon contribution to the current, the first term in the second relation in eq. (6.1.37), to
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the left-hand side of that equation. In doing so, the e.o.m. read
D, Ft = —JF, (6.1.39)

where

D FI =8, Fi —ig(ty¥)a, ASFI™
o 0L patter 0L Matter (6140)

Jg = = (—igta\I/[) .
A 3D,V ;

In eq. (6.1.40) we have rewritten the form of the current J3 to make explicit its covariant
properties, in contrast to to the conserved current J,;". The field ¥ encodes both fermions
and scalars and I = (i,7). The current Jg is covariantly conserved, namely D,J& = 0.
Indeed,

DyJt = —DyDyFi” = [Dy,, DJFY = iF[,(t4")an FI = Copy Fi, FI = 0. (6.1.41)

The field strength F),, satisfies another important relation, called Bianchi identity. It is a
consistency relation, and can be derived starting from the Jacobi identity (6.1.9), applied

to covariant derivatives:
[Dy, Dy, Dyl + [Dp, [Dy, D)) + [Dy, [Dy, D] = 0. (6.1.42)
Using eq. (6.1.27), we can rewrite the above expression as
D,F,,+D,F,, +D,F,, =0. (6.1.43)

It is a straightforward exercise to show that eq. (6.1.43) is identically satisfied.

6.2 Quantum Treatment: the Faddeev-Popov Method

The quantization of gauge theories is non-trivial. The essential point is that Lorentz
invariance forces us to describe helicity-one fields in terms of a four-vector field, but the
latter has four components, and hence more degrees of freedom than necessary. The time-
component of a vector field, in addition, is problematic, because it would lead to a kinetic
term with an opposite sign with respect to its spatial components. Non-physical degrees
of freedom are then expected. The way in which gauge theories solve the problem is to
introduce a redundancy in the theory, gauge invariance, so that we can eliminate these
extra unwanted and unphysical degrees of freedom.

Functional methods based on the path integral are by far the best way to quantize

gauge theories. Before considering non-abelian theories, it is very useful to recall how
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QED can be quantized using the path integral. Let’s first see why a naive path integral

quantization cannot work, by computing the photon propagator
A A) =N [ DA A, @A) 5, (6.2.1)
where A/ is a normalization constant and
S(A) = —ﬁ / d'e Fy, = % / %A”(—p)DW(p)A”(p) (6.2.2)

is the usual free action, written both in configuration and momentum space. The tensor
D, equals
Dy (p) = (=P* 0w + D) - (6.2.3)

The photon propagator is equal to the Fourier transform of the inverse of D, (p):

4
(Ap(@)Au(y)) :?/ (;lwz))ZliDu,}(p)eip'(xy). (6.2.4)

However, det D, (p) = 0, no inverse exists and no propagator can be defined. Another
way of looking at the problem is obtained by performing a shift of variables in the path
integral: A, (z) = A,(x) + 0 A (z). We get

(Au(@) A ) = (Au(@) A () + (3,00, N / DA, 5, (6.2.5)

whose only solution is (A, (x)A,(y)) = oo. The problem arises from the fact that the action
is gauge invariant and we are integrating over all possible field configurations, including
those that are related by a gauge transformation. All pure gauge configurations, such
as A,(x) = OuA, are not dumped by the action and lead to the above divergence. The
problem is solved by restricting the integration to gauge inequivalent configurations only.
In other words, we have to implement a gauge-fixing condition of the form G(A) = 0,
where G(A) is a functional of the gauge field A,. This can be imposed inside the path
integral by means of a functional generalization of the Dirac delta-function. Care should

be paid on possible Jacobian factors. These can arise by recalling the formula

slf@ =Y 1L

5z — ), (6.2.6)

where x(()i) are the values where the function f vanishes. The n-dimensional integral

generalization of eq. (6.2.6) is
1= [ ] dni (5, (00)
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where f; are n functions of the n variables z; and we have assumed that they all vanish

at a single point zg;. The further infinite dimensional generalization of eq. (6.2.7) is

5G(AM)
IA(x)

1= /D)\ 5(G(AM)) ’det : (6.2.8)

where A,’)(x) = A,(z) + 9.\ (z) and G(A*) is an arbitrary functional, assumed to have a

single function Ao where the functional vanishes. A simple choice for G(A) is
G(A) = 9, A" = G(A*) = §,A" + D). (6.2.9)

Inserting eq. (6.2.8) inside the path integral gives

5G(AY)
OA(z)

= N[ DA / DA, W §5(G(A) = N" / DA, W §(G(A)), (6.2.10)

N / DA, 5@ /m 5(G(AN) ‘det

— N|detO) / DA, S / DA 5(G(AM)

where we have included into the normalization constants the gauge-field independent factor
detO and the integration over the gauge parameter \. The functional delta into the last
term of eq. (6.2.10) avoids to integrate over redundant field configurations. With a simple
trick, we can also get rid of the functional delta and yet have a well-defined path integral.
Instead of taking a single gauge fixing like the one in eq. (6.2.9) we can introduce a family

of gauge fixing terms, parametrized by an arbitrary function f:
Gy(A) =0,A" - f. (6.2.11)

Since no physical observable can depend on the gauge fixing, we can average over the

different gauge fixings by introducing a phase factor

exp ( - é diz fg(x)> (6.2.12)

and integrating over f(z). This is useful, since in so doing we can get rid in one step of the
functional delta and of the integration over f(x). In eq. (6.2.12) £ is a positive parameter.

The path integral becomes now
N/DAN ¢S (A) =g [ d'w (0, 41) (6.2.13)

The final outcome of these manipulations is the addition of a new gauge-variant term in
the action, called gauge-fixing term. The latter is crucial to make sense of the photon

propagator. Equation (6.2.1) is replaced by

(Au(@) AL (y)) = N / DA, Au(x)A,(y) S~ 3 [ 42 0417 (6.2.14)
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The tensor (6.2.3) becomes

D, (p) = —p2n,“, + pupy(gg—l) , (6.2.15)

and it admits the inverse
- 1 PuPv
Dt (p) = = (ma — (1 = ) 22). (6.2.16)
p p
Reintroducing the ie, we finally get
dlp i
(2m)4 p? + e

(A ()AL (y)) = / (nW —(1- 5)%)&”“‘” . (6.2.17)

The photon propagator is not a direct physical observable and depends on £. Common
choices for ¢ in explicit computations are £ = 0 (Landau gauge), in which case the tree-level

propagator is transverse and £ = 1 (Feynman gauge), in which this simplifies considerably.

The quantization of non-abelian gauge theories proceeds along the same way as the

abelian case, but it presents additional complications. The naive measure is
N/DAg eS| (6.2.18)

It is gauge-invariant, but in a less trivial way than in abelian theories, since a gauge trans-
formation rotates the fields. The Jacobian associated to the infinitesimal transformation

(6.1.18) is
Jacaﬁ(a: y) = 0 ;?( ) =070(x — y)(0ap + €' Copy) (6.2.19)
v\ s g(y) w af afy)- L.

Since Det(1 +¢€) = 1+ Tre + O(€?), we have

det Jaco? (z,y) = 015(0)(daa + €' Caay) = 045(0)d0a (6.2.20)

that is the infinite dimensional generalization of the unit matrix. We then conclude that
the measure DA is gauge invariant. Let us now proceed like in the abelian case, in-
troducing a delta-functional gauge-fixing in the path integral, like in eq. (6.2.8). Let us
define

AZHA) = /DU&(G(AU(x))) . (6.2.21)
In eq. (6.2.21), DU is the so-called invariant measure of the group G, parametrized by
group elements U(A). Tt is not, like in the abelian case, simply the integration over the

Lie algebra generators, [ [, DA%(x), but it includes a non trivial measure p(A). It is called

invariant measure because it satisfies the following properties:
/DUf(U) _ /DUf(U*l) _ /DUf(U Uy) = /DUf(UO U (6.2.22)
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where U is a constant element of the group and f(U) is an arbitrary function over the
group.
** Although we will never need its explicit form in the following, it is worth to spend

a few more words on p(A). This can be defined starting from the metric in group space

Jap as
Gop = Tr (U—l(A)(aaUA(i\))U—l(A) (aaUA(;‘)D . (6.2.23)

The invariant measure is

p(A) = /detgag . (6.2.24)

The parameters A, in eq. (6.2.23) are space-time independent coordinates spanning the
group G. They do not necessarily correspond to the z-independent version of the gener-
ators appearing in eq. (6.1.23). An example will clarify this point. The group SU(2) is

defined as the set of 2 x 2 unitary matrices U of unit determinant. Any matrix U can be

U= ( S ) : (6.2.25)
—zy 2]

with |z1]? + |22|? = 1, 212 € C. The group SU(2) is isomorphic to the three-dimensional

written as

sphere S3. Instead of using standard coordinates subject to a constraint, we might use

radial coordinates. Denoting z; = x; + iy;, « = 1,2, we have

x1 =sinysinfcos¢, y; =sinysinfsing
(6.2.26)
To =sin cosh, Y1 = cos,
with 0 < ¢ < 27, 0 < 0 < 27, 0 < ¢ < 7. The invariant SU(2) measure coincides with
the standard metric of S3: p(1, 8, ¢) = sin? ¢ sin .2 Given the explicit form of the metric

(6.2.23) it is straightforward to prove the relations (6.2.22).

The functional Ag(A) is gauge-invariant: Ag(AY) = Ag(A), that immediately follows
from eq. (6.2.22). The naive measure (6.2.18) can be rewritten as (omitting Lorentz and

color indices in the gauge measure)
N / DA / DUeiS(AmG(A)a(G(AU )). (6.2.27)

We can change variables in the path integral by defining A, = ALUJ. Since Ag(A), the

measure and the action are all gauge invariant, we get (redefine A’ — A)

N / DA DU D AG(4)5(G(4)) = N / DASIAGA)5(G(A). (6229

ZNotice the similarity of the definition (6.2.24) with the definition of diffeomorphism-invariant measure

in general relativity.
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and we can reabsorb the invariant group measure into the overall path integral normaliza-
tion V. Let us verify that any correlation function of gauge invariant operators does not
depend on the gauge-fixing, namely does not depend on the specific choice of the func-
tional G(A). If O(A) schematically represents some product of gauge invariant operators,

given two arbitrary gauge fixing functionals G and F', one has
O = N / DACSHAG(4)5(G(4)) O(4) (6.2.29)

= N / DAeiS(AmG(A)s(G(A)) / DU&(F(AU)>AF(A)O(A)

(
= N / DA / DUeiS(AmG(A)5(G(AU))5(F(A))AF(A)0(A)
= N / DA eiS<A>5(F(A))AF(A)0(A) = (0(A))p.

On the contrary, the correlation functions of gauge dependent quantities do depend on
the choice of G(A). Similarly to the abelian case, we can also take a family of gauge
fixing functionals and integrate over them. The typical choice will be the non-abelian

generalization of eq. (6.2.11):

Gy(A) = 04AL — fa, (6.2.30)
weighted by the phase factor
A T
exp( 2% /d xfa(x)) . (6.2.31)
In this way, we get
(O(A)) = N / DA S5 [ 42 @8’ A(4)0(4), (6.2.32)
where
A~L(A) = / DU(S(&)#(AU)Q - aﬂAg) . (6.2.33)

The integrand in eq. (6.2.33) has a non-trivial support for values of U infinitesimally close
to the identity: U =1 + ie“t,. We have

d(ea)

P —— .2. 4
|det 0, D#| (6.2.34)

5(0u(AV) — BuA%) = 6(9D"e0)

Modulo irrelevant constants, as usual absorbable in the path integral normalization N,
we get
A(A) = |det 0,D"|. (6.2.35)
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This is nothing else than the non-abelian generalization of the |det O| term appearing in
eq. (6.2.10). The crucial difference with the abelian case is its gauge field dependence
by means of the covariant derivative. For this reason it should be kept inside the path
integral. We can remove the absolute value, that would make the computation of A(A)

quite complicated, because, loosely speaking,
|det 9, D¥| = |det O| |det (1 + O(g))] . (6.2.36)

The first factor is irrelevant, while the second one is manifestly positive in perturbation

theory. We can then remove the absolute value and write
A(A) = det 0,D" . (6.2.37)

It is not easy to directly compute determinants. It is more convenient to turn a determinant
into a local action by inserting additional non-physical degrees of freedom and use the

identity, valid for Grassmann variables w and w*,?
/ DuwDw* et d'ew @F@)w(@) o qeot F (6.2.38)

where F'(x) is an arbitrary differential operator. Using eq. (6.2.38), we can write, modulo
irrelevant constants,
det 9, DV = / DwaDw}, e'dghost | (6.2.39)

where
Sghost = /d4z Opwi, Dwe = /d4x ouwp, (ﬁﬂwa + gC’aBWAgwﬁJ . (6.2.40)

we and w} are dim-G scalar fields with fermion statistic, transforming in the adjoint
representation of G. They are not associated to physical propagating particles and for this
reason they are denoted ghost fields. They cannot appear as physical external states, but
they can and do appear in loops as virtual particles, by means of their interaction with the
gauge fields. Ghosts are crucial to restore unitarity in non-abelian gauge theories. Loosely
speaking, they compensate for the (also unphysical) contribution of the longitudinal and
time component of the gauge fields that, contrary to the abelian case, do not automatically
decouple from scattering amplitudes.

Putting all together, the complete non-abelian Lagrangian density at the quantum

level is the sum of three terms:

Liot = L+ Ly .+ Lghost » (6.2.41)

3Recall that inside the path integral w and w* are two independent variables. In particular, w* is not

the complex conjugate of w.
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where

£ = —%F;VF(Q“’ * Zd—%(dﬂ —ma)pi + Z Do =V (i, ¢5), (6.2.42)
¢ J

1
Lys = *%@AZ)Q, (6.2.43)
Eghost = a;tw:;DMwa- (6244)

The propagator of gauge and ghost field is readily found by the quadratic term of the

above Lagrangian density. We have

d4p —1 PuPv\ ip-(o—
A D) AP (y)) = 6°F | ———— (i — (1 — &)L ) eip(=y)
(Af(x) A (y)) /(32)4]32%2‘6 (m (1-2¢) s )e -
7 .
(i (@)w0s()) = das / G,

The gauge field propagator is the trivial generalization of the photon propagator (6.2.16),
while the ghost propagator coincides with that of a complex massless scalar field. Recall
that the ghost Lagrangian (6.2.44) depends on the specific form of A(A), that in turn
depends on the specific gauge fixing chosen. It is invariant under a U(1) symmetry (ghost
number) under which the ghost fields w, and w} have respectively charges +1 and -1.
For this reason the latter fields are commonly denoted anti-ghosts and this explains the
notation w}. All the operators appearing in the Lagrangian (6.2.41) have dimensions
less or equal to four, compatibly with a renormalizable theory. However, not all possible
operators of dimensions A < 4 appear in L, and hence the renormalizability of these
theories is not obvious. The appearance of unphysical fields in the theory complicates
also the notion of physical field in non-abelian gauge theories. All these issues are best
addressed by introducing the BRST symmetry, subject of the next section.

Before going on we would like to comment on the assumption made below eq.(6.2.8),
that was implicit in writing eq.(6.2.21), about the existence, at a given A,(z), of only one
gauge element Up(x) where the functional G(AY) vanishes. This is equivalent to say that
the equation

o (UT(aﬂU —i[A,, U])) ~0, (6.2.46)

has either no solutions or such solutions should be discarded in the path integral. In the
abelian case, eq.(6.2.46) boils down to OX = 0 that clearly admits plane wave solutions.
These can be ruled out by demanding proper boundary conditions for A, in the path
integral. This is particularly clear in the euclidean case, where we demand A, to vanish
at infinity. The conditions A — 0 at infinity and OX = 0 in euclidean space imply A = 0.

In contrast, in the non-abelian case there exists in general non-trivial solutions of the
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above equation that would force us to consider other gauge field configurations AV, called
Gribov copies. Their possible presence is important in a non-perturbative treatment of
gauge theories, but will not affect the perturbative expansion around the free theory (like
the absolute value in eq.(6.2.36)). The above assumption can then be justified only in a

perturbative set-up.

6.3 BRST Symmetry

The Faddeev-Popov path integral quantization of gauge theories reviewed above requires
to fix a gauge and hides the underlying gauge invariance of the theory.* In other words,
the Lagrangian L, cannot obviously be gauge invariant. On the other hand, it was found
by Becchi, Rouet and Stora, and indepedendently by Tyutin, that L, is invariant under
an additional symmetry, called BRST symmetry. It is useful to rewrite the gauge fixing

term in a different fashion by “integrating in” an auxiliary field H,(x):
em3e dla i) _ /DHa ¢F [ o e ] d's faHa (6.3.1)
so that ¢
Liot = L+ Lynost + 5H§ — faH,. (6.3.2)

The total Lagrangian (6.3.2) is invariant under infinitesimal transformations parametrized

by an anticommuting variable 6:

50 = it Owa ¥

d9Au = 0Dyw,

Opwe = — %HC'amwgwy, (6.3.3)
dpwh = —O0H,,

dpHy =0.

These are the BRST transformations, written in the non-canonical basis for the gauge fields
where the gauge coupling does not appear in the interactions. The field ¥ represents any
matter field, fermionic or bosonic. The BRST transformations are nilpotent, namely if we
denote dgF = OsF, then 6y(sF) = 0s*F = 0 for any functional of the fields W, Ay wa, W)
and H,. Let us check that s? vanishes when acting on single fields. From eq. (6.3.3) we
have sV = it,w,V¥,. Then
09 (sW) =ity <(5gwa)\11 + wa(ég\ll)) = ita< - %HCamwlwa\I/ + waitﬂQw[g\Il)
; 1 (6.3.4)
~0uwaws¥( = ZCapty + 5ltasts]) = 0.

4The analysis in this section closely follows section 15.7 of ref. [2].
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Consider now the BRST transformations of the gauge fields. We have sA,, = Dyw, =
Opwa + C’agwAﬁwv. Then

1 1
0(54%) = O (= 50Cay )+ Capy 0O+ Ciipo Ao s+ Cagn AL = S0Cspopivs ) -
(6.3.5)
Consider first the terms proportional to A, in eq. (6.3.5). Reshuffling indices, one has
Sp(sAY) 4 = 0AS L CusiC Capy C
o(s u)|A = Hw,,wg( ~ g¥asype + Capy 'yﬂa>

1 (6.3.6)
= - 59145%%(0&570% + Coor Crpo + CppyCrao) = 0,

where the last equality follows from the Jacobi identity (6.1.10). The terms with no gauge

fields give
N 1 1
09(s A7) Inoa = acaﬂ*y( - 5(8uw,3)w7 - 5"‘}5(3#“’7) + (8#0.),3)0.)7) =0. (6.3.7)
Similarly, we have
1 1 1
dp(swa) = — §Caﬁv ((_590600%)”0)‘”7 + WB(_§HCWUWPWU))

1 (6.3.8)
= anpwa—OJ/ijg—a/C’YBa =0,

where again the last equality follows from the Jacobi identity (6.1.10) and the antisym-
metrization in the indices p, o and 5. The nilpotency of the BRST transformations acting

on w} and H, is trivial. We immediately have, from eq. (6.3.3),
0g(swh) = 0gsH, = 0. (6.3.9)
Summarizing, we have shown that for any field ® = A, U, w,w*, H,
s2® =0. (6.3.10)
For two fields, we have
5o(®1®o) = O(sD1)Ds + D1 (05Ps) = 9((s<p1)¢2 + <I>1(s<I>2)) : (6.3.11)
with 4+ or — depending whether the field ®; is bosonic or fermionic.® Hence
s(®1B5) = ((sq>1)<1>2 + <I>1(s<1>2)) . (6.3.12)
Acting again with a BRST transformation gives
99(sP1P9) = Gg(sD1) Py + sP109 P2 = (09 P1)sPy £ D1p(sP2)

(6.3.13)
- 9((32<1>1)¢>2 T (501)(5Bo) £ (sB1)(sPs) + @1(32%)) —0

5Namely with Fermi statistics. In particular, ghosts and anti-ghosts are fermionic.
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if eq. (6.3.10) is satisfied, for ®; both bosonic and fermionic. Iterating the argument for

more fields, we conclude that for any functional F(®),
sF(®)=0. (6.3.14)

We now proceed to prove that the Lagrangian (6.3.2) is BRST-invariant. On the physical
fields ¥ and Ay, the BRST transformations (6.3.3) can be seen as infinitesimal gauge
transformations with parameter €, (x) = 6w, (z). The BRST-invariance of the gauge and
matter Lagrangian term £ immediately follows from the fact that £ is gauge invariant.

Let us now turn to the remaining three terms in eq. (6.3.2). We have
ofa = 690" A}, = 00, D"wq = Osf, . (6.3.15)

Modulo total derivatives, we then get

‘Cghost = _wzsfa . (6316)
Since sw} = —H,, the last three terms in eq. (6.3.2) can be rewritten as
P g
‘Cgh,ost + gHi — faHo = S(fawa - ngaHa) . (6317)

In this way, the BRST invariance of these terms is automatically ensured by the fact that
52 = 0 for any functional. We conclude that the whole Lagrangian L. is invariant under
BRST transformations.

From an operatorial point of view, the BRST transformations (6.3.3) are generated by

a Grassmann Hermitian operator ). For any field ®, we have
0p® = i[0Q, D] = i0[Q, P+, (6.3.18)

where — and + denote commutator and anti-commutator, respectively, depending on

whether the field ® is bosonic or fermionic. We then have
Q, Q]+ = —isD. (6.3.19)
The nilpotency of s, s = 0, is equivalent to
(—is)*® = [Q.[Q. P5]+ = [Q% 2]- = 0= Q* =0. (6.3.20)
The BRST operator @ allows us to make the following partition of the Hilbert space in
non-abelian gauge theories. Any state |¢) in the Hilbert space falls in one of the following
three categories:
Qlgr) #0
Qlg2) =0,  with |¢2) = Q|¢1) (6.3.21)
Qles) =0, but [¢3) # Q|é1) -
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The fields in the second class are manifestly unphysical, since they have vanishing norm:

|62)|* = (d2ld2) = (¢1]Q%|¢1) = 0. (6.3.22)

We now show that gauge invariance implies that physical states should be annihilated by
Q. More precisely, matrix elements between physical states |«) and |3) should not depend
on the choice of gauge fixing term. We have just seen that the total Lagrangian L, can
be written as a physical gauge invariant term £ plus a BRST variation of some functional
F: Lot = L+ sF(®). The specific form of F' depends on the gauge-fixing chosen. If we
infinitesimally deform the gauge fixing, the functional F’ will also be deformed F' — F40F.
Demanding that

(alB)p = (alB)rrsr (6.3.23)

is equivalent to the condition
(o][Q,6F )4 |18)F =0, Vo, 3 € physical (6.3.24)

and for any sensible choice of gauge-fixing functional 0 F'. We then conclude that @ should
annihilate physical states. These are then identified with the states in the third category
in eq. (6.3.21). States that are annihilated by the operator @ (|¢3)) are said to be in the
kernel of (). The states |¢2) are said to be in the image of Q. The physical states are states
in the kernel that are not in the image of (). Such states are said to be in the cohomology
of Q. Tt is clear that physical states are not uniquely defined. If |a) is a given physical

state, then any state of the form

@) = [a) + Q|é1) (6.3.25)

defines the same physical state, since

(a]B) = (a|B) (6.3.26)

for any other physical state |8). Physical states |phys) correspond to equivalence classes
within the class |¢3). This complicated structure of the Hilbert space in non-abelian gauge
theories is a consequence of the redundancy introduced by the gauge symmetries. Like
ghosts, any unphysical state, even if not present as an external line in a scattering process,
can contribute as a virtual particle in loops. On the other hand, the optical theorem
relates the imaginary part of a loop diagram with the square of scattering diagrams where
the virtual particles become external on-shell states. Unitarity is then not obvious. BRST
invariance is of great help to show us that, in fact, no problem arises because physical

states are unitary by themselves, namely the contribution of unphysical states in loop
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diagrams always cancels. Ghosts are crucial for this cancellation to occur. This is best

seen by considering

(@|STS18) = ) (alST[6:)(6:1518) = (a1B) (6.3.27)
i=1,2,3
where |a) and |5) are two arbitrary physical states. In principle all states in the Hilbert
space contribute in the completeness relation, but since the BRST operator () commutes
with the S matrix and @ annihilates both |«) and |3), the states ¢; should also be anni-
hilated by Q. Hence the states |¢1) cannot enter eq. (6.3.27). The states |¢2) enter, but
have vanishing inner product with states in both classes |¢2) and |¢3). We then conclude
that effectively
(a|STS18) = > (ol ST[phys) (phys|S|B) = (a|B) (6.3.28)
phys
and hence unitarity is recovered.

The non-abelian generalizations of the QED WT identities, so called Slavnov-Taylor
identities, provide constraints on the form of correlation functions. As an example, let
consider the general relation (4.4.16), adapted to a BRST transformation in a non-abelian
gauge theory. Let us take Jy = J, = 0 and keep only the currents for the non-abelian
gauge field and the anti-ghosts. Explicitly, eq. (4.4.16) becomes

[t (st 3 ,00) + (st ) =

1
/ ' ((D“wa(x)>JJﬁ,M(x) -3
where in the last equality we have integrated out the auxiliary field H, = 9, A4 /€. Let

(6.3.29)
(0, AL (2)) % <x>) —o,

us take two functional derivatives of eq. (6.3.29) with respect to the anti-ghost and gauge

currents and then set all currents to zero. We get

4x$ wlz 7 (x _1 " Y
/d 5J£,a(y)5Jf*(z) <<DH y(@)sd 4 (@) §<3NAﬁ;( N ( ))

i

i(wh(2) Duwa(y)) = 7(Ava(y)0uds(2) = 0.

Ja=J,+x=0 (6330)

Multiply now expression (6.3.30) by 9/dy,. In so doing the first term becomes trivial,

because the operator 0" D, is, by definition, the inverse of the exact ghost propagator:
(W5(2)0" Dywaly)) = —i8,30W (2 — y) . (6.3.31)
Plugging in eq. (6.3.30) gives

(0" A (y)9, Al(2)) = —i856W (2 — ). (6.3.32)
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The exact gluon propagator is trivial in the color indices and can be written as

d* )

Gﬁf(y,z) = <A§(y)Aﬁ(Z)> = 5aﬁ / ﬁGuu(p)QW(y—z) , (6333)
with

PG (p) = —i§. (6.3.34)

In perturbation theory, we can write G, (p) = fo’u) (p) + G&ql,) (p), where GELOV) (p) is the
tree-level propagator we have computed in eq. (6.2.45) and G,(f,,) (p) encodes the quantum
corrections. We notice that the classical propagator alone satisfies eq. (6.3.34), implying
that the quantum corrections must be transverse: p#p” GEZ,) (p) = 0. The gluon propagator

to all orders in perturbation theory can be written as

s ANTIN 7
v NuvP pp PubPv
G = - , 6.3.35
o P) P2+ ie <p2(1 —11(p?)) T ) ( )

where all quantum corrections are encoded in the scalar form factor II(p?).

BRST invariance is very useful to also establish the renormalization properties of non-
abelian gauge theories. Being a symmetry of the total action Sy = [ d*x L4, one can
show that the total quantum action Ity is of the same form of S, with renormalized

parameters. This derivation is discussed in detail in section 6.5.

6.4 The Background Field Method

The renormalization of non-abelian gauge theories can proceed in a perturbative way as it
was explained in chapter 3 — and exemplified in the case of the abelian U(1) gauge theory
(QED), by singling out the leading divergences and the class of diagrams which are in need
of renormalization. However, the corresponding analysis becomes quite challenging and
demanding already for the lowest-order calculations, because of the rather large number
of diagrams involved. In particular, in non-abelian gauge theories the identity (3.3.15) no
longer holds. This important difference between abelian and non-abelian theories can be
traced back to the different nature of the associated conserved currents in the two classes
of theories. In abelian gauge theories we have a gauge-invariant divergence-less current
J# and its associated well-defined conserved charge @ given by the spatial integral of its
time component. The notion of an absolute normalization of the charge ) guarantees
that Z; = Zs for all charged particles. As we have seen below eq.(6.1.37), in non-abelian
gauge theories the currents are either conserved but not covariant, or non-conserved but
covariant. Hence there is no a well-defined standard gauge-invariant conserved charge

as in the QED case and correspondingly Z; # Zs, though the ratio Z;/Z5 is the same for
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all charged fields. Contrary to QED, then, in addition to the gluon two-point function
we should in general compute vertex corrections in order to derive the [-function for
the gauge coupling. This can in principle be computed in different ways, using gauge,
ghost or matter vertices. Gauge invariance guarantees that the same result is obtained
independently of this choice.

As a matter of fact, also in non-abelian gauge theories the S-function can be deduced
from the gluon two-point function using an alternative approach, denoted background field
method, that will be discussed in this section. We present the principle of the background
field method primarily as a tool to compute the renormalization constant Z 4 of the gauge
fields and the associated S-function. It should be clear, however, that this method has a

wider variety of applications.

6.4.1 The method

The basic idea behind the background field method consists in calculating the effective
action in the presence of a classical background field gauge A,, in total analogy to the

scalar analogue (4.1.12):
T = [ DQ, St A6(G(4,Q)Ac(4,Q) (6.4.1)
1PI
where we have denoted by A, and @, the background and fluctuating fields, respectively.
The key point is to choose a gauge fixing in the path integral such that I'(A) is gauge
invariant under transformations of the background:
SpA% = Ouea + gCapy A€y,

(6.4.2)
0Q% = gCapr Qe -

It is important to distinguish the gauge transformations of the background (6.4.2) from

the quantum gauge transformations under which®
6A, =0,

5 4 (6.4.3)

0Q) = Opéa + gCapy (Al + Qe -

The gauge fixing where I'(A) is gauge invariant is called background field gauge and is
obtained by choosing the functional (6.2.30) as

G1(A,Q) = Du(A)Qh — fo = 0uQh + 9Capy AGQY — fur. (6.4.4)

SNote that the sum A+Q transforms in the same way (i.e., as in eq. (6.1.18)) under both transformations

(6.4.2) or (6.4.3), as expected from the full gauge field. The different splitting distinguishes however the

background from the quantum gauge transformations.
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The ghost action associated to this gauge fixing is obtained, as usual, by taking a quantum

gauge transformation of the gauge fixing functional:
0G(A,Q) = Dy(A)DH(A + Q)eq (6.4.5)

and hence
Lghost = D#(A)wZ(D“(A)wa + gCag,ngwv) . (6.4.6)

Weighting the path integral in eq. (6.4.1) with the phase factor (6.2.31) and integrating

over the delta functional gives

T4

DQMDwa* eiS(Au+Qu)+nghost*ﬁ [ d*x(Du(A)Q1)? ] (6.4.7)
1PI
Under the background gauge transformations (6.4.2) the ghosts and anti-ghosts transform
as fields in the adjoint representations:
0pwa = gChp~€E5W~ ,
o Tt (6.4.8)
dpwi = gC’agveﬂwﬁ;.
Notice that while the ghost and gauge fixing terms are clearly not gauge invariant under
the quantum gauge transformations (6.4.3), they are invariant under the background gauge
transformations (6.4.2) and (6.4.8). The matter action in S(A+ @), in fact, is manifestly

invariant. The gauge kinetic term is

2
~ 0z + 05 -y + @) + oo + QRIAT + QD) = -
6.4.9
1 2
- (R + DL - DG + i)

which is also invariant. We have then proved that épI'(4) = 0. The divergent part of
T'(A) has to be a gauge-invariant polynomial of dimension 4 and therefore it is necessarily
of the form

- % /d4x Fl,o(A)FH(A) + finite parts (6.4.10)

where Z,4 is a possibly divergent constant. Note that, as usual, Z4 = 1 for ¢ — 0, and
therefore Z4 = 1 + O(g?). By comparing the renormalized action above to the bare one
with coupling constant gp and bare fields Ap, it is possible to conclude that Ap = Zil/ 2A
and that g = ggu~¢/ QZi‘/ > Asa consequence of the gauge invariance (which constraints
the form of T") the renormalization of the coupling constant ¢ is fixed by the renormalization
constant of the field A, as it was the case for QED. The S-function can then be calculated

as in subsection 5.11.
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Figure 6.1: Trilinear vertices involving one background field A within the background
field method. Wiggly lines indicate the background field A, curly lines the quantum
fluctuations @, dashed directed lines the ghosts, while dotted directed lines the scalars.
We list here only the trilinear vertices which, at the lowest order in perturbation theory,
give a non-vanishing contribution to the two-point function of the background fields: (a)
A-w*-w vertex VA in eq. (6.4.11), (b) A-Q-Q vertex VARY in eq. (6.4.17), (c) A-i-¢p
vertex VA% in eq. (6.4.20), and (d) A-¢T-¢ vertex VA?'¢ in eq. (6.4.21).

6.4.2 Two-Point Function of the Background Field: Feynman Rules

The calculation of Z4 requires to take into account for the divergences which arise when
the integration over @, w, and w* is performed in eq. (6.4.7). Given eq.(6.4.10), it is
enough to consider the two-point function of the background field A. This is analogous
to a standard propagator if were not for the fact that A is considered as an external field.
Let us report below the Feynman rules that are necessary to the computation of Z4 at
one-loop level.

From Lghost in eq. (6.4.6) one gets a A-w*-w-vertex (represented in fig. 6.1(a))

. 5l
Aw*w _ ghost _
Vieis:s = § Aswa(qyows(p) . ICom P D

(6.4.11)

where p,, and ¢, are the momenta of the ghosts. In eq.(6.4.11) we have omitted to write the
dependence of the gauge field A, on its momentum, since the vertex does not depend on
it. Analogue simplifications will be done below. The additional vertices involving A which
are generated by this term are of the form A-A-w*-w and A-Q-w*-w. While the latter does
not contribute at one-loop to the two-point correlation function of the background field,

the former can. We have (see fig. 6.2(a))

. 0L
AAwtw ghost 2
Viaio = 55 Augungig 9 Mv(CoreCpoe + ClonsCpre). (6.4.12)

The gauge-fixing term L, ¢ generates a A-Q-Q-vertex

~ il
4QQ  _ 0f. 9
V;wz;t/ﬁ;pw = 51455@%(61)5@@ ®) ¢ (nwcaﬁ"/pp + Thtpca'vﬁqV)v

(6.4.13)
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Figure 6.2: Quartic vertices involving two background fields A within the background field
method. Wiggly lines indicate the background field A, curly lines the quantum fluctuations
@, dashed directed lines the ghosts, while dotted directed lines the scalars. We list here
only the quartic vertices which, at the lowest order in perturbation theory, might give
a non-vanishing contribution to the two-point function of the background fields: (a) A-
A-w*-w vertex VA4 in eq. (6.4.12), (b) A-A-Q-Q vertex VA4RR in eq. (6.4.18), (b)
A-A-¢T-¢ vertex VAATS in eq. (6.4.22).

with the momenta of the fields oriented as in fig. 6.1(b). In addition to this interaction,

Ly ¢ generates a vertex A-A-Q-Q,

. 5iLl ig?
AAQQ _ .1 N g
s riad = S AR ATSQEOQG — (Mo Coro s+ s CinoCasr) - (6:414)

The vertex involving three gauge fields A in the standard YM theory generates several
vertices: A-A-Q, A-Q-Q, and Q-Q-Q but only the second one is relevant for determining
Z 4 at the lowest order. We have

VAQQ _ 0iL

posvBipy 5Ag(k)5Qg(q)5Q§<p) = gcaﬂ'y ((k - q)pnuu + (q - p)unup + (p - k)unpu)»

(6.4.15)
where all momenta are assumed to be outgoing from the vertex. The expression (6.4.15)
coincides with the trilinear vertex computed in YM theories in standard gauges. The
vertex involving four gauge fields A in the standard YM theory generates several vertices:
A-A-A-A, A-A-A-Q, A-A-Q-Q, A-Q-Q-Q, and Q-Q-Q-Q but only the third one is relevant
for determining Z 4 at the lowest order. The corresponding expression is again the standard

one:

pAde 0L oo o g v
e o8 = §A55A’Z36Q,’;6Qg g ( afw V&u(n n 77#0771/,0)4- (6416)

Ca'ywcﬁéw (n,uunpo - n/wnl/p) + Cosw Cﬁww (nuunpo - 77;4)771/0)> .

The total vertices A-Q-Q and A-A-Q-Q of this theory are given by the sum of the one
stemming from the gauge-fixing term in egs. (6.4.13) and (6.4.14) and the ones from £ in
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egs. (6.4.15) and (6.4.16), see figs.6.1(b) and 6.2(b),

A 1 1
Vosd = 9Capy ((k —q- gp)pmw +(q = p)unpw + (p —k+ —q) /’””) , (6.4.17)

3
AA .
Vna;u%;%wa = —ig’ (Caﬁwcvéw(nupnw = Nuovp) + CarwCpow (6.4.18)
1 1
(nul/npc — NpoMvp + Enupnua) + Ca&ucﬁvw (nuunpa — NupMve + gnuanl/p> )
where
AQQ —  74QQ AQQ

posvBipy Vua;uﬁ;pv + Vua;vﬂ;m ’

AAQQ TFAAQQ FAAQQ
Vua;l/ﬁ;m;aé = Vua;uﬁ;m;aé + Vua;uﬂ;m;a5 : (6'4'19)

The interaction with the matter is ruled by the standard vertices of the YM theory. For

fermions we have, see fig. 6.1(c),

Ay _ 0L
Hsid = 5 AR 1),

where t“ are the gauge generators in the appropriate representation. For scalars, we can

= igVuli; (6.4.20)

have both the trilinear and quartic vertices, see figs. 6.1(d) and 6.2(c):

§il
yAde = = —igt®(p+ @), (6.4.21)
et S ALS®;(q)0! (p) ! "
Sil
yAdslo 0% 2, e yBy 6.4.22
posvBiig 5A55A%5¢]5¢3 9 Mu { }J ( )

where again t* are the gauge generators in the appropriate representation.
With all these vertices at hand, the radiative corrections to the two-point function of

the background field can be computed. We leave to the reader to perform the computation

of Z 4 at one-loop level and report here only the final result for the S-function.

(F)

In a SU(N) gauge theory with ny Dirac fermions in representations r;” * and n, scalars

in representations TZ(S) of SU(N), one has at one-loop level

3 nf Ns
g 1IN 4 (F) 1 (S)
- _ — _Z Ty (r: B Ts(r; 4.2
B(g) (am)? < 3 3 ;:1 2(r;" ) 3 ;:1 2(r;7) ] (6.4.23)
where
tr,t%t? = 6°PTy(r), Th(adj.) = N. (6.4.24)

(F)

In particular, for ny = 0 and r; ’ equal to the fundamental representation for any fermion,

we have:

3
Blg) = —(4‘(;)2 (113N - ;nf) , (6.4.25)

QCD corresponds to the choice N = 3 and ny = 6 and is then an asymptotically free

theory with 8(g) < 0, as we discuss in general in sec. 5.3.
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6.5 Proof of the Renormalizability of Non-Abelian Gauge Theories**

The BRST symmetry provides a useful set-up to prove the renormalizability of non-abelian
gauge theories. Before attaching the problem, we need however to develop a bit on the

formalism and derive what is called the master equation.”

6.5.1 The Master Equation™

The relation (4.4.17), applied to the BRST transformations (6.3.3), give
ol
4 L _

[tz @ gt = (65,1
where " is a compact notation to denote all the fields: x" = (Az‘7 Wa, wh, 1, ¢, Hy), and we
have defined 6x™ = fsx™ = 0A™(x), Care has to be taken in taking functional derivatives
in presence of Grassmann fields, so we distinguish with a subscript L and R derivatives

defined as follows:
ok _ o F ‘SP‘F—Fg2 (6.5.2)
dp(x)  op(x) T dd(x)  Ip(x) -
The BRST transformations are quadratic in the fields and hence (A" [x(z)]) s() # A" [x()].

In order to overcome this problem, we introduce, in addition to the source J,, that couple

to x", extra sources K, (z) that couple to A™(x). Correspondingly we define

eiW[J,K] — /DXneiStot"FifAnK7l+ianJn (653)
and the 1PI generator
Ty, K] = WI[J,K] — /d% X" (2) (), (6.5.4)
where J,, = J,,(x, K), obtained by inverting the relation
SrWIJ, K]
@) X" (x). (6.5.5)

Under a BRST transformation §A™ = 0s2x™ = 0 and hence the 1PI action I'[y, K] satisfies
the analogue of eq.(6.5.1):
ol [x, K]
4 L X,
[t @@ 2 <o (6.5:6)
Taking a functional R-derivation with respect to K, (x) of eq.(6.5.4) gives
6RP[X7K} _ 5RW[Ja K] +/d4y6RW[J7 K] 6RJm(y) _ /d4me(y)§RJM(y>

6K,(z) 0K, (x) 0Jm(y) 0K, (x) 0K, (x) (65.7)
SEWILK] i
o A @D

"The analysis in this section closely follows sections 16.4, 17.1 and 17.2 of ref. [2].
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We can then rewrite eq.(6.5.6) as

/d4x 6RF[X7K] 5LF[X7K] _
0K, (x) ox™(x)

(6.5.8)

Since the sources K, have the same commuting properties as A”, which are opposite to
those of x™, drI'/dK,, and 6;T'/d.J,, anti-commute with each other. We can then rewrite
more compactly eq.(6.5.8) as

(,T) =0, (6.5.9)

where we have defined, for any two functionals F' and G, the operator

— [ &' 6rF 0.G OpF 461G
(F.0)= [a (e mmew) (6.5.10)

Equation (6.5.9) is denoted the master equation and is the key relation that we will use

in the next subsection to prove the renormalizability of non-abelian gauge theories.

6.5.2 Structure of divergences™*

In this subsection we will prove that all the divergences occurring at any loop in pertur-
bation theory can be reabsorbed by a renormalization of the couplings appearing in the
classical action, namely by a proper choice of counter-terms. We define the classical bare

action including the extra K-source term:

SB = Stot(X) + / AnKn . (6511)

As usual, we rewrite the action Sg = S + So, where S is the action written in terms of
physical fields and couplings and S, includes the counter-terms. The 1PT action I'[x, K]

admits a loop expansion of the form
oo
T, K] =Y Tn[x, K] (6.5.12)
N=0

where T'y[x, K] is the N-loop effective action. Clearly, we have Ty = S. Plugging
eq.(6.5.12) in the master equation (6.5.9) gives an infinite set of equations, valid for any

N:
N

> (CnTy_n) =0. (6.5.13)
N'=0

We denote by I'y o the divergent part of the N-loop effective action. If the theory is
renormalizable, by a proper choice of S, 'y should be finite for each value of NV, i.e.

I'v,00 should all vanish. We will prove this statement by induction, assuming that this is
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true for M < N — 1, namely that all the divergences in I'y; have been reabsorbed in Su.
If this is true, divergences in eq.(6.5.13) can only arise from the terms with N’ = 0, N,
that give rise to the equation

(S,Tnoo) =0. (6.5.14)

Let us see the possible form of I' v . It should be a local functional, invariant under all the
linearly realized symmetries of the classical action. By power counting renormalization,

all operators should have dimension less or equal to 4. Notice that

[An] :[Xn] +1, [Kn] =3- [Xn] )

(6.5.15)
gh.(xn) =, gh(Ap) =y +1, gh(K,)=—y—-1,

where we have denoted by 7, the ghost number of the field x™. Since A trivially vanishes,
Ky = 0. We see from eq.(6.5.15) that all K-currents have negative ghost charge, with the
exception of K+ that has ghost charge zero. Thus the only allowed operator quadratic
in the K-currents is K5« K. This is already of dimension four, so no extra fields can be
added to it. From eq.(6.5.7) we have

m = i(AT (@) sr) = ~iHa(@), (6.5.16)

where the last identity applies because the BRST transformation of w}, is linear. The
right-hand side of eq.(6.5.16) is fully saturated by the classical action, and we conclude
that I'y oo does not depend on K, for NV > 0 and is at most linear in the K’s for any V.

We can write

T'NoolXs K] = T'oo X, 0] + /d4x D[] K () . (6.5.17)
Recall that
S[x, K] = S[x] + /d% A XK (2) . (6.5.18)
Let us plug eqgs.(6.5.17) and (6.5.18) in eq.(6.5.14). The terms with no K’s give
dr.S[x] 5LFNoo)
d4$c(— D [x(x)] — Anlx(z ) =0. 6.5.19
[t - ER PR — Aul@) Ea (6519)

In deriving eq.(6.5.19) we used the fact that K, and x, are bosonic (fermionic) and
fermionic (bosonic) for any n, hence for any two arbitrary bosonic functionals A and B

one has
orAoLB  6pAégrB  0rBdLA

— - , 5.2
ox" 0K, ox™ 0K, 0K, ox™ (6:5.20)
The terms linear in K'’s give
6L Am[x] o1 DR X
d%(D” 2)] == A [y ()] =2 ) = 0. 6.5.21
[t (Db S+ A, ) LD (6:5.21)
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Equation (6.5.19) can be rewritten as

€ n(SLF(E)
/d4xA§v) 5x7]“”V -0, (6.5.22)

where we have defined

T = Sh] + Ty olx. 0]

(6.5.23)
AY" = A" 4 DY

with € an infinitesimal parameter. The O(e") term vanishes because S is BRST-invariant,
while the O(e) terms reproduce eq.(6.5.19). Similarly, eq.(6.5.19) can be rewritten as the
O(e) terms of the following relation:
(e)n or, (e)n or, _
AR (a% W) =0. (6.5.24)
We conclude from egs.(6.5.23) and (6.5.24) that the action Fgf,) is invariant under the
transformations generated by Agf,)", which are nilpotent, like the original BRST transfor-
mations A".
Comparing eqgs.(6.5.17) and (6.5.18) we notice that D}, and A,, have the same ghost and
Lorentz quantum numbers. The most general Ag\?n transformations is then parametrized

by a simple generalization of the original BRST transformations (6.3.3):

SN = i0QNw,

N
5é ) Apa = G(B(])Xé’auwﬁ + DévﬂfyAuﬁw“r) ) (6.5.25)
1
5é€)Nwa = — §9E(%7wﬁw,y.

The transformations of w} and H, are like the original BRST transformations (6.3.3)
since Dﬁ* = Ky = 0. For simplicity, from now on we omit the superscript N on (5é6)N
and the coefficients QY BgB, Divvﬁv and EO%A/. Nilpotency of the ghost transformation in
eq.(6.5.25) requires that E,g, satisfies a Jacobi identity (compare with eq.(6.3.8)). Hence
Eqpy should be the structure constant of a Lie algebra. Since for € — 0 we should recover
the original BRST transformations, we conclude that £, must be the structure constant

of the original Lie algebra, up to a constant:
Eopy = ZCapy . (6.5.26)
Consider now the gauge fields. We have s(e)AW = B,p0,wg + DagyA,pwy. Then

1
55 (59 43) =0, (- §BQBGE575wﬂ,w5> + Do (B Ot + Dpo ALty ), 6507
. 5.
+ DamAﬁ( - §9Eﬂ,powpwg) .
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Using eq.(6.5.26) and reshuffling indices, the terms proportional to A4, in eq. (6.5.27) give
557 (s A% 4 = —%GAﬁwpwg(DMpD,ﬂgU — DaryoDygp + ZCrpoDasy) - (6.5.28)
This term vanishes, again due to the Jacobi identity, if
Dapy = ZCoupy - (6.5.29)
The terms with no gauge fields give
05 () A o 4 = 000, Z(Capy Boo = BasClron) (6.5.30)

and vanishes if
Bog =ZNdugs . (6.5.31)

Finally, let’s look at the fermion transformations.
€ . € € . 1 .
589 (s w) = iQ, ((5§ ) wa) U + wa (8 Mm) - ZQQ( — 520Capwpwn ¥ + wazQ59w5\Il)

= Gwawﬁ‘l’( - %ZCaﬁva + %[Qa, QB]) :

(6.5.32)
This vanishes if
Qa = Ztqa. (6.5.33)
Summarizing, we find that the Agf,)n transformations (6.5.25) read
SW = 07t gV,
5éE)A/w¢ = 0Z(Z'0pwa + Capy Aupwy) (6.5.34)

P 1
(56() )wa = — iZecamwﬂwv.

Modulo the two (N-dependent) constants Z and Z’, they are like the original BRST
transformations (6.3.3). Let us now construct the possible form of the action 1"5\6,) [x]-
It is a local functional, has to contain up to dimension four operators, and has to be
invariant under the transformations (6.5.34) and under all the linearly realized symmetries
of the original total tree-level action (6.3.2). These are Lorentz invariance, ghost number

conservation and the global gauge transformations

OV = itae v,
04y = CapyAupéy »

dwa = Copywsey , (6.5.35)
dwy, = Capywjey ,

0H, =CopyHge, .
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For the gauge fixing choice f, = 0, A, we have an additional symmetry, invariance under
anti-ghost shifts:

drwy = Cqo s (6.5.36)
where ¢, is an arbitrary Grassmann constant parameter. It is clear that the only dimension
four or less terms containing ghosts and compatible with all the above symmetries are
OpwiOtw, and dagwaungf;wﬁ. The only terms involving H, are HoHo, Ha0,AL and
eapyHaAlyAr. We have Fg\e,) [x] = fd4x£§f,), with

(e) _ pr 1 ! « "
Ly =L, A)+ ¢ H,HY + cH,0, Al — eqp, Hy AL A
N ( ) 9 W By By (6.5.37)

— Z,0pwih 0 we — damaunggwﬁ .
In eq.(6.5.37), L' (1), A) is the part of the Lagrangian that depends only on the gauge and
matter fields. Let us impose the modified BRST transformations (6.5.34) to LS\E,). The
terms linear in the H,, field give
8O LY | g, = cHAZ0" (7' Dyte + Capr Appry) — 2€apy HaAur 0 Z(Z' 0,5 + Copo Appiio)
+ ZweauHaa“wa + daﬁweauHaAgWﬁ
= QauHaauwa(—CZZ/ + Zw) + QaﬂHaAnglg(CZCag,y + da/gw)
— 29HQAZA#pwg(eaﬁWZCgpg) — 29HQAZ8“w,g(ea5ﬂ,ZZ’) .
(6.5.38)
This vanishes only if
- zz

The remaining terms are of the form dw*wdw and dw* Aw?. They do not give additional

€apy = 0, doe,é"y = _CZCaﬁ'y ; c (6539)

constraints. Indeed,

6L lowrwtrs = — ZuOyuis (- %Z) Clagr 00" (wits) — doyy O Z Z' 0w

= oﬁﬂwgallw»yw§Z(ZwCaﬁ,y + Z/daﬁ'y) = 0’

(6.5.40)

and

‘ \ 1
6 LQ o a2 = = a0t (0C0 Z Aiguo + Al (- §ez)cﬁpgwp%)
2,7

= uwgﬁwgngg( 57

) (Cvpcrc“/aﬁ + Cyp8C50a + Cwacvﬁo) =0.
(6.5.41)

Invariance of £'(1), A) under the transformations (6.5.34) is ensured by demanding gauge

invariance, with gauge parameter

€a(T) = Z7' 0w,y (), (6.5.42)

135



in terms of rescaled Lie algebra generators and structure constants: f, = to/Z’, C’ag,y =
Capy/Z'. In the canonical basis, such rescalings correspond of course to a renormalization
of the gauge coupling constant § = g/Z’. Putting all together, we can finally write down

the most general form of Eg\e,):

LY = — ZaFSF — Zydy (8, — it ALY
Lo
77

1 i (6.5.43)
+ 5§ HoHa + ( )Haamg — Z(00*) (0w + Capy Al

where schematically F = dA+ CA2. We notice that this Lagrangian has the same form as
the tree level one. Hence, by redefining at level IV the fields and couplings in the tree-level
action, we can set Eg\e,) [x,0] = S[x], namely 'y oo[x,0] = 0. This concludes the proof of

the renormalizability of non-abelian gauge theories.
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Chapter 7

Effective Field Theories

We have so far mostly considered renormalizable quantum field theories, since these the-
ories have simple renormalization properties. Once a finite number of observables is fixed
(by experiment), these theories allow for very accurate predictions. It is however clear
that renormalizable theories such as the SM cannot be the ultimate theory of nature,
since gravity is not included. From this perspective, renormalizable theories are special
because they allow us to hide in a redefinition of a finite number of parameters all our
ignorance of the UV physics which is beyond the model in consideration. Aside from an
improved calculability, there is no conceptual reason to focus only on such a restricted
class of theories.

Unless one is so ambitious to try to construct the ultimate, possibly, finite theory of
everything, any quantum field theory should be seen as an effective field theory, namely
a theory that is reasonably accurate in a given energy regime and is replaced by some
other more complete theory at a given UV scale M. This happens all the time in physics
and is the most efficient way to study a phenomenon keeping only the relevant degrees
of freedom. Classical examples are the Fermi theory of electroweak interactions or the
pion chiral Lagrangian. These theories are effective, being replaced, at sufficiently high
energies, by the SM and QCD, respectively. It is obvious that if we are interested in
processes happening at a given scale F < M and involving light fields only, with masses
much smaller than M, the heavy states with mass ~ M cannot be produced, so that the
latter can be integrated out. In a path integral approach, the complete 1PI generating

functional of light fields is given by

(@) — D, el'~5§r1rz(¢>z-&-flz)7 eS1R(D1) — /D¢h eisuv(@@h,)’ (7.0.1)
1PI

where ¢; and ¢;, schematically denote light and heavy fields. Here Sy and Syg represent
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the underlying UV and IR effective actions, respectively. At tree-level, we simply have

S (@) = Suv(en, on(@1)), (7.0.2)

where ¢, (¢;) is the classical solution to the heavy field equations of motion. Being the
integrated fields heavy, the action admits a well-defined momentum expansion in terms
of local operators. We could proceed by computing the one-loop and higher loop effective
actions S§% and reconstruct in this way the whole effective action Syr. The key point
of effective field theory is to replace this procedure by a simpler one, where we compute

radiative effects involving the light fields starting from the action

Sprr(dr) = S\ (é1) + AS(¢r), (7.0.3)

where AS encodes all higher dimensional local operators up to some order, depending
on the accuracy we want to achieve, and compatible with the global symmetries of the
theory. All the unknown couplings multiplying the higher dimensional local operators
are then fixed by comparing given quantities as computed in the UV theory and in the
EFT. In principle, one might want to directly compare S-matrix elements, but it is often
easier to compare 1PI functions, generically off-shell. Note that 1PI functions can be
compared at an unphysical point, since by analyticity we are ensured that their on-shell
properties are equal. However, this is somewhat improper and too conservative, because
physical observables correspond to on-shell S matrix elements and not to the whole Green
functions, and different off-shell Green functions can lead to the same on-shell results,
as we will see in section 7.8. We will nevertheless require the off-shell equality of 1PI
functions in our examples for simplicity. Note also that in the UV theory 1PI refers to
the light fields only. Graphs that can be splitted in two disconnected ones by cutting a
propagator of a heavy field should be included.

The procedure of fixing the parameters of the IR theory using the UV theory is called
“matching”. Of course, matching requires to also perform a computation in the full theory
but, as we will see, it is typically much easier to do computations in the EFT and then

matching, rather than computing everything in the full theory.

7.1 1PI vs Wilsonian Actions

Before considering various examples of use of effective field theories techniques, we would
like here to emphasize the difference between the various effective actions introduced so
far.! The effective action I'(¢) defined in eq.(4.1.2) is the generator of all 1PI amplitudes

'See 4.3 for a further subtlety.
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in the theory, namely those involving an arbitrary combination of heavy and light fields.
In the context of EFT, we also have I'(¢;) appearing in the Lh.s. of the first equation in
(7.0.1), which generates the 1PT amplitudes associated to the light fields. Another effective
action is Srp, defined in the Lh.s. of the second equation in (7.0.1). The effective actions
T'(¢) and T'(¢;) are shortly denoted 1PI actions, while S7p is called a Wilsonian effective
action. The key difference between 1PI and Wilsonian actions is that in the latter the
virtual particles are always massive. Correspondingly, while 1PI actions are intrinsically
non-local, namely they cannot be written as the integral of some effective Lagrangian
density (even with an infinite number of terms), the Wilsonian action always admits such
rewriting. The key point can be understood already at tree-level. When we integrate out
a scalar particle of mass M at tree-level, roughly speaking we get an effective action term
that reads in momentum space as

1

4
Sir D /d p@l(—p)m

Dy(p), (7.1.1)

where @1 5 are local functionals of the remaining light fields and 1/(p? — M?) represents the
propagator of the massive particle that has been integrated out. The term is manifestly
non-local and cannot be written in configuration space as the integral of a Lagrangian

density. At low energies, p?> < M?, we can expand the propagator as

1 1 1 p?
- = — -5 +... 7.1.2
o Ve VERR VER Ve (1.12)
Plugging eq.(7.1.2) in eq.(7.1.1), however, gives a (generally infinite) sum of local terms

of the form

S]RD—%/dlll‘q)l(l‘)(l—i-%—I—...)@g(l‘). (7.1.3)

On the contrary, when massless fields are present, the term in eq.(7.1.1) is intrinsically

non-local and eq.(7.1.3) does not apply.

7.2 Two Scalars

Consider

1 1 1
Loy = 5(OH)? = SM*H? + S (OL)? = SmPL? — %HL2, (7.2.1)

1
2 2 2
where m < M and the dimensionful coupling g is assumed to be of O(M).2 The most
general EFT for L reads as follows:

1 1 A
Lir= §ZL(E)L)2 — §m2L2 — IL4 +h.d.o., (7.2.2)

2This theory is not realistic, since the cubic potential HL? is not positive definite, but the considerations

we want to make are insensitive to this stability problem.
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where h.d.o. stands for higher dimensional operators. The tree-level integration of H gives
H = —gL?/(2M?) + O(p?/M*). Plugged back in eq. (7.2.1) gives

1 1 A _
O = (L) = om?L* = Z LY + O(g*M ™) (7.2.3)

so that tree-level matching gives

34>

ZLzl—i—(’)(gQ)7 m?=m?+ 04, /\:_W

+0(g"). (7.2.4)

It is important to emphasize that the factors Zr, m?, etc. in eq. (7.2.4) are the analogues
of (1+82), m?>+6m?, etc. defined in eq. (5.1.5) in the Wilsonian RG flow. They are finite
terms, which at the quantum level indicate how the EFT fields, masses etc. differ from
their UV counterparts to compensate for the different UV behaviour of the two theories, so
that low-energy observables match in the two descriptions. They should not be confused
with the usual counter-terms needed to subtract divergences, which we will never explicitly
write, always fixing them by an MS subtraction scheme.

We can directly use Eg% as effective theory to compute Green functions for energies
much smaller than M. For instance, the MS renormalized four-point 1PI function reads

(see eq. (5.6.4)):

A2 L m? —sz(l —x
T (s,t,u) = —A(u) + 32(:2) /0 dzx [log % +(s—=t)+(s—=u)|. (7.2.5)

By taking s ~ t ~ u ~ u we get F(4)(u) ~ —\(u), where

A0 = X7 o) = oz (£) (7.2.6)
is the usual one-loop running in the ¢* theory, assuming j, o > m. The natural scale
where the effective theory parameter A should be matched, at one-loop level, with the
underlying UV parameters g and M is at the scale ug = M, since this is the energy scale
boundary between the two theories. This is understood by comparing the 1PI four point
amplitude I, The following diagrams contribute to T®) in the UV theory (continuous
and dashed lines correspond to light and heavy fields, respectively). At leading order in
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an 1/M expansion and for zero external momentum, we get

>G< + perms. = (% X 3)(1'9)4#26/(;?; (k2_2m2)2<ﬂz;2>2

3ig* m?
=g g,
3212 M4 12

+ perms. — (6)(* )4 26/ ddk # 21#
> ------ < perms. = W ] aryd \k2 = m2 ) M2k2— M2
_ 3ig m?
= s (1 +oe 5 (720

e = 00 [0 () ()

6ig? 1 m?
-2 (142 —)
8772M4< tgleym)s

where in parenthesis we have denoted the geometrical factor (permutations included) of
the graph. Recall that T® is 1PI in the light fields only, and hence the first graph in
eq.(7.2.7), reducible when cutting the propagator of the heavy field, should be included in
the computation.
Including the tree-level term, we get
T (0) = 39°(1) | 3g"(w) ° °

m 1 m
=S5 g (3 2B 1+ glog 7). (7.28)

Comparing eq. (7.2.5) (at zero momentum) with eq. (7.2.8) and using the tree-level relation
(7.2.4) for A\, we get

39°(n) 34" 5
Ap) =~ - s (3 +2log W) . (7.2.9)

2

Notice how all the (potentially large) logs involving the light mass m* cancelled from
eq. (7.2.9). This is not a coincidence. All the IR properties of the UV theory (as well as
large IR effects) are reliably described by the EFT by construction, so that the matching
equations are always regular in the IR. It is quite clear from eq. (7.2.9) that the best scale
to match the two theories is © = M, in which case we have
_3¢°(M)  9g°
M? 8m2 M4’

A(M) = (7.2.10)

Taking pp = M in eq. (7.2.6) and using eq. (7.2.10), will allow us to take into account
possible large logs of the form log(u/M). Notice that the g*/M* term in eq. (7.2.10) can
safely be neglected at one-loop level, starting to be relevant only at two-loop level, if NLL

want to be resummed. In other words, no one-loop computation of the 1PI 4-point function
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would have been needed in matching the theory at © ~ M and we would have been able to
resum the leading log(u/M) terms without performing any radiative computation in the
UV theory! In general, an [-loop computation in the effective theory requires an [ — 1-loop
matching computation in the UV theory. This example clearly shows the usefulness of

effective theories even in such a simple set-up.

7.3 Yukawa Theory I: Heavy Scalar, Light Fermion

Consider a light fermion field coupled to a massive scalar by means of a Yukawa-like

coupling. The UV and IR Lagrangians are

Lov = (00— MG + 3~ m)p - g9y (7.3.1)

Lir = Zyidh — my) + %WW + h.d.o. (7.3.2)

The tree-level integration of ¢ gives ¢ = —gp/M? + O(p?/M*). Plugging back in
eq. (7.3.1) gives

Zy=1+4+0Zy, m=m++0y, :]\g/[—z. (7.3.3)

Let us now compute the 1PI 2-point function T'®)(p) in both the UV and the IR EFT at

one-loop level. In the UV theory the relevant one-loop diagram is

k
/4\

/ A _ d'k i i@+ K+ m)
N — = (—zg)2,u€/ (7.3.4)
» btk (2m)4 k2 — M2 (k + p)2 — m?

i 1
- 1(?7?2 /0 d:c(p((l - 2) er) log (—p2$(1 —x) —l—i:;x +(1- x)M2> ’

Expanding for M > m,p, we get

r@p) - #mQZ[]d(llog]Z[;lJr m? +(9( 1 )>

1672 |7\ 2 4 2M2  6M2 M4

M? m? m? p? 1

In the effective theory, the relevant one-loop diagram is

k
Q :(-1)(@@6)/ Ak <i(%+m)+iTr(]’Hm)> (7.3.6)

(2m)d \ k2 — m? k2 —m?

= — <1 +log W) ; (7.3.7)
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where the two terms in square brackets indicate the two different contractions among the
four fermions in 1¢p1), and we have taken TrI = 4 (rather than d). The 1PI 2-point
function T® (p) in the IR reads then

T (p) = (1+02Zy)pf — (m + 6n) — i’;:f (1+10g 51—22) . (7.3.8)
Matching egs. (7.3.5) and (7.3.8) gives
0Zy(p) = _lfgijﬂ <%log]\5—; - i + 2%\;2 + O(%)) ’
om(p) = _51)(;7:23 (1 —|—log:l—22) + ?;;q;<bg]\;[; 1 %2210g%22 i O(]\}l)) .
- *12‘52 (14105 J\%) (”%22) - %(Hlog T’:L—z) (7.3.9)

where in the last line we have used the tree-level relation (7.3.3) for A. It is clear from
eq. (7.3.9) that the matching is best performed at g = M. Matching the p?/M? terms
in eq. (7.3.5) would require the addition of the higher dimensional operators of the form
@01 or 1p01p. We neglect them, since their effect is small, suppressed by p? /M? times a
loop factor. The physical fermion mass is given, at one-loop level, by

g° (5 9m?  4m? MQ)]

(7.3.10)

it taE e s

7.4 Yukawa Theory II: Heavy Fermion, Light Scalar

Consider now the opposite case with an heavy fermion field coupled to a light scalar:

Lov = (06 — 5m*é + (i — My — goiy (7.4.1)
1 1 b A
Lin = 52(00) — 5’6" + 3_?¢3 + 370" +hdo. (7.4.2)

The tree-level integration of ¢ gives 1) = 0, so that
Zy=1+6Zy, m*=m*+0d,2, M=0("), M=0(g"). (7.4.3)

Let us again match the 1PI 2-point function in the UV and in the IR theory. In the UV

we have k

2 e dk i+ M) i+ M




taking Tr I = 4 (rather than d). Expanding for M > m,p, we get

44> 1 M? 4 > 1
1‘\(2) _ 2 2 21 | o - O -
) = p=m —qgm P 3le T Fy oot (M4>

M? 1
2 _ _
+ M ( Blog 5+0(M4))1. (7.4.5)
In the EFT we simply have
@ (p) = p? —m? + p*6Zy — 6,2 . (7.4.6)

Matching egs. (7.4.5) and (7.4.6) gives

4q? 1. M2 4
4 = - ——log— + =
o) = ( o8 + 3> |
4g2 M? M?
The physical scalar mass is given by
2 2
2 _ 2 9 2 16 m
My = m* (M) + 5 M ( 20+ ?W) . (7.4.8)

7.5 Naturalness and the Hierarchy Problem

The scalar mass correction in eq. (7.4.8) is of O(M?¢?/(1672)). For M > m, the ratio
(M/m)? can overcome the one-loop suppression so that the radiative term is generically
much bigger than the tree-level one. If we want to keep the physical scalar mass small,
a fine-tuning between the MS mass term m?(M) and the one-loop correction is needed
(of course this readjustment is needed at each order in perturbation theory). This is
not a conceptual problem, and there is nothing wrong in principle to do that, but it is
nevertheless unpleasant to have in the EFT a parameter that is so sensitive to the UV
physics. Even a small change in the UV theory (say, g — g 4+ dg in our toy example) will
give rise to a large radiative correction to mghys' and to a new readjustment. This is the
typical example of an “hierarchy problem” or “naturalness problem”, namely the problem
of explaining why a parameter in an EFT Lagrangian is much smaller than its expected

value at the quantum level.> Natural parameters are often defined as follows:

3The hierarchy problem is often defined as due to quadratically (or higher) divergent graphs in regular-
izations with some cut-off A. Although this argument is essentially correct, it relies on the use of A and,
taken as it is, does not apply to regularizations like DR, where no A is introduced and there are no real
quadratic divergences. It would then seem that the hiearchy problem is “scheme dependent”, whereas of

course it is not, as we have just shown.
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dimensionless couplings should be of order one and dimensionful couplings should be of
order of the largest mass scale in the theory, to the appropriate power. Exceptions arise if
a symmetry is restored when a coupling (dimensionless or not) vanishes, in which case it
is natural to have that coupling arbitrarily small.

Let us check, using our results above, that this definition makes sense. In the scalar
theory of section 7.2, when ¢ = O(M) (natural value), we get that the dimensionless
coupling A in the EFT is of O(M?/M?) = O(1). Contrary to the scalar case, the fermion
mass correction in eq. (7.3.10) is proportional to the mass itself. This implies that, for
m — 0, all loop corrections vanish as well. Hence, light fermion masses are natural.
According to our general definition of natural parameters, some symmetry should be
restored when m — 0. This is indeed what happens, the symmetry being the chiral
symmetry 9 — 751 (combined with the discrete Zs inversion symmetry ¢ — —¢ in the
UV theory). No symmetry is instead restored when the scalar mass term goes to zero, so
that in this case we have a naturalness problem.

Despite hierarchy problems do not lead to real inconsistencies and we can live with
them, they have been the main driving force in going beyond the SM, since the Higgs boson
mass term is unnatural. Similarly, one of the main problems in theoretical physics today
is provided by another hierarchy problem, which is why the vacuum energy we measure is

so smaller than its natural value.

7.6 Non-Leptonic Decays

As a final example, we consider a commonly used EFT of the weak interactions, by means

of four-fermion operators. The charged electroweak current in the SM contains the terms

Lsy D LW; (VudﬂL’y“dL + VusaL’Yp,sL) + h.c. (7.6.1)

V2

Integrating out the W gives, among others, the flavour changing four-Fermi interaction

term i
F ~ _
— — Vs Vg, (upy*sp)(dpyur) 7.6.2
\/§ d ( LY L)( L7y L) ( )

with the matching relation

Gr 'S
Gr _ , (7.6.3)
V2 8mi,

The most general EFT dimension six interaction terms that can contribute to K decays

are
Lir = —c101 — 309 + h.c., (7.6.4)
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Figure 7.1: One-loop graphs contributing to the renormalization of the four-Fermi operator

(7.6.2). All external momenta are vanishing,.

where
O1 = (ur*sp)(dpyur),  Oo = (wr ur)(dryese) - (7.6.5)
Tree-level matching gives

2
c1(my) = #Vungu(mw), ea(mw) = 0. (7.6.6)
w

Although at tree-level only O; appears, symmetry arguments do not forbid Oz, which is
expected to arise at the quantum level. Operators like (7.6.5) are relevant for the decays
of the strange mesons, such as the K’s. The natural scale where the operators O; 5 should
be renormalized is O(my), being this the scale of the decay process. It is important to
compute the RG flow of the couplings ¢; = ¢;(u), i = 1,2, and see its effect. The main
contribution is given by the QCD corrections. In what follows we then compute the QCD
effects on the RG flow of ¢; and cs.
Recall that at the linear level, the RG evolution of the couplings ¢ is fixed by the
anomalous dimensions of the corresponding operators (see eq. (5.9.13)):
,u(ji—z = Bi = i<, (7.6.7)
where 7;; is the 2 x 2 matrix of anomalous dimensions of the composite operators O and
0o which, as we will see, mix under renormalization. We have then to determine 7;;. By

definition,
OF = Z;;(n)0; (), (7.6.8)

where Of are the bare composite operators. In analogy to what done at the end of section

5.9, where we computed the anomalous dimensions of the composite operator ¢ in the
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A¢* theory by demanding the finiteness of the connected Green function (¢?¢¢) at zero
momentum, we might determine Z;; by demanding that the connected Green functions
GZ(-4’1) = (O;upursrdy) are finite at zero momentum. The Green functions GZ(-4’1) carry
four spinor indices, one for each elementary quark field. In order to simplify the notation,

(4,1

we will multiply Gi4 ) by the wave functions of the external fermion fields and denote
them by the same symbol of the corresponding fermion field uy, d;, and sy,.

The relevant 1PI one-loop graphs renormalizing O; are depicted in fig. 7.1. A similar
set of graphs, with d <> u in the external lines, renormalizes Os. Due to the conservation
of the underlying electroweak currents, the diagrams (1) and (2) in fig. 7.1 precisely com-
pensate for the non 1PI one-loop graphs correcting the external quark lines so that we do
not need to compute them. This is best understood by noticing that G%’l) = Ziijl’l)/Zg
where \/ZI is the wave function renormalization of the elementary quark fields, flavour-
independent when only strong interactions are taken into account. The factors Zg com-
pensate then for the divergences arising from the diagrams (1) and (2). In the following we
neglect all quark masses and choose the Feynman gauge £ = 1 for the gluon propagator.

Keeping only the divergent terms, diagram (3) gives

. € ddk 7 df‘{ via - 7%‘{ a —1i
(3) = (ige)*n /W(dw“ﬁv t uL) (umuﬁ%t SL)F
2

= 329772 (dLPy ~ Wut“uL) (ﬂL%L'yp'y,,t“sL) + finite terms. (7.6.9)
Similarly, we get
2
4)=(3), (5)=(6)= 329 5 (dL'y vy ’y”t"“uL) (ﬂL’y,/yp'yutasL> + finite terms.

(7.6.10)
Egs. (7.6.9) and (7.6.10) are best written using certain identities in both color and spinor
indices, identities that are derived in detail in subsection 7.6.1. Using the results in that

section, we have

1 1
tijth = 3 (51‘15]*19 - §5ij5kl) , (7.6.11)
_ 1 -
borthir = 5 (12" Y2r) v Pr (7.6.12)
Starting from eq.(7.6.9), we first use eq.(7.6.12) to write

(dz VPt )(ﬂ’iwvatizsi) = (dl yHoyPy v"‘mep%le)t'élt?
x (o) = —16(umauL) (dyost )it (7.613)

where in the second equality we have used the gamma matrix algebra relation
VAP A Y = =297 (7.6.14)
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We can now apply eq.(7.6.11) to get
K= —16(12’27“1&) (JiL'yale) % (5il5jk - %51']-5“) = —8<ﬂL’VaUL) (d_L’Y(xSL>
45 () (d st (7.6.15)

Applying again eq.(7.6.12) to the second term in eq.(7.6.15) gives

K = —8(1‘@7“%) (JL’V;LSL> + g(%) (6&7“%) (ﬂL'Ya'Y,uPR'YasL)

= —8(1’@7"1@) (CZL’YHSL> — %(JL’}/HUL) (ﬂL’yusL) , (7.6.16)

where we have the relation
Y VYa = =27 - (7.6.17)

The second row in eq.(7.6.18) is our final expression of K. As can be seen, we have started
with the four fermion operator O; with the schematic form (@s)(du) and ended up with
having generated also the form (@u)(ds), corresponding to the operator Os. Identical
manipulations can be performed starting from the term (5) in eq.(7.6.10) and will not be
reported. Summarizing, we have

8, - " _
- g(dLV ur) (UL YusSL) »

_ » N _ B 2 _ B
(dm’WPV tauL) (w%%wtasL) = =2(dpy"sp)(uryur) — g(dL’Y“uL)(UL%SL)(T@ls)

(Jm“vpv”t“w) (ﬂmﬁp%t“SL) = —8(dpy"sr)(uryuur)

Collecting all terms and taking into account that O and Os are related by an odd exchange

of fermion operators, we get (o, = g2/(4r))

% %

O1,8 = O1(p)+

010 =305(0)] . On.5 = Oa(0) + o= [ 02() =301 ()], (7.6.19)

27e 2me

from which we compute the wave-function renormalizaiton matrix Z;;:

« 1 -3
Zii = 6i: ¢ 2y 6.2
j=0ij + Sme <_3 . ) + 0(a2) (7.6.20)

The matrix of anomalous dimension is now easily computed from eq.(5.9.5):

o (-1 3 9
- + 7 6.21
Y = 5 ( ) _1> O(az) (7.6.21)

where we have used the tree-level d-dimensional QCD S-function B(a.) = —ea, + O(1).4

The operator basis in which the anomalous dimension matrix is diagonal is given by the

4Recall that the limit d — 4 should always be performed at the end of the computation.
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operator combinations®

0, -0 0, +0
Oy = % Os)p = % (7.6.22)

with eigenvalues
= 2ac == (7.6.23)
Y1/2 y 3/2 . -0.

We then have ¢;0; = ¢1/901 /2 + ¢3/9032, With ¢1/5 = ¢1 — ¢, ¢3/2 = ¢1 + ¢2. In this new
basis the RG flow for the couplings reads

de; .
”i =i, i=1/2,3/2. (7.6.24)

The equations are easily integrated by writing pde;/du = de;/dacS., where B, is the
(one-loop) QCD p-function

2
B, = ——;bo by =11 — §nf‘ (7.6.25)

We get

cvati) = i) (290 )L cyat) =) (290 ) T 620)

ae(po) ae(fio)

The integration constants ¢;(1) are fixed by taking po = my and matching by using
ed. (7.6.6): c3jo(mw) = cijo(mw) = G*VusViy,/(2m2,) = co. By taking p ~ mg, we can
estimate the effect of the QCD LL corrections. For ny = 4.5 one roughly gets cl/g(m;{) ~
2co, c3/2(mc) = 0.7co, with an enhancement by about a factor 3 of the isospin 1/2 operator

with respect to the 3/2 one, showing that QCD corrections are far from being negligible.

7.6.1 Useful Color and Spinor identities

In this subsection we provide the details to derive egs.(7.6.11) and (7.6.12). Let us first
consider the color indices. When the combination of color generators t?j % is summed over
all generators, the indices 1, j, k, [ can only be carried by the group space metric d;;. Hence

we must have

D tith = Adudji + Boiju, (7.6.27)

5The label 1 / 2 and 3/2 refers to the quantum numbers of such operators under an approximate global
SU(2)r, symmetry under which urz, and dr, form a doublet and sy, is a singlet. This is an abuse of language,
because while O/, is in fact a component of an operator doublet with isospin 1/2, the operator O35 is a

component of a mixture of operators with isospin 1/2 and 3/2. We follow here the notation of ref.[1].
5This is, of course, a simplification, since we should take into account the b quark for energies above its

mass and integrate out the ¢ quark below its mass, by performing a more refined matching.
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with A and B coeflicients to be determined. Multiplying by d;; (or by dx;) and by d;; (or
by d;;) we get, for SU(N),

0 = 6r(A+ NB),
Cy(r)d = Z(tata>il = 6(NA+ B), (7.6.28)

a

where Cs(r) is the quadratic Casimir group invariant, that depends on the representation

of the generators t*. For SU(NN) generators in the fundamental representation we have

N? -1
Ca(fund.) = N (7.6.29)
The solution of eqs.(7.6.28) is
1 1
A=3, B=-5c. (7.6.30)
For SU(3) we have then
1 1
Zt?jtil =3 (5il5jk - §5ij5kl> ; (7.6.31)
a

that coincides with eq.(7.6.11). Let us now turn to the spinor indices. Here we look for
identities relating products of two fermion bilinears expressed in different combinations.
Schematically (¢1Ty4)(¢3T9) ~ (1 T9h2)(13T4bs), where T' are products of gamma ma-
trices. Relations of this form are called Fierz identities. The latter are best derived by
decomposing an open index fermion bilinear 41, in terms of an independent basis in
spinor space. A convenient independent basis is provided by the antisymmetric products

of gamma matrices:

Lab,  Yaps Vo Vb o Tab o (7.6.32)
where y#1Fn is the completely antisymmetrized product of gamma matrices:
1
= S (M £ perms.). (7.6.33)
n!

A spinor basis should consists of 4 x 4 = 16 matrices, with complex valued coefficients.
The total number of matrices appearing in eq.(7.6.32) is indeed 1 +4+ 6 +4 + 1 = 16.

One also notices that the matrices (7.6.32) are orthogonal in spinor space, namely
Tr(yHtHryhtbna)y = (0 for ng # ng (7.6.34)

and hence they form a basis.” Notice that the matrix y**#7 is equivalent to the chiral v5

matrix. Hence, an alternative, but simpler, basis is given by the set

Loy Yaps ey (")abs  Vap- (7.6.35)

"Notice that this true in any number of even dimensions d. In particular, the total number of matrices

equal (1 4+ 1)¢ = 2¢ = 2%2 x 2%/2 where 2¢/2 is the dimension of the spinor space in d even dimensions.
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A generic fermion bilinear can then be written as follows

YoaP1p = €160 + 27l + e3vhy + ca(VY5)ab + 5 (V5 )ab » (7.6.36)

where ¢; (i = 1,...5) are coefficients to be determined. Multiplying eq.(7.6.36) by 045

immediately allows us to fix ¢y:
o = Z(J}lw), (7.6.37)

where 7 = +1 for commuting spinors and n = —1 for anti-commuting spinors. Similarly,
multiplying eq.(7.6.36) by the various gamma matrices allows us to fix the remaining

coefficients. We get

Voath1p = Z((77[;1¢2)6ab+(1/;1'7u7/}2)75b+(&17uvw2)75;+(&17u75w2)(757H)ab+(1z)175¢2)('75)ab> :
(7.6.38)
Using eq.(7.6.38), it is clear how to relate products of bilinears of the form (1 T4 ) (13T%2)
to (1 T2)(13T1by). The relation (7.6.38) is the master equation that, applied to different
products of bilinears, gives rise to different sets of Fierz identities. In the situation dis-
cussed in section 7.6, eq.(7.6.9), we have to consider chiral fermions. This simplifies the
analysis, because upon multiplying eq.(7.6.38) by P, from the left and by Pg from the
right, (P, = (1 4+ 75)/2,Pr = (1 — 75)/2), three out of five terms in the r.h.s. of that
equation vanish. For two (commuting) spinor wave functions we take 77 = 1, the remaining

two terms combine to give

Yorainy = %(JJIL’YMwQL)(’Y,uPR)ab : (7.6.39)

that is eq.(7.6.12) of section 7.6.

7.7 (Ir)relevance of Higher Dimensional Operators

We have so far neglected all higher dimensional operators appearing in the EFT, assuming
that their effect is small. This assumption is actually correct, and this is the main reason
why we study EFT after all, but it is not as trivial as what naively expected. At the
quantum level the insertion of higher dimensional operators in Feynman amplitudes leads
to bad divergences that can obscure the irrelevance of these operators at low energies.
As a matter of fact, these operators are not always negligible at low-energies, their effect
depending on the regularization and renormalization procedure used to deal with the
divergences. As an illustrative example, let us go back to the two scalar theory in section

7.2 and let us add the dimension six operator

A
WL%L (7.7.1)
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to the Lagrangian (7.2.2).8 The operator (7.7.1) is indeed generated, at tree-level, when we
integrate H out. Naively, we expect that (7.7.1) is suppressed at low-energies as E%/M?
with respect to the A coupling in eq. (7.2.2). However, at the quantum level eq. (7.7.1)
leads to severe divergences. For instance, at one-loop level the 1PI 4-point function with
one A and one \ vertex is quadratically divergent, so that
5 2 3 2

FIRORS )\% /d4k(l€2f_7p2)2 ~ A% (A2 +p?log % T ) , (7.7.2)
where p generically denotes external momenta or the mass m. Since the cut-off A of the
EFT is around M, we see that the divergent term can compensate for the manifest 1/M?
suppression to give a contribution to I'® of the same order of the leading A? term.

This potential problem is actually scheme-dependent and is manifestly absent in DR,
with a mass-independent renormalization subtraction scheme, such as MS. In DR, diver-
gences arise as poles in 1/e and, when subtracted, leave a renormalized amplitude where
the sliding scale p appears in logs only. Since in the EFT the only other mass scales present
are the light masses and the low-energy momenta, by dimensional analysis all higher di-
mensional operators are manifestly suppressed. In the example above, for instance, we
get, once the poles are subtracted,

A 2 A 2
@ e n 2 e oA (2100 B
or oc)\M2/d k(k2+p2)2 )\M2(p logp2+...), (7.7.3)

which is manifestly sub-leading with respect to the A\? term.

Of course by using any other regulator, after the divergence is subtracted, no depe-
dence on the cut-off appears. However, in a generic regularization and renormalization
prescription, power-like dependence on the sliding scale is induced, which can spoil the
naive dimensional analysis. For instance, by renormalizing the operators L* and L?0L at

a scale u, one would get
by 12 2
STW ~ N2 (p210g— + p?log = +) . 7.7.4
M2 p2 TH B (7.7.4)

If the subtraction point 4 < M, we can still neglect higher dimensional operators, but
in a sufficiently complicated set-up powers of M might be induced by mixing with var-
ious operators. Moreover, we have seen that it is convenient in effective field theory to
renormalize at the scale y ~ M, in which case dimensional analysis, when using eq.(7.7.4),

would break down. These problems are avoided by using DR with a mass independent

8As we will see in the next section, this is a so called redundant operator, but this is inessential for the

argument we want to make here.
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subtraction. In other words, mass-independent schemes preserve dimensional analysis, an
observation we already made in subsection 5.8 in the context of the RG flow of general
dimensionful couplings. We now see that this property has the fundamental implication

of validating a naive treatment of higher dimensional operators in the context of EFT.

7.8 Redundant Operators

We have discussed at length that in EF'T one should write down a local effective action for
the lights fields including all the higher dimensional operators up to the desired order, the
coefficients of which will be then fixed by a matching procedure. It turns out, however,
that there is a redundancy in this description, since the physical observables in general
depend on only a subset of the EFT coupling constants (called physical in what follows).
The remaining couplings are called redundant, because they can be expressed in terms
of the physical ones. This redundancy can be traced back to the LSZ reduction formulas
(2.3.12), for which on-shell amplitudes are associated to the residue of multiple poles in a
Green function, not to the whole off-shell Green function. We can obtain different Green
functions by changing, for instance, the asymptotic field ¢ that creates one-particle states.
Any other quantum field ¢/, as long as (0|¢'|p) # 0, is an equally good choice. The off-
shell Green functions associated to ¢’ would generally differ from those associated to ¢,
but both would lead to identical on-shell properties. In other words, different off-shell
Green functions lead to the same on-shell physics.

The same redundancy can similarly be discussed in terms of operators, and not of their
associated couplings, using the Schwinger-Dyson equations (4.4.3). Viewing §5/d¢ as a
particular composite operator in the theory, we can interpret eqs.(4.4.3) as the statement
that such composite operator, when inserted in Green functions, gives only rise to contact
terms with Green functions containing a lower number of fields. On-shell, this implies
that some pole is lost and these operators should not contribute to physical processes
(compare with the situation discussed in subsection 4.4.3 in the context of the WI in
QED). These operators are called redundant [22]. Composite operators made of 4.5/d¢
times other operators evaluated at the same space-time point (suitably renormalized) are

also redundant. This can be shown as follows [22]. Let us define

0la) = Flolo) 55 (7.8.1)

a (suitably renormalized) composite operator, where F' is a local functional of ¢ and

35/d¢p(x) are the equations of motion for the field ¢. We can introduce external sources s
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and J for ¢ and 0, respectively, and consider the generating functional
eiW[J,S] — /D¢ elfddx(£+s¢+J9) . (7.8.2)

We will be interested in correlation functions with at most one insertion of 6, so we can
expand in J and keep only the terms up to linear level. Performing the path integral

change of variables

p(z) = o) — J(x)F(o(2)), (7.8.3)
we then get
el = /D¢ ‘det Jac(z,y)|e ] A'e(Ets@=TE) (7.84)
where
Jac(z,y) = 6D (x —y) — J(z)% (7.8.5)

is the Jacobian associated to the change of variables. By taking n functional derivatives
with respect to s(x;) and one with respect to J(z), and setting s = J = 0, we get the
identity

i{p(x1)... p(an)0(x)) = = 0Dz —z)(d(z1)... F((x))... d(zn))
1=1

GF((¢(x))

—(P(x1) ... d(xn) 56(@) ). (7.8.6)
The last term in eq.(7.8.6) arises from the determinant of the Jacobian. For any local
functional of fields F(¢), it is UV divergent and proportional to 6(¥(0), so it vanishes in
DR, where such divergences are set to zero. In this way eq.(7.8.6) is the generalization of
the Schwinger-Dyson equations (4.4.3), which are reproduced by taking F' = 1. Equation
(7.8.6) shows that any local composite operator 6 of the form (7.8.1) does not contribute
to physical processes.

In practice redundant operators can be removed in EFT either by using the equations
of motion at the Lagrangian level or alternatively by field redefinitions. It is useful to
see how this works in a simple example: an EFT featuring only a real scalar with Zo
symmetry ¢ — —¢@. Up to dimension six operators, the most general EFT reads as:

U5 = L0067 — 3ot + Tt By + Bgnsro(cn), (187)
where, for further simplification, we have neglected the mass term m?@?. One could write
down other dimension six operators, but these are equal, up to total derivatives, to the

operators in eq.(7.8.7). For example, integrating by parts, one easily gets
1 1
0(09)* = —3¢°00 + Z0u(¢°0u0) (7.8.8)
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the last operator giving a vanishing contribution in the action. The equation of motion
for ¢ is

1
3 —
_O¢— 4N + O(W) ~0. (7.8.9)
Plugging back eq.(7.8.9) in the dimension six terms in the Lagrangian (7.8.7) gives
Fae) _ Lo o o 916 !
Lyrr = 5(&15) —Ap"+ Wéf’ + O(m) ) (7.8.10)
where
g1 = g1+ 16\%g2 — 4)\gs. (7.8.11)

We see that two out of the three dimension-six operators are redundant. This implies
that, at this order, physical observables only depend on the two couplings A and g;.
The same conclusion can be reached by making the most general field redefinition

compatible with the symmetries at this order:

R (78.12)

where a and b are so far undetermined dimensionless parameters. In the new basis the

Lagrangian (7.8.7) reads, up to total derivative terms,’

1 . 1
LD - 850 = L0607 2ot + Tt 1 B oy 4 oL o(o), (1813)

where
g1 = g1—4bA, (7.8.14)
QQ = g2 —a, (7815)
g3 = gs—4al—D>. (7.8.16)

We can choose a and b such that go = g3 = 0, i.e. a = g2, b = g3 — 4\go. Plugging these
values back in eq.(7.8.14) reproduces eq.(7.8.11) and gives rise to the same EFT (7.8.10).
The presence of two redundant operators in the Lagrangian (7.8.7) can also be seen by

taking the following basis for the dimension six operators:
L5 = 200 A+ 00+ T2 (06104 L6 06 06%)10( 1), (78.17)

where we immediately see that gs and g3 are redundant couplings, and the operators O,
and Oy in eq.(7.8.17) are of the form (7.8.1), with Fy = O¢ 4 4\¢*, F3 = ¢7.

9We have seen that no contribution in DR arises from the Jacobian associated to the change of variables
(7.8.12), which can then be neglected.
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Removing redundant operators can lead to a significant simplification. It should how-
ever be noted that if one starts with a Lagrangian where redundant operators have been
removed, like eq.(7.8.10), and considers off-shell Green functions, the cancellation of UV
divergences will generally require the introduction of counterterms associated to the re-
dundant operators. Such counterterms can then be rexpressed in terms of counterterms

for the non-redundant operators using field redefinitions or the equations of motion.
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Chapter 8
Spontaneously Broken Symmetries

Symmetries are a fundamental concept in QFT but they are often broken in Nature. If
a physical system described by a Lagrangian L£(¢) is invariant under some symmetry, a
possible breaking term is obtained by adding terms to £(¢) which do not respect the
symmetry (explicit breaking). If the corresponding breaking operators have dimensions
less than four, the UV behaviour of the theory (and its divergences) will not be affected
by the symmetry breaking terms. In this case we say that the symmetry is softly broken.
Another possibility occurs when £(¢) is invariant under the symmetry but the ground
state (the vacuum) is not. If G is the operator in the Hilbert space parametrizing the action
of the symmetry group, G|0) # |0). In this case we have what is called a spontaneous
symmetry breaking. Classical prototypical example is the breaking of the SO(3) spatial
rotations in a ferromagnet. The laws of Nature are all spatially symmetric, but the vacuum
is not. The simplest example of a spontaneous symmetry breaking mechanism is provided
by the A\¢* theory with a negative squared mass term, that enjoys a Zo symmetry under
which ¢ — —¢, with (¢) = +¢g # 0. Clearly, the Zy symmetry exchanges the two
degenerate vacua, Zsa| £ ¢o) = | F ¢o). The two vacua are physically identical, so that we
can choose any of the two and expand for small fluctuations around the selected one.
The story is however not so simple. We are tacitly assuming that the vacuum is
one of the two vacua | = ¢g), and not a linear combination of them. If the vacuum was
|+) = 1/v2(|po) & | — ¢0)), then the symmetry would be exact and not spontaneously
broken (the vacua being mapped to themselves, up to a possible sign factor). This is
in fact what happens in the quantum mechanical analogue of the double well potential:
the hamiltonian eigenstates are given by |+), since tunneling effects induce non-trivial
transitions of the form (+¢g| F ¢o), and no spontaneous Zs symmetry breaking occurs.

So we start in the next section explaining why and how spontaneous symmetry breaking
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takes place in QFT.

8.1 Why Spontaneous Symmetry Breaking?

As we mentioned, spontaneous symmetry breaking does not occur in quantum mechanics.!

More generally, it does not occur in systems with a finite number of degrees of freedom,
like in QFT defined on a finite volume. The tunneling effects between different vacua in
QFT are exponentially suppressed by the volume of space V. As V' — oo, such transitions
no longer occur and different degenerate vacua are equivalent and completely disconnected
from each other: spontaneous symmetry breaking can then occur.

The absence of transitions between different degenerate vacua in QFT can be shown
by looking at the equal-time commutators of two generic local operators A and B. Assume

that the vacua are discrete and take them orthonormal:
(ulv) = by - (8.1.1)

Inserting a complete basis of states we have

(ulA@)B(0)|v) =) _(ulA(0)|w){w|B(0)[v) + /d3ﬁeiﬁ'fp(ﬁ) , (8.1.2)

w

where the first term is the sum over all the possible vacua w present in the theory and
p(F) = Y (ulA(0)|n, gn)(n, 4| B(0)[0)6®) (5 = 7,) (8.1.3)
n

represents the sum over n-particles states with total momentum ¢,. If we assume that
p(p) is integrable, the Riemann-Lebesgue lemma applies and we have

lim [ d*pe?? p(p) = 0. (8.1.4)

|Z| =00

This condition is automatically satisfied if the theory has a mass gap, namely if the
one-particle states are all massive, in which case the Fourier transform of p(p) vanishes
exponentially in |Z] at large distances. It ensures that operators inserted far away from
each other have no correlation. This is cluster decomposition at the operator level, that
will play an important role again in what follows. Since A and B are space-like separated,
microcausality requires that

[A(Z), B(0)] =0. (8.1.5)

!The analysis in this section closely follows section 19.1 of ref. [2]. T also found useful chapter 2.2 of
Parisi’s book [23], that contains several interesting observations that are often omitted in QFT textbooks,

in particular about the role of cluster decomposition.
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Egs.(8.1.2), (8.1.4) and (8.1.5) imply that the matrix elements (u|A(0)|v) and (u|B(0)[v)
should commute for any u and v, and hence can be simultaneously diagonalizable. There

exists then a basis of vacua where
(ulA(0)|v) = aybup - (8.1.6)

Since A is an arbitrary local operator, we can take it to be the hamiltonian density operator
and thus we have proved that no transitions between degenerate vacua are possible in QFT.
Notice how the infinite volume limit entered crucially in eq.(8.1.4).

However, this is not the end of the story, because we have still to rule out the possibility
that the final vacuum is given by some linear combination ) c,|u), where |u) is the
orthonormal basis defined by eq.(8.1.6), rather than by any of the |u). This possibility is
ruled out by demanding cluster decomposition of the correlation function:

lim (A(Z)B(0)). = lim ((A(a?)B(O))—<A(33’)><B(O)>) =0. (8.1.7)

For instance, for two vacua related by a Zy symmetry, we can denote |+) the vacua in the

diagonal basis (8.1.6) and by |«) the linear combination
|a) = cosal+) +sina|—), (8.1.8)
with 0 < o < 7/2. In a a-vacuum we have

lim ($(Z)¢(0))a =(ald(0)[+)(+]6(0)|c) + (a](0)|—)(~[¢(0)|a)

2 2

=02 (sin? o + cos? @) = v?,

where £v is the VEV of the field ¢ in the two vacua |£). On the other hand

(0(0))a = (a](0)|a) = v(cos? a — sin”® o) = v cos 2, (8.1.10)
so that
I%im (a|p(F)(0)|a) = v*(1 — cos® 2a) = v?sin? 2ax. (8.1.11)

The only a-vacua that satisfy cluster decomposition are those with @ = 0,7/2, i.e. the
states |[+) and |—). Spontaneous symmetry breaking can then be seen as an obstruction
in having a vacuum that at the same time is invariant under a symmetry and satisfies
cluster decomposition.

The discussion above can be generalized to continuous symmetries where we have an
infinite family of degenerate vacua. For continuous symmetries we also have an important
theorem, the Goldstone theorem, relating the symmetry breaking pattern to the spectrum
of the theory.
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8.2 The Goldstone Theorem

Let G be a group of global continuous symmetries with generators t*, « = 1,...,dimG,
acting on some system. By Noether’s theorem, we have dim GG conserved currents Jl‘j‘(x):
9" J%(x) = 0 and the associated charges Q* = [d*zJ§ (x). The group G is said to be
spontaneously broken if, on the vacuum, the generators splits into two sets, labelled by a
and 4, such that
QU0) #0, Q'0)=0, (8:2.1)
with a non-empty set for a. The unbroken generators labelled by ¢ form a subgroup of
G, denoted by H, so that we have dim G — dim H broken generators (a = 1,...,dim G —
dim H). Goldstone’s theorem states that, independently of the specific pattern of breaking
and physical system we are considering, in the spectrum there will appear one massless and
spinless particle for each broken generator. The particle will be scalar or pseudoscalar,
depending on the parity of the associated broken generator. These particles are called
Goldstone or Nambu-Goldstone (NG) bosons. For simplicity, we will always refer to them
in what follows as to the NG particles.
Proof of the theorem. Let ¢, be the set of fields responsible for the spontaneous
symmetry breaking pattern G — H. This implies that an infinitesimal action of the group
G on the fields ¢,, do not leave them invariant, namely (¢}, (0)) # (¢,(0)), where ¢’ are

the fields one gets after the infinitesimal action. In other words, we must have

<5¢n(0)> = €a<[Qa’ ¢n(0)]> #0, (822)

with ([Q%, ¢,(0)]) = d¢% # 0, for each a. Consider now the two-point function of a

conserved current Jj; with the fields ¢;. Since 0*J(x) = 0, we have

OEOIT [T ()6 (0)]]0) = 0% (0(2) (T (2) 80 (0)) + 0(=2") (6 (0) J5 () )

o (8.2.3)
=0(z")([J5 (z), on (0)])
Let us denote by G, ,, the Fourier transform of the two-point function:
a d4p a —ip-x
(OIT'[J}; ()¢ (0)]]0) = WGu,n(p)e : (8.2.4)
By Lorentz invariance, we have
G, o (p) = ipu Hy(p°) - (8.2.5)

Integrating eq. (8.2.3) over space-time gives
/d4$ O OIT [T (x)n (0)]]0) = /d4p5(p)p2H$(p2) = ([Q% ¢n(0)]) # 0. (8.2.6)
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The integral of a divergence does not vanish when long-range particles appear, and these
are precisely the NG bosons. More precisely, we must have

6 a
H(p?) = ;;" + ... (8.2.7)

where . .. represent terms that are regular when p — 0. A pole in the two-point function of
Jii with ¢, is a signal of the presence of massless 1-particle states, one for each unbroken
generator a. Since ¢, are spinless (otherwise in the vacuum we will break the Lorentz
symmetries as well), such particles are necessarily of spin zero. Their intrinsic parity is
then fixed by the parity of the associated current J*. Q.e.d.

Denoting by NG, the one-NG particle states, we have

@y Iel _ Z.pliF’abeiip.z :
Zbeins 2
(NGy(p)|¢n(2)[0) = Wa

where F,, and Z2 are matrices (of mass dimension one and zero, respectively) related to
0y, in eq.(8.2.7). This relation is found by noticing that G, ,, above is associated to the
spectral density pf, ,, of the two point function (0].J5(z)#,(0)|0) (recall eq.(2.1.16)):

a > a Z
Gln(p) = /0 do pn(p,0) = (8.2.9)

p2 — o +ie’
where by Lorentz invariance pf; ,,(p,0) = pupy(c). The contribution of the one-particle

NG bosons to p? is easily computed from eq.(8.2.8):
phrna(0) = iFaZ,(o). (8.2.10)
Matching eqs.(8.2.7), (8.2.9) and (8.2.10) we then have
56 = iFy 7. (8.2.11)

We can also define the NG fields 7%(z) with canonical 1-point function with the NG

particles:

5abeip<x
(NGy(p)|n* (@)|0) = —2C . (8:2.12)
v/ 2po(2)3
Putting together eqs. (8.2.8) and eq. (8.2.12), we see that
Pn(z) = Zo7%(z) + ... = (iF), 6007 (x) + ... (8.2.13)
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where ... denote field components not associated to the NG bosons. For linearly realized
symmetries, in a basis where all the field components ¢,, are real and all the generators

t® are purely imaginary, we simply have
60 = ity (dm) - (8.2.14)

The appearance of one NG particle per broken generator is physically explained by noticing
that the potential for the ¢,, is, by assumption, invariant under the symmetry. Hence,
around any vacuum (¢,,), the broken generators do not leave the minimum invariant, but
necessarily shift it in a new minimum with exactly the same energy. Hence, we have a
(dim G-dim H)-dimensional space of flat directions in the potential. It costs no energy
to fluctuate around a flat direction, and the small fluctuation is identified with the NG
boson.

The above proof of the Goldstone’s theorem does not rely on perturbation theory,
indicating that NG particles are expected to arise whenever a global symmetry group is
spontaneously broken, no matter whether the theory undergoing the symmetry breaking
is weakly or strongly coupled. The fields ¢, responsible for the symmetry breaking are
also not necessarily elementary fields appearing directly in the Lagrangian at some energy
scale, but might be composite fields built with different fields. The most relevant example
of this kind is the spontaneous breaking of the SU(2) chiral symmetry in QCD, induced
by effective scalar fields ¢, constructed out of quark bilinears. In this case, the three NG
bosons are spin zero mesons that appear as bound states of the original quarks, the pions
70, 7%, We will come back to this relevant case in much more detail in the following.

We close this section by noticing that the Goldstone’s theorem applies for internal
symmetries only, namely for those symmetries whose generators commute with the ones
of the Poincaré group. An example of non-internal symmetry is provided by the confor-
mal group, that in four dimensions is given by SO(4,2). A CFT is invariant under the
conformal group. When the latter is broken spontaneously to the Poincaré group, one
gets 15 — 10 = 5 broken generators (special conformal transformations and dilatations),
but actually only one massless NG boson, commonly denoted as the dilaton.

As we will shortly see, the Goldstone’s theorem does not apply for local (i.e. space-time

dependent) symmetries as well.

8.3 Vacuum Alignement and Pseudo-Goldstone Bosons

It is interesting to analyze theories where, in some approximation, a spontaneous symmetry

breaking occurs and, in addition, sub-leading effects introduce explicit symmetry breaking
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2 Relevant examples include the above mentioned case of QCD, where the up

terms.
and down quark masses can be seen as small explicit symmetry breaking terms of the
SU(2) chiral symmetry. We will consider in what follows linearly realized symmetries
only, for which we know that quantum effects do not spoil the invariance of the action.
By considering space-time independent field configurations ¢,,, the whole effective action

boils down to the effective potential V' (¢). The latter, by definition, can be written as

V() =Vo(o) + Vi(9), (8.3.1)

where Vj is the invariant term, and Vj is the breaking one. In the field region of interest,

by assumption, we have |Vi| < [Vp|. In the basis (8.2.14), we have

Ohy, = 1€Xt5, Om - (8.3.2)
Invariance of Vg implies
MW
Let ¢ be the minimum of Vy and ¢ = ¢y + ¢ the minimum of the whole potential V:
oV
— =0. (8.3.4)
o P=do+P1

Since |V1| < [Vo|, we also have ¢ < ¢o and we can consistently expand eq. (8.3.4) for

small V; and ¢;. At first non-trivial order, we have

0*Vy

‘ oV,
06206m 4,

¢1,m + 8#%

=0. (8.3.5)
¢o

Taking a derivative with respect to ¢ of eq. (8.3.3), and evaluating at ¢, we have

0*V

m tmp¢0,p - 0 . (836)

o

When the index « runs over the unbroken directions ¢, (8.3.6) trivially vanishes since
tinpgzﬁoyp = 0. For a = a, (8.3.6) is non-trivial and indicates that there are dim G-dim H
directions in field space with a massless eigenvector, that are the NG particles (this can be
in fact seen as an alternative proof of the Goldstone’s theorem). Multiplying eq. (8.3.5)
by t7,,¢0, and using eq. (8.3.6), we finally have

o
Ion %0

2The analysis in this section closely follows section 19.3 of ref. [2].

12 bop = 0. (8.3.7)
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In presence of a perturbation V7, the vacuum ¢y is no longer arbitrary among the would-be
degenerate vacua (in absence of the perturbation) but is restricted to satisfy eq. (8.3.7).
Equation (8.3.7) is denoted vacuum alignment condition, because it shows that the sym-
metry breaking terms typically force the vacuum ¢g to be parallel to the direction of
the explicit breaking term. This is easily seen in the particularly simple example of an
SO(N) — SO(N — 1) breaking pattern. We choose as explicit breaking term Vi = w, ¢y,
where wu, is a fixed vector, explicitly breaking SO(N) down to the SO(N — 1) subgroup
that leaves it fixed. The condition (8.3.7) gives unt%pqﬁo’p = 0, namely ¢g, o up (the
matrices t* being antisymmetric). The addition of the small perturbation to the invariant
Lagrangian lifts the vacuum degeneracy and forces ¢y to be parallel to wu,. The final
unbroken group is then SO(N — 1) and not SO(N — 2), intersection of the two would-be
misaligned SO(N — 1) subgroups.

The explicit term Vi is generally responsible for another important effect: they give
masses to the NG bosons, which become what are sometimes denoted as pseudo-NG
bosons. Their masses can be extracted from the potential by using eq. (8.2.13):

0’V

= (iFaC)_16¢;(ind)_16¢gnm , (8.3.8)

o0*V

2 _
Moy = omednd 4

Expanding for small V5 and ¢, it is straightforward to see that the pseudo NG boson

masses are linearly proportional to the explicit breaking term:

Mgy, o< Vi (8.3.9)

8.4 Spontaneously Broken Gauge Symmetries: the Higgs Mechanism

The Goldstone’s theorem does not apply in the case in which the broken symmetry is
local.? It is impossible for gauge theories to keep at the same time Lorentz invariance and
positivity of the Hilbert space, both conditions being important to establish the theorem.
For local symmetries, no NG massless particles appear, but rather the would-be NG bosons
are “eaten” by gauge fields that become massive.

The situation is easily illustrated by the abelian Higgs model (model that will be

extensively analyzed in the final chapter in the special case m = 0), whose Lagrangian is

L= —iFwF’”’ + D@2 -~V (D), V(&) =-m?d'd+ %(qﬂ@)? : (8.4.1)

3This often used terminology is actually misleading. Gauge symmetries, being merely redundancies of
the system, cannot be broken. A more proper term would be gauge theories in a non-linearly realized, or

Higgs, phase.
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with D, ® = 0, ® —ieA,®. For m? > 0, the minimum of the potential is at

v
ol = /m2/ N = —. 8.4.2
|®o| = \/m?/ 7 (8.4.2)
It is useful to choose radial coordinates for the field ® and write
VP o
\/E )

where the factor v in the exponential has been introduced to get canonical fields of dimen-

® = (8.4.3)

sion one. Expanding around small fluctuations, we quickly get at quadratic order
1 1

1 1
L=—FuF" + 5(aup)2 +5(0u0 — evA,)? — 5(2m2)p2 +... (8.4.4)

The radial field is massive, with m, = v2m, while the angular field 6 is massless. Actually
¢ mixes at quadratic level with the gauge field A, and it is not an eigenstate of the free
Hamiltonian. We can easily get rid of the unwanted mixing term eA*9,0 by noticing
that we have still to gauge-fix the U(1) gauge symmetry. Under a U(1) transformation
with parameter a(z), ®(x) — exp(ia(z))®(x). The radial field p(x) is invariant, while the
angular field () shifts as 0(x) — 0(x)+va(z). For any v # 0, we can take & = —6 /v and
set in this way 6(z) = 0. In this gauge, denoted unitary gauge, the third term in eq. (8.4.4)
boils down to a mass term for the U(1) gauge field, ma = ev. We can say that the gauge
field has “eaten” the field 6 that becomes the longitudinal component of a massive gauge
field. This mechanism is commonly denoted Higgs mechanism. The number of physical
degrees of freedom (d.o.f.) in the process is unchanged. We started with 2 d.o.f. from the
massless gauge field and 2 d.o.f. from the complex scalar field, for a total of 4, and ended
up in 1 d.o.f. from the neutral field p and 3 d.o.f. from the massive gauge field, again for
a total of 4.

Notice that in the limit e — 0 the U(1) symmetry becomes global and the gauge field
decouples. In this limit the Goldstone’s theorem applies and we recover the massless NG
boson 6.

All the above analysis similarly applies to non-abelian symmetries. Let us consider
the usual sets of real fields ¢, transforming as (8.3.2) under an infinitesimal local trans-
formation of a group G. For simplicity, we assume the fields ¢,, to be in some irreducible
representation of GG, although this is not strictly necessary. The Lagrangian of our system

will include the terms
1 . (67 « 2
£5 5(0ubn = igton Aom) —V(9), (8.4.5)

where we assume that the potential V(¢) has minima for ¢,, = v, such that, in the

“ungauged” limit g — 0, the global group G is spontaneously broken to H. Expanding
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around the non-trivial vacuum, ¢, = vy, + ¢,,,, the above covariant derivative gives rise
to the following terms, up to quadratic order in the fluctuations,
2

1 . . .
LC 5((‘9”(#”)2 — 190yt Um A + %( tgmvm)(ztgpvp)AﬁA“’ﬂ. (8.4.6)

When «, 8 = i, the second and third terms in eq. (8.4.6) vanish identically, since ti, v, =
0, while they are generically non-vanishing for a, § = a. The second term in eq. (8.4.6) is
the generalization of the 0,6 A* mixing term in the U(1) case. Recall that the directions
in field space given by t% v, correspond to the NG boson directions. As we will show
below, it is always possible to choose a gauge (denoted again unitary gauge) in which the
fields ¢, do not contain NG boson fields, and hence

At v = 0. (8.4.7)

The third term in eq. (8.4.6) is a mass term for the gauge fields in the broken directions.

The mass matrix
Hap = 9 (it 0m) (it 01) (8.4.8)
is symmetric, real and positive, showing that each gauge field A}, along the broken direc-

tions gets a non-vanishing mass, by eating the corresponding would-be NG boson. In the

basis in which p? is diagonal, the propagators Gy, for the massive gauge fields read
—i

a(UG) () — _ DPubv
G (p) R (mw 2 ) (8.4.9)

where UG stands for unitary gauge and p2 are the mass square eigenvalues. Notice that
for large values of the momentum p, the gauge field propagator goes to a constant. The
renormalizability properties of spontaneously broken gauge theories are correspondingly
unclear. In order to fix this problem, it is sometimes more useful to use a more general
class of gauge-fixing terms, denoted by {-gauges. The gauge fixing term L, ;. for {-gauges
is a generalization of the usual 1/(2€)(9,A")%. It reads

1 - (07
Ly = —2—§fafa, fo = 0, AL +i€gdlte, U, - (8.4.10)
The associated ghost Lagrangian is obtained by taking an infinitesimal gauge variation of
fa, with parameter w®, Ly = —gwkd, fo. We get, modulo total derivatives,*
Loh. = (0"08) (Dywa) — £ (it 0m) (it2,01)whws . (8.4.11)

From eq. (8.4.11) we see that the ghost fields along the broken directions have a mass square

that equals the gauge boson mass matrix times £. For any &, the term ig¢(¢ tv)oﬁuAg

4We take dv,, = 0, so that 8¢, = Wit dn.
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appearing in eq. (8.4.10), upon an integration by parts, cancels the second unwanted term
in eq. (8.4.6). The unitary gauge (8.4.7) corresponds to the limit £ — oo of the above
class of gauges. In this limit, the term proportional to { in L, s oscillates very rapidly
and averages to zero any field configuration for which this term is non-zero. We then
effectively recover the unitary gauge (8.4.7). We see from eq. (8.4.11) that in the unitary
gauge the ghost fields become infinitely massive and can be neglected.

Let us derive the propagators for gauge fields, ghosts and scalar (NG and not) fields
in an arbitrary é-gauge. In momentum space, setting 2 to diagonal form, the quadratic

terms of the gauge bosons in the Lagrangian add to
1 «a B 1% uu 2
Lo (4) = 5 A50) AL wos ( — P+ (1- ¢ (8.4.12)
0

valid for both broken and unbroken generators (in the latter case /JZ = 0). By inverting

the above quadratic terms, we easily get

aB(€) () _ —10ap (L =pupy
G 0) = 7= (v BTy ). (8.4.13)

The ghost propagator GZ(;) (p) is trivially obtained from eq. (8.4.11):

0,
GOy = %8 (8.4.14)
o p?—&pd
The scalar propagators are different for NG and non-NG bosons. The total mass matrix
in the Lagrangian reads
0*V

M2 = 3650 ) + €97 (it up) (it vg) - (8.4.15)

The mass matrix (8.4.15), acting on the NG boson directions (t%,v;), gives

Mr%Ln(t?zs’US) = 592 (it%va) (ittrllqvq)(tfzsvs) = gCSang(t?npUp) ’ (8416)

where the first term in eq. (8.4.15) vanishes thanks to the relation (8.3.6). In a generic
&-gauge, the would-be NG bosons have a mass which is v/ times the gauge boson mass.
On the other hand, for the non-NG boson directions, defined by eq. (8.4.7), it is the second
term in eq. (8.4.15) that vanishes, giving as masses the eigenvalues m? of 9V /¢, ¢n,. We

then get as scalar propagators

ij (p) = o 7- .m? ,  (no NG bosons)
. s (8.4.17)
Gaéﬁ) (p) = }72_7“2/12 , (NG bosons)



where the index 7 runs over all, but the NG bosons, scalar directions.

In the unitary gauge & — oo, the NG bosons decouple and can be seen as eaten by
the gauge fields. In any other gauge they should be kept. Notice how the gauge boson
propagator (8.4.13) goes like 1/p? for large momenta for any finite values of ¢ and it is only
in the unitary gauge that it behaves as p’. This makes any finite é-gauge more suitable
than the unitary gauge to address renormalizability properties of spontaneously broken
gauge theories. Commom choices of {-gauges are the Landau gauge £ = 0, in which ghosts
and NG bosons are massless, and the Feynman gauge £ = 1, in which the gauge propagator

simplifies considerably.

8.5 The Goldstone Boson Equivalence Theorem**

The Goldstone boson equivalence theorem, for short denoted equivalence theorem (ET) in
what follows, is a theorem about the behaviour of the scattering amplitude of longitudinally
polarized gauge bosons in a spontaneously broken gauge theory [24]. The theorem states
that at high enough energies the scattering amplitude of longitudinally polarized gauge
bosons is the same as the one obtained by replacing the gauge boson with its corresponding
“eaten” Goldstone boson, considered as a physical state. The relevance of the ET relies
in the fact that the scattering amplitude of massive gauge bosons is indeed dominated by
the longitudinal polarizations at high energies.

More precisely, the ET states that for £ > my

o (P1) e (D)S S (D1 Dy ) = S (D ) 0(%) .

(8.5.1)
In eq. (8.5.1), Spi~in is the S-matrix element for the scattering of n longitudinally
polarized vector bosons with mass my (taken equal for simplicity) with possibly other
physical states, unspecified in eq. (8.5.1) and encoded in the second ... in SHL-#Hn- while
Se1--an- ig the scattering of their corresponding n would-be Goldstone bosons ¢ (with
the same physical states), treated as physical particles. In order to prove the ET we start
by the generalization of eq. (6.3.24), which still applies in spontaneously broken gauge
theories:

(al[@,0]|B) =0, (8.5.2)

where |a) and |3) are arbitrary physical states and O is any operator (not necessarily
gauge invariant) of the theory. If we take O = w} and work with the auxiliary field H,
(recall section 6.3), we get

(| Ho|B) = 0. (8.5.3)
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In the R¢-gauges defined in eq. (8.4.10), solving for H, we have
1
Ha == E

For simplicity, let us consider the situation where all massive gauge fields have a common
mass m4 and let us define the would-be GB fields

(0 AL + gt vm) - (8.5.4)

maAT® = gl te, vm - (8.5.5)

The relation (8.5.3) implies that any connected Green function of physical states involving
H,, must vanish. Denoting collectively by ® any physical field (transverse or longitudinal

gauge field, physical scalar, matter field), we have

(®(q1) - .- P(qn)Ha(p)) = 0. (8.5.6)

S-matrix elements are given by the amputated Green-functions. In terms of these, eq. (8.5.6)

becomes

PG 0)(@(q1) - .. ©(an) A" (D))amp = —EMAGTE () (@(q1) ... @(gn)7(P))amp,  (8.5.7)
where the propagators are those defined in eqs. (8.4.13) and (8.4.17). We have

. 2 2 2 .
HG(g) _ _ZPV(P - §mA - (1 - f)p ) _ 77'pV§ =—p, GS(E) ) 8.5.8
PG ) (p? —m%)(p? — Em3%) W —emy) " ) (8:58)

Plugging eq.(8.5.8) in eq.(8.5.7) gives

%<®(Q1> o @(gn)Ap(P))amp = (2(q1) - - 2(¢n)7(P)) amp - (8.5.9)

Notice that the £-dependence completely dropped. The longitudinal polarization for a

vector with 4-momentum p,, = (£, p) is given by

1 P
L = — —_—
€,(p) = -~ (Iﬂ, 7 E) : (8.5.10)
For E > ma, |p] = E(1+ O(m?/E?)) and hence
P ma
)=+ O(F) . (8.5.11)

We finally get

ﬁlﬁ,a(P)@((h) s (I)(QH)A#(p»amp = <(I)(Q1) s @(Qn)ﬂa(p»amp + O(%) . (8512)
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The above derivation is easily generalized to multiple external longitudinal vector fields.
If we take O = w} H:le H,, in eq. (8.5.2), we immediately get that the Green functions

with an arbitrary number of insertions of H, must vanish. Proceeding as above leads to

n

(}:[1 e(zfui (pl)> <Az‘i (pl) o Ag: (pn) o ->amp = <7Ta1 (pl) <o Ty, (pn) .. ->amp + O(%) ,
7 (8.5.13)

that proves the relation (8.5.1). We conclude by noticing that the proof above applies only
to tree-level amplitudes. Indeed, while the relation (8.5.2) and its generalizations are exact
to all orders in perturbation theory, the form of the amputated Green functions crucially
depends on the form of the propagator. In going from eq. (8.5.7) to eq. (8.5.9) we have
used the tree-level form of the propagators. At the quantum level the relation (8.5.13)
gets corrections, that however can be reabsorbed with a proper choice of the gauge fixing

functional. We do not discuss these subtleties further.

8.6 Effective Field Theories for Broken Symmetries*

Massless NG bosons are a generic prediction of the Goldstone’s theorem, no matter
whether the underlying theory is weakly or strongly coupled. At sufficiently low ener-
gies we can then integrate out massive degrees of freedom and write down an EFT for
the NG bosons, possibly interacting with other possibly present light fields, such as gauge
fields. We will see in this section that, surprisingly enough, a lot can be said about this
EFT without even knowing the underlying UV Lagrangian (both spectrum and interac-
tions). All we need to know is the symmetry breaking pattern G — H, namely the starting
and final global groups. The key point is that the EFT should be not only invariant un-
der the subgroup H, but under the entire group G (this is precisely what we mean by
spontaneous symmetry breaking!). However, while the symmetries for H are manifest and
linearly realized on the NG bosons, the ones for G/H are non-linearly realized and in
general complicated. Group theoretically considerations would allow us to find the proper
way to repackage the NG bosons into fields that have relatively simple transformation
properties so that a general EFT can be found.

Let us start by simply writing down the general commutation relations among the
generators t; € H and t, € G/H, G and H being the Lie algebras of the corresponding
groups. We have

[tiv tj] = icijktk ) [ti» ta] = iciabtba [tav tb] = iCapete + iCapiti - (86]—)
We take here the structure constants completely antisymmetric in its indices. Since H

is a subgroup of G, Cjjq, = —Ciqj = 0. Let ¢, be the fields responsible for the G — H
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spontaneous symmetry breaking pattern (again in a basis where all the fields are real).
Since we eventually want to write down an EFT for the NG boson fields, integrating out
the other model-dependent degrees of freedom present in the theory, we have to find a
way to disentangle the NG bosons from the rest. In other words, we have to find a way
to generalize for an arbitrary symmetry breaking pattern G — H, the radial coordinates
decomposition (8.4.3) that in the U(1) — 0 allows to disentangle the NG boson (6) from
the massive excitations (p). For this purpose let us define fields g?) that do not contain NG

boson field directions:
¢(z) =v(z)p(z), ~(z) €G, (8.6.2)

namely such that
P (x)tav =0, Va. (8.6.3)

In eq.(8.6.2) and in what follows we omit for simplicity the matrix indices m,n. In
eq.(8.6.3) we clearly have t;u = 0 and t,v # 0, so this equation is non trivial only along
the broken directions. In this basis the NG bosons all sit in the matrix field y(z). The
definition of ¢ is not unique. If ¢ satisfies (8.6.3), so does ¢ = ¢+ ¢it;p, for arbitrary

coefficients ¢;. Indeed,

q;'ttav = (ét + ciqgttﬁ)tav = (ét — ciqgtt,-)tav

~ } B (8.6.4)
== —ciqbttitav = —Ci(ﬁt[ti, ta]v = —Z.Ciciabqbttb’l) =0.

The field matrix (z) is therefore defined only modulo z-dependent transformations under
H: ~(z) ~ ~v(x)h(x), with h(z) € H. Given this equivalence class, we can always choose

as representative a ~y(x) of the form
y(x) = ele@ta (8.6.5)

where &% are essentially the NGB’s fields. Under a global G transformation, we have

¢ = ¢ = gp = gy(x)p(x). The field ¢’ can also be decomposed as in eq. (8.6.2). In

general, we will have

¢ (z) = (& (@) h(Ea(2), )9 (), (8.6.6)

for some h(&,(x), g) € H, so that¢/ = v(£,)¢ > with
& = har9)?, (8:6.7)
Y& = 97(E)h ™ (Ea9)- (8.6.8)

5From now on we omit, for simplicity, the partial or total dependence on z, &a(x), etc. of the various
fields.
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Notice that the field (;;(LU), under global G transformations, transforms as effectively local
transformations under H. The transformations of £, and b simplify considerably when
g = h € H. The second commutation relations in eq. (8.6.1) shows that the broken

generators t, transform linearly under transformations of h, namely
htoh ™' =ty Ryo(h), (8.6.9)

where R is some representation (in general reducible) of H. The very same commutation
relations shows that when g = h, the factor h({(x), g) defined in eq. (8.6.6) reduces to the
global z-independent element h: h(£(x),g) = h. We then have, using also eq. (8.6.9)

7 =€) = (R = A(R(h)E) - (8.6.10)
Under H, then, the transformations of both ¢ and ¢ are simple and linear:

&, (x) = Rap(h) & (),
¢'(z) =ho(z).

On the other hand, for infinitesimal transformations along G/ H, the NG fields £, transform

(8.6.11)

as a shift, at leading order in the field fluctuations. This is immediately visible from
eq.(8.6.8). For g = 1 + ie,t,, indeed, we have

6y = € + O(E2,€€). (8.6.12)

We now assume that the structure constants Cype in the third commutator in eq. (8.6.1)
vanish, in which case the coset G/H is called symmetric and the formalism describing the
interactions of NG bosons can be simplified. We refer the reader to subsection 8.9 where
a more general formalism allows us to also consider non-symmetric cosets. With Cyp. = 0,
the Lie algebra defined by the relations (8.6.1) is invariant under the Zy symmetry R

under which the broken generators change sign:
R(t;))=t;, R(ty) = —tq. (8.6.13)
We clearly have R(y) =+~ 1. Under G transformations
Y =gyh . (8.6.14)
On the other hand

Y =R(Y) = R(9R(MR() = R(g)y 'h™"

/ ) (8.6.15)
=7 =hyR(g9)"" .
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Using both egs. (8.6.14) and (8.6.15), we see that
U'=+%=gyh 'hyR(g)" = gUR(g)"". (8.6.16)

In other words, while v does not transform linearly under transformations of G, its square
U = ~+? does. This is a significant simplification, because it allows us to no longer worry
of the complicated factor h(x).

We have found that an EFT for the NG bosons, invariant under G, is best written when
the NG bosons are repackaged in the matrix U. Let us see which kind of invariant terms
we can write using U and UT. Let us first focus on potential terms, i.e. no derivatives.
Since R(g) # g, terms of the form U™ or (UT)" are forbidden, the only allowed invariant
terms being trace of operators proportional to UTU. But UTU = 1, so no potential term
is indeed allowed! This should not come as a surprise. We know that NG bosons must be
massless. If a potential term would have been allowed, generally it would give a mass to
them. The absence of any potential could have been anticipated by the shift symmetry
(8.6.12), which is broken by any potential term. Non-trivial invariant operators can instead
be written using derivatives. The leading, two-derivative, term involving the NG bosons
and invariant under the symmetry (8.6.16) is

2
L= %”tr (auUa“UT) T (8.6.17)

where f is a mass scale, related to the scale of spontaneous symmetry breaking, introduced
for dimensional reasons, and ... stands for higher dimensional operators involving four or
higher number of derivatives. The expansion of the the matrices U and U' in powers
of €% in eq. (8.6.17) allows us to find the explicit form for an infinite number of leading
interactions among the NG bosons, all fixed by a single term in the Lagrangian! The
relation between the fields &, and the canonical NG fields 7, defined in eq.(8.2.12) is
obtained by computing the form of the broken currents Jjj from eq.(8.6.17). Using the

trick of promoting a global symmetry to a local one, so that §.£ = —0J,eJ", we have,
b £ = f20,€a0"GTr e’ + .. = f20,€"0"Ea+ ..., = J¢ = —f20,£", (8.6.18)

where we have used the leading order transformation (8.6.12) for the £’s and taken Tr ¢,t, =
dap. Matching eqs.(8.2.8) and (8.2.12) with eq.(8.6.18) and demanding that the kinetic
term (8.6.17) is canonical in terms of the 7, fields gives
Fab
§a = Fﬂb- (8.6.19)
Since the NGB’s transform linearly under H transformations, the decay constant matrix
F, should correspondingly be invariant under such transformations. This is in general a

strong constraint on the form of Fy.
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As we mentioned, all the interactions among the NG bosons, including their kinetic
terms, are efficiently encoded in the single term (8.6.17). This is the first of an infinite
series of higher derivative operators involving the matrices U. By expanding U in terms
of field fluctuations, we see that the effective coupling constant of all the interaction terms
that can arise from eq. (8.6.17) is E2/f2. For sufficiently low-energies F < fy, this
term is the most important one, all the higher derivative interactions being suppressed by
additional powers of E/fr. The EFT Lagrangian (8.6.17) is of course non-renormalizable
and becomes unreliable when E ~ f;, in which case an alternative description is needed.
More precisely, the energy scale where we expect our effective theory to break down is
E = A ~4rn [, including the 47 factor coming from loops (analogue of the effective QED
expansion parameter ¢/(1672)). This is the energy scale where the non-NGBs degrees of
freedom that we have (implicitly) integrated out start to matter and must be included to

possibly embed the theory in a consistent UV complete model.

8.6.1 Adding Gauge Fields*

Other light fields might appear in the EFT for the NG bosons, most notably gauge fields.
Like the NG bosons, gauge particles can be naturally light or massless and their interac-
tions are governed by gauge invariance. In fact, gauge interactions in this formalism do not
pose any difficulty. Let us suppose that a subgroup H, of G, distinct from H, is gauged.
A convenient way to proceed is to pretend that the whole group is gauged, namely take
H, = G. Since U transforms linearly under G, the local symmetry is implemented in the
usual way discussed in chapter 6 for matter fields; one introduces a gauge field A, and
replace ordinary derivatives of U with covariant ones. Under a gauge transformation g we
have

A% = gA,g " —i(0u9)g7" (8.6.20)

where A, = Azti + Aft, is the full (non-canonically normalized) gauge field. Given the

transformation (8.6.16) and the above relation, the covariant derivative
DU =8,U —iAU +iUAL (8.6.21)

where Aﬁ = Alt; — Alt,, transforms as D, UY = g(D,U)R(g)~". Since the theory is now
invariant under local transformations of G, by a proper choice of g we might completely
remove the NGB’s, i.e. we can set U = 1. This is nothing else than the unitary gauge in
a non-linear realization of the symmetry. In this gauge the covariantization of eq.(8.6.17)
leads to mass terms for the gauge fields A, — Aﬁ = 2Ajl,, namely to those along the

broken direction, as expected from the Higgs mechanism.
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The generic case Hy; C G can be deduced from the case H, = G' by simply switching
off the gauge fields that are not in the direction of H,;. Denoting by t® the generators of

G that are gauged, in general we have
tY = gaat” (8.6.22)

where g are the gauge coupling constants associated to the gauging, all different in the
most general case. We now set

A% = gaa Al (8.6.23)

where Ag are the actual dynamical gauge fields. In the unitary gauge, as expected, only
the gauge fields along the broken directions get a mass with the corresponding NGB’s
being eaten by them. Notice that gauging a subgroup of H, explicitly breaks the global
symmetry G, since it determines a specific direction in field space. Taking into account

the normalization (8.6.19) of the broken generators, the gauge field mass matrix reads
ﬂi 5= FucFad 9ac 954 - (8.6.24)

This relation is the generalization of eq. (8.4.8). The latter only applies for weakly coupled

descriptions of the spontaneous symmetry breaking in terms of free fields.

8.7 SUB)y x SU(3)a — SU(3)y: Mesons in QCD*

Consider QCD with three active quarks (say, the up, down and strange quark) in the limit

in which they are all massless:
1 — .
Locp = —7GGa" + QIPQ, (8.7.1)

where Q = (u d s)!.5 In addition to the SU(3). gauge (color) symmetry, the Lagrangian
(8.7.1) is invariant under an additional SU(3)y x SU(3) 4 global (flavour) symmety acting
on () as

Q — exp(i6Y Ny + 10 0075)Q (8.7.2)

where A, are the SU(3) Gell-Mann matrices, normalized such that tr Ag\y = d4p/2 in the
fundamental representation. At sufficiently low energies, when the QCD coupling constant

becomes strong, a quark bilinear gets a non-vanishing vacuum expectation value:

(QiQ;) = A%y, (8.7.3)

5The analysis in this section closely follows section 19.7 of ref. [2].
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that breaks G' = SU(3)y x SU(3)4 down to H = SU(3)y. Here A is the scale where the

chiral symmetry breakdown occurs. The eight NG bosons are encoded in the matrix field
y(z) = M@ (8.7.4)

The SU(3)y unbroken symmetry fixes the parameters Fy;, to be proportional to the iden-
tity. We take Fyp = 0qpfr in €q.(8.6.19) and write the 8 NG bosons as

. %7‘1’0 + %770 us
Aaba = — T *E'/TO + %77 KY R (875)

Fr - K0 _\/gno

where f is identified with the pion decay constant: f; ~ 92 MeV. With this normalization

+ 70 etc. are all canonically normalized.

the 8 spin zero mesons m

The commutator of two vector or two axial transformations is a vector transformation,
while the commutator of a vector and axial transformation is an axial transformation. The
schematic commutation relations for SU(3)y x SU(3)4 are then [V,V] =V, [V, A] = A,
[A, A] =V, where V and A schematically represent the SU(3)y and SU(3)4 generators.
This is a symmetric coset space, being this algebra invariant under the automorphism
action V.— V, A — —A. We can also construct L and R transformations defined as
V =(L+R)/2, A= (L — R)/2, under which the above automorphism exchanges L and
R: L <> R. According to the general results of section 8.6, the matrix U = 42 transforms

homogeneously under g. We have”
U — RULT, (8.7.6)

with obvious notation. In other words, U transforms as a (3, 3) representation of SU(3) g x
SU(3)r,. Correspondingly, the kinetic terms and leading interactions among the 8 mesons
m, K and n are collected in the single term (8.6.17). As we have seen in the previous
section, the effective field theory is expected to break down at £ = A ~ 4nf; ~ 1 GeV.
It is natural to assume that A ~ A, the scale where chiral symmetry breaking occurs.
This scale is related to the scale Agcp where quarks confine (confinement scale), but it
is not the same scale, the chiral symmetry breaking scale being slightly higher than the
confinement one. They are also conceptually different. In fact, there exist vacua in gauge
(supersymmetric) theories where it is believed that quarks confine but no chiral symmetry

breaking occurs.

"There is actually no way to distinguish an SU (3)r from an SU(3)r transformation when acting on a
3 x 3 matrix such as U. Strictly speaking, we should write U as a 6 x 6 matrix, containing U and UT, to

properly distinguish the two SU(3)’s. In doing that, one gets eq. (8.7.6).
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In the real world, of course, the up, down and strange quarks are not massless and the
spin zero mesons 7w, K and n are not exact NG bosons. The two things are related. The
actual up, down and strange masses explicitly break the SU(3)y x SU(3)4 symmetry,
but are small enough, compared to A, to be considered as a perturbation of the QCD
Lagrangian (8.7.1) (this would not be the case for the charm, bottom and top, that are all
heavier than A). We can get the relation between the quark and meson masses by using

the following trick. We formally promote the quark mass term

my, O 0
M = 0 mgq O , (8.7.7)
0 0 mg

to be an external source that transforms under SU(3)y x SU(3)g as M — LM R, so that
the term Q7 MQpg + h.c. is made invariant. We have morally promoted the mass term to
a so called spurion field, whose vacuum expectation value coincides with the mass matrix
M and whose dynamics is frozen. Spurions are often used in QFT to formally restore
explicitly broken symmetries. In so doing, one proceeds in the computation demanding
the full symmetry, and only at the end of the computation one plugs back the original form
of the breaking term into the spurion field. This is a very efficient way to make manifest
how breaking terms affect physical quantities. Thanks to this trick, at low-energies we
can construct SU(3)y x SU(3)g invariant terms using both U and M. If M is small, we

can consider terms linear in M only. We simply have
Ly =cf3trUM + h.c., (8.7.8)

where ¢ is an undetermined dimensionless coefficient. By plugging in eq. (8.7.8) the actual

form of the NG fields (8.7.5) and of the mass term (8.7.7) we get, after some simple algebra:

mii = C(my, +my),
m2 . = C(my +my), (8.7.9)

m%(o = C(mg+ ms),

where C' = 2¢f,. The 7° and n° mix with each other. Expanding for My,q K Mg we get

2

mﬂ,()

~ C(my +my),
2 NC4ms+mu+md.

( 3

(8.7.10)

It is surprising that using symmetries only we can fix the meson masses in terms of

the quark masses and one unknown coefficient C. The above relations are a particular
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example of eq. (8.3.9), showing that in general the masses of the pseudo NG bosons
are linearly dependent on the source of the symmetry breaking violating term in the
Lagrangian. In deriving egs. (8.7.9) and (8.7.10) we have actually neglected another
relevant source of explicit breaking of the SU(3), x SU(3) g symmetry, given by the electric
charge. As explained in section 8.6, in this EFT framework electromagnetic interactions
are introduced by identifying a proper U(1) subgroup and gauge it. This is a subgroup
of the unbroken SU(3)y, and its explicit form is found by looking at the infinitesimal
transformations of the quark fields Q. We have 6. Q@ = 1€Q¢Q, where

0

0
o |. (8.7.11)

0 -1

Qel =

o O wiv
ol

according to the actual electric charges of the up, down and strange quarks. We therefore

get the leading order Lagrangian

2
1
Litinss = %tr (DWUDIUT) = FW ™ + (cf2tr UM + hc.). (8.7.12)
with
DU = 0,U + ieQuUA, — ieUQuA, . (8.7.13)

It is straightforward to check that eq. (8.7.12) contains the expected interactions of the
QED form for the charged mesons 7+ and K*. These interactions, at the quantum level,
contribute to the mass of the charged mesons by an amount A.;, which is the same, at
leading order, for 7 and K%, thanks to the SU(3)y global symmetry. Eventually, the
effect of the QED interactions is to shift the charged meson masses in eq. (8.7.10) by this
amount A,;:
mjri - m’zfi A (8.7.14)
Myt —> Mper + D
The neutral meson masses, at this order, are clearly unaffected by QED interactions.
There are various ways in which the mass formulas (8.7.9), (8.7.10) and (8.7.14) can be
used. For instance, the following relation holds, independently of C', A.; and the quark
masses:

3m3] +2m2. —m2, = 2m% . + 2mi, (8.7.15)

and it is experimentally very well reproduced. Alternatively, we might use the meson

masses as experimental input parameters to compute the quark masses or, better, their
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ratios. One has

2 2 2 2
My 2miy —mis +Mpr — My ~ 0,027
- 2 2 2 - )
mg Myt + M0 — M

(8.7.16)
mq mii —|—m§(0 - m%i

=7 5 5— == 0.050,
ms Miper + Mpo — M 2

where we have inserted in the last relation the approximate masses for the spin zero
mesons.

The actual global symmetry of the QCD Lagrangian (8.7.1) is U(3)y x U(3) 4, rather
than SU(3)y x SU(3) 4, since the U(1)y x U(1) 4 transformations

Q — exp(i0” +i6%75)Q (8.7.17)

are a symmetry of (8.7.1). The U(1)y symmetry is nothing else than the U(1) baryon
number and is unbroken, while U(1)4 is manifestly broken by the quark condensate in
eq. (8.7.3). Correspondingly, we should have a ninth pseudo NG boson, called 7. It can
be shown, by adding the 7 to the matrix field (8.7.4), that its mass m,y is bounded to be
My < V/3m,. But no such particle has been observed within this range of energies. This
puzzle, denoted the U(1) 4 problem, has been solved by noticing that the U(1)4 symmetry
is explicitly broken — by an amount larger than the explicit breaking of the quark masses
— by instantons, non-perturbative effects that are outside the content of these lectures.

The actual 7’ has indeed a much larger mass, m,y ~ 960 MeV.

8.8 SO(5) — SO(4): A Composite Higgs?™*

The example that follows is a bit more exotic and refers to the electroweak sector of the
Standard Model (SM). We have briefly seen in section 7.5 that scalar masses are unnatural,
in the sense that they are quadratically sensitive to UV physics that push their values to
that scale. This problem clearly applies to elementary scalars, including the Higgs boson
in the SM. But what if the Higgs is not elementary, but rather a composite particle, very
much like the pion? We do not have a hierarchy problem for the pion mass, since we
know that this particle is composite and at some energies of order Agcp, “diffuse” in
its quark constituents. Moreover, pions are actually naturally lighter than Agcp itself
because, as we have extensively seen in the previous subsection, are pseudo NG bosons of
an approximate global symmetry.

Before developing on this idea of considering the Higgs particle as a pseudo NG boson

of some spontaneously broken global symmetry, it is useful to recall the symmetries of the
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standard, elementary Higgs Lagrangian, in the SM. In the global limit in which we switch
off the SU(2);, x U(1)y gauge couplings, the SM Higgs sector is

A
LM = (9, H) (0"H) + m*H'H — 5(HTH)2 : (8.8.1)
where H is an SU(2)r, doublet of the form
ha + ih
= () (8.8.2)
V2 hy —ihs

A closer look at eq. (8.8.1) reveals that the Higgs Lagrangian is invariant under an SO(4),
rather than SU(2)y, global symmetry. This is manifest if we recast the four real Higgs
components h; (i = 1,2,3,4) in a 4-plet and notice that eq. (8.8.1) is invariant under
the transformations h; — O;jh;, with O € SO(4). It is actually more convenient to
exploit the local isomorphism of SO(4) with SU(2) x SU(2). The fundamental 4 of SO(4)
becomes a bidoublet (2,2) of SU(2) x SU(2). One of the two SU(2) is identified with the
original SU(2)r, and we denote by SU(2)g the other one. We can easily write the SO(4)
generators in the SU(2);, x SU(2)r basis. The 6 anti-symmetric hermitian generators of

SO(4) are proportional to

teh = 2 = 5767 — 6065, (8.8.3)
where a,b = 1,...,4 label the generators and i, j their matrix components. A simple check

of the algebra reveals that the combinations

tp = —g (1% + 1), ] = —o (¥ +1%), 1] = (7 + %),
p (8.8.4)

2

i

2

i

(=22, th=—3

t}? _ (t23 _ 7/L14), t% — (t12 _ t34),

satisfy the commutation relations of the SU(2);, and SU(2)p algebras, respectively. The
action of SU(2), x SU(2)g is best seen by writing explicitly the Higgs field as a bidoublet
using the 2 x 2 matrices o* = (1,i0%) (k =1,2,3):

hyls +ih 1( ha+ihs ha+ih
Hpp = 222t ok 2 (0 Raths o dein (8.8.5)
2 2 —ho +1ihy  hy —ihs
Under SU(2); x SU(2)g, the bidoublet (8.8.5) transforms as
Hpp — grHppgh, (8.8.6)

with g1, € SU(2)r, gr € SU(2)g. It is manifest from eq. (8.8.6) that when the Higgs field
develops a non-vanishing VEV, say (hy) = v # 0, i.e. (Hpp) x 1g, the SU(2);, x SU(2)r
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global symmetry is broken to the diagonal SU(2). symmetry, with g;, = gr. This unbroken
SU(2). global symmetry is called custodial symmetry and plays an important role in
establishing that the W and Z boson mass ratio at tree-level is

my _ g +g”

2 2 ’
myy, g

(8.8.7)

where g and ¢’ are the SU(2);, and U(1)y gauge coupling constants. In this formalism,
the gauge fields are introduced by gauging the whole SU(2)7, global group and a subgroup
of SU(2) g, along the o3 generator, which is identified with the U(1)y symmetry. The full,
gauged, Higgs Lagrangian reads

A
,C*EIM =tr (D#HBD)]L(D“HBD) —+ mZtr HTBDHBD — §tr (HTBDHBD)Q , (8.8.8)
where
DyHpp = 9,Hpp — igW,tHpp + ig HspW \, (8.8.9)
and ) )
Wi=goiW,, W= 03B, (8.8.10)

The custodial SU(2). symmetry is broken by the hypercharge coupling ¢’ only.® If we
set ¢ = 0, the Lagrangian (8.8.8) is invariant under SU(2)r, x SU(2)r global transforma-
tions, provided we rotate WHL — gLWML gz. The 3 would-be NG bosons associated to the
SU(2)1, x SU(2)r — SU(2).. breaking are all eaten by the W%’s, and SU(2). ensures that
the 3 vector bosons all have equal masses my = gv/2. When ¢’ # 0, the custodial sym-
metry is broken and the 3 massive gauge fields no longer have equal masses. However, the
breaking pattern fixes their tree-level masses. From eq. (8.8.9) we immediately see that the
gauge bosons along the off-diagonal components of SU(2), are unaffected by ¢’ and retain
their masses myy = gv/2. On the other hand, along the U(1);, x U(1)g gauged subgroups
in the o3 directions, the gauge field along the unbroken symmetry remains massless (the
photon) and the orthogonal direction (the Z) gets a mass equal to mz = \/g% + ¢”2v/2.
The importance of emphasizing the symmetries of the Higgs Lagrangian becomes clear
when we replace the Higgs field by an unspecified sector responsible for the electroweak
symmetry breaking. In this more general context, we would conclude that the W and Z

boson masses are given by eq. (8.6.24), with & = 1L, 2L,3L,3R. More explicitly, we have

9aLb = 90ab s GaRb = 9 0abOa3 » (8.8.11)

8The fermion Yukawa couplings also break SU(2)., but here for simplicity we are focusing on the bosonic

sector of the SM, neglecting fermions altogether.
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where a,b = 1,2,3 run over the broken SU(2) generators. The crucial point is played
by the custodial SU(2). symmetry, that forces the Fy;, terms to be proportional to the
identity (like SU(3)y in the QCD example before): Fy, = d,F. Putting all together, the

gauge boson mass matrix is of the form

2

@2 0 0 0
0 2 0 0

T “‘i) L (8.8.12)
9 g9
0 0 gg/ 912

We automatically recover the SM gauge boson masses, in particular the relation (8.8.7),
with the identification F' = v/2. We conclude by stressing that any sector replacing the
usual Higgs in the SM Lagrangian will give the correct leading order electroweak gauge
boson masses, provided it includes an SU(2). global symmetry.

After this long, but necessary, digression on the SM, let us come back to our idea
of the Higgs field as a pseudo NG boson. Assuming this idea, the Higgs should be a
composite of certain constituents, analogues of quarks and gluons in QCD, that appears
at strong coupling at some energy scale. Being the analogue of the pion in QCD, the Higgs
particle is expected to be the lightest resonance of the strongly coupled theory, that might
include additional heavier resonances (in analogy with the hadron spectroscopy in QCD).
Of course, in contrast to the QCD case, we do not know here what is the UV theory
that becomes strongly coupled. But we have by now learned that a lot can be said about
the dynamics of pseudo NG bosons, by only specifying the group theoretical structure
of the spontaneous symmetry breaking pattern. As far as we are concerned, we have to
assume that the UV theory, no matter what it is, has an approximate global symmetry
group G, spontaneously broken to H, such that the NG bosons along the G/H directions
have the quantum numbers of the SM Higgs. Let us denote by fpg the scale where this
breaking occurs. The unbroken group H should be large enough to accommodate an
SU(2)r x U(1)y subgroup, that we will gauge and identify with the SM electroweak gauge
group. Finally, we might also demand that H includes the custodial symmetry SU(2).
that ensures the correct tree-level mass ratio (8.8.7) between the SM gauge bosons. The

minimal groups that give rise to the 4 Higgs NG bosons and nothing else are

G=SU(3) — H=_5U(@2) xU(),

(8.8.13)
G =S0(5) = H =S0(4) = SU2), x SU(2)x .

This is understood by looking at how the adjoint representations of SU(3) and SO(5)
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decompose under the breaking pattern above. We have

8 530D 1o®21/2D2 )9,

(8.8.14)
10-5634=(1,3)®(3,1)®(2,2).

The subscript in the first line of eq. (8.8.14) refers to the U(1) charge and in the sec-
ond line we have reported the decomposition in terms of SO(4) and SU(2);, x SU(2)r
representations, respectively. The broken generators in the SU(3) case transform as the
last two terms in the first line of eq. (8.8.14), and the corresponding NG bosons form a
complex doublet of SU(2). The broken generators in the SO(5) case transform as the last
term in the second line of eq. (8.8.14), and the corresponding NG bosons form a 4-plet of
SO(4) or a bidoublet of SU(2)r, x SU(2)g. Both NG bosons have the quantum numbers of
the ordinary Higgs field. However, the SU(3) — SU(2) case does not include the SU(2),
custodial symmetry, since the only unbroken SU(2) must be the SU(2);, group. We then
focus on the SO(5) — SO(4) case in the following.

The SO(5) generators are as in eq. (8.8.3), with the indices a, b, 4, j running now from
1 to 5, rather than from 1 to 4. The SO(4) subgroup can be taken to be the one generated
by the matrices (8.8.4), with the understanding that they are now 5 x 5 matrices with an
additional row and column of zeros. The remaining SO(5)/SO(4) broken generators are

given by )
i

V2

The 4 NG bosons h, are encoded as usual in the matrix

9= ——t%, a=1,2,3,4. (8.8.15)

— VI (8.8.16)
where the /2 factor arises from our choice of normalizations of the SO(5) generators.
It is straightforward to verify that G/H is a symmetric coset space, invariant under the
automorphism (8.6.13), with ¢; € SO(4) (i = 1,...,6) and t, € SO(5)/SO4) (a =
1,...,4). The matrix U = 2 transforms homogeneously under SO(5) transformations, as
in eq. (8.6.16). For a generic gauging, the covariant derivative for U is given in eq.(8.6.21).
In our case, the gauging is all within H, so that Aj, all vanish and Ag = A. The covariant
derivative (8.6.21) reduces to (now for canonically normalized gauge fields, including gauge

coupling constant factors)

DU = 8,U +i(gW,y + g WU — iU (gW,y + g W), (8.8.17)
with
3
Wh=>"1ws,  WI=t4B,. (8.8.18)
a=1
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The Higgs Lagrangian associated to this “composite Higgs” scenario is
e Th i

The NG nature of the Higgs forbids a potential for H, in the limit in which the SO(5)
global symmetry is exact and only spontaneously broken to SO(4). But like SU(3)y in
the QCD case is broken by U(1)gas, the SO(5) symmetry is explicitly broken by the
SU(2)r x U(1)y gauging”. This implies that a potential for the Higgs field, even if not
included at tree-level, will be generated by radiative effects. We will not elaborate more
on this idea, but if suffices to say here that when fermions are also included and coupled
to the Higgs matrix field U, electroweak symmetry breaking can in fact be induced at the
quantum level. When hy # 0, a straightforward computation shows that the Lagrangian

(8.8.19) gives rise to the following mass terms for the SM gauge fields:

h h
miy = ngf?{ sin? (<f—;[>) . my = i(g2 + ") f3 sin? <<f—:r>> , m% =0. (8.8.20)

As expected, thanks to the SU(2). custodial symmetry, the mass ratio (8.8.7) is repro-
duced. We see that for (h4)/fm — 0 we can expand the sin factor and recover the usual
SM formula for the W’s and Z, where we identify

(hg) =v = % ~ 246 GeV. (8.8.21)
This is the limit in which we push to very high energies the SO(5) — SO(4) breaking
pattern, but in so doing we recover the hierarchy problem. On the other hand, various
phenomenological bounds constrain the more natural limit (hg) ~ fr, so that a little
tuning is needed to achieve a mild separation between (hy) and fg. Notice that away
from the SM limit fi — oo, (hy) does not coincide with v, as defined in eq. (8.8.21).
From eq. (8.8.20), for finite fg, we get

v = fysin (<;4>) . (8.8.22)

H

8.9 Effective Field Theories for Broken Symmetries: Generale Case**

In this section we consider the general construction of the effective field theory of NG

bosons, discussed for the first time by Callan, Coleman, Wess and Zumino [25]. This

9S0(5) might also be broken by additional terms, such as the analogues of the quarks masses in QCD.

Without knowing the UV theory, we might for simplicity assume that there are no such terms.
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slightly more elaborated formalism allows to consider arbitrary symmetry breaking pat-
terns.

The analysis made in section 8.6 continues to be valid up to eq.(8.6.12) included. If
the coset is not symmetric, it is not particularly useful to consider the matrix U = 42 and
a more elaborate analysis is needed. It is useful in this case to study the transformation

properties of the field combination ’7_13H’7. By recalling the formula
Xy —X 1 1
e*Ye :Y+[X,Y]+§[X,[X,Y]]+§[X,[X,[X,Y]]]+... (8.9.1)

valid for arbitrary matrices X and Y, we see that the combination 'y_lau'y is a field defined

in the algebra G of the group G. As such, it can be decomposed as
vy Oy = it Di(x) + it E},(x) , (8.9.2)

where necessarily Djj(z) = D (&(x))0,&p(2), El(z) = E"(&(x))0,&q(x), for some fields

D and E'. Under a global transformation g € G' we clearly have
(97) " 0u(g7) =7 " 0uy (8.9.3)
On the other hand gy = v'h and hence, after multiplication by A~! to the right, we get
Yoy = h(v okt = (00T (8.9.4)

Using the decomposition (8.9.2) for 7/ and identifying both sides, we get the transforma-

tions of Dy, and EL under global G transformations:

taD(E') = htah™ ' DY(E) = taRap(R)D(€),

il —1 i . ~1 (8.9.5)
tE, () = htih™ E,(€) +i(0uh)h ™" .
Since H is a subgroup of G, we have
htihfl = Rij(h)tj, (6Hh)h71 = itiRm(h)aufa(a?) , (8.9.6)
and thus
D%(&") = Rap(h)DC(¢),

B, (€) = Rij(h)E}(€) — Ria(h)9u&a(x) .

Under global G transformations, the factors Dj; transform linearly, while the factors E;
transform non-linearly like a gauge field. We can in fact use EL to build covariant deriva-

tives for ¢. From eqs. (8.6.7) and (8.6.8), we get that under G transformations
0ud! = (0uh) + WD 3) = h (A ()6 + 0,0) . (8.9.8)
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Defining

Dy = (046 + it;E},) 6, (8.9.9)
we have
Dud' = hD,é. (8.9.10)

The symmetries constrain the NG bosons to appear in the low-energy Lagrangian only
through the combinations Dy and EL in derivative interactions. We conclude that any
Lagrangian invariant under H transformations and constructed with Dj, ¢ and their
covariant derivatives, will automatically be invariant under the whole group G. Invariant

terms can also be constructed using the “field strength”
FHV(E) = a,l,LEV - aVEu + [E/u Eu] (8911)

and derivatives thereof, keeping in mind that not all invariants constructed in this way
are independent of each other.

The leading order term encoding the NGB kinetic terms is

1 a b
LD §FfbDMDw (8.9.12)
where Djj = 0,§" 4 .... As we have seen in section 8.6, the linearly realized symmetry H

constrains the coefficients F anr

The above formalism can easily be extended when a subgroup H, is gauged. The
physical considerations are clearly the same as discussed in section 8.6. Let us pretend
that the whole group G is gauged and only at the end recover the original theory by
setting to zero the gauge fields not in H,. One can check that all our previous results,
until eq. (8.9.1) included, are formally still valid, provided the obvious understanding that
now the GG transformations are x-dependent. The G invariant field combination to consider

now, analogue of v~ 19,7, is!”

Y ' Dyy =y (0, — it AY)y (8.9.13)

so that the inhomogeneous term in the gauge field transformation cancels the analogue

term coming from d,,g. The quantity ’y*lD,/y is also defined in the algebra G, so we have
YDy = it Di(z) + ity Bl (x) | (8.9.14)

where Djj and L, are the gauged versions of the fields Dj; and Ej, defined in eq. (8.9.2),

which now include the gauge fields Aj}. Following the same steps as above, we immediately

0T order not to confuse the group element g with the gauge coupling constant g, we adopt here a

non-canonical normalization for the gauge fields Aj.
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get
(v D) = h(@) (v D)k @) — Buh(a)h (x). (8.9.15)

Correspondingly, the relations (8.9.5) are valid for ﬁz and EL as well. As before, any
Lagrangian invariant under H transformations and constructed with Dj, ¢ and their
covariant derivatives, will automatically be invariant under the whole gauge group G. In
order to also construct H invariant operators involving the field strength F,, = d,A4, —
Oy A, + [Au, Ay, that transforms linearly under G as F),, — gFWg_l, we can define NG
boson-dependent field strengths

fur =7 . (8.9.16)

The latter transform as f,, — hfy’lgf1L(]17'nglgfylf1 = hfWif1 under G and can be
used together with ﬁz, é and their associated operators constructed acting with covariant
derivatives. We can now set to zero the “spurionic” gauge field components that do not
belong to H,. The leading order term (8.9.12) in the low-energy effective Lagrangian
becomes

1 PR
LD FGDLDy, (8.9.17)

where ﬁz = 0,§" — g@aAfj, with gse as defined in eq.(8.6.22). As expected, the NGB’s
along the gauged directions are eaten by the gauge fields and their mass is given by
eq.(8.6.24).
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Chapter 9

Anomalies

There are different ways of regularizing a QFT. The best choice of regulator is the one
which keeps the maximum number of symmetries of the classical action unbroken. Cut-off
regularization, for instance, breaks gauge invariance and that’s why we prefer to work
in the somewhat more exotic DR, where instead gauge invariance is always manifestly
unbroken. It is also possible that there exists no regulator that preserves a given classical
symmetry. In this case we say that the symmetry is anomalous, namely the quantum
theory necessarily breaks it, independently of the choice of regulator.

Roughly speaking, anomalies can affect global or local symmetries. The latter case is
particularly important, because local symmetries are needed to decouple unphysical fields.
Indeed, anomalies in linearly realized local gauge symmetries lead to inconsistent theories.
Theories with anomalous global symmetries are instead consistent, yet the effect of the
anomaly can have important effects on the theories. We have already seen an example of
anomaly. In classically scale invariant theories, a scale dependence is typically generated
by quantum effects by means of a non-vanishing S-function. This kind of anomaly will
be briefly discussed in section 9.7. We will however mostly focus on global anomalies
associated to chiral currents and their related anomalies in local symmetries. Historically,
the first anomaly, discovered by Adler, Bell, and Jackiw [26, 27], was associated to the
non-conservation of the axial current in QCD. Among other things, the axial anomaly

0 — 2y decay rate, predicted by effective Lagrangian

resolved a puzzle related to the 7
considerations to be about three orders of magnitude smaller than the observed one.

In the next section we will first study the basic anomaly associated to a global U(1)
chiral transformation using Feynman diagrams and then consider generalization to non-

abelian groups and to local symmetries.

188



9.1 The U(1)4 Chiral Anomaly from One-Loop Graphs*
The Lagrangian for a free Dirac fermion 1 is
L = iy — mapnp (9.1.1)

and is invariant under the vectorial U (1) symmetry under which ) — €/}, 1) — he ™.

The associated conserved U(1)y current is

JH = ahytp . (9.1.2)

If m = 0, as we assume from now on, the Lagrangian (9.1.1) is also invariant under the

axial U(1)4 symmetry under which
) — € op — et (9.1.3)
The associated conserved U(1)4 current is

T = pytsip. (9.1.4)

While the classical U(1)y symmetry is quantum mechanically preserved and leads to Ward
identities as explained in section 4.4.2, it turns out that there is no way to keep the U(1)4
chiral symmetry at the quantum level. This is clear from a functional integral point of
view. An invariant theory not only requires an invariant action, but also an invariant
measure. And the functional measure is not invariant under the chiral transformation
(9.1.3) (see section 9.4 below for a detailed analysis). The U(1)4 current is quantum
mechanically not conserved,

(0, J8) = A(z) #0, (9.1.5)

and we say that there is a U(1) 4 chiral anomaly given by A(x). We can probe the anomaly
by adding to the free fermion theory external spin one sources K* and K% that couple to

JH and JE, respectively:
Z[K" KL = /D%DDJJ el dielbr Kt KI5 (9.1.6)

Anomalies were originally discovered by evaluating three-point functions between external
sources at one-loop level. They arise from loops of the internal fermion lines from current
correlations that involve the chiral matrix 5. Despite these one-loop graphs are divergent
and would require a choice of regularization, their divergence (i.e. the anomaly) is finite.
Since we are only interested to the anomaly, we can proceed with the computation without

the need of introducing a regulator.
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We are then led to compute the three point functions between two vector currents J*

and one axial current J£:

107

Loz, y,2) = = (J82)J" (y)J"(2)), 9.1.7
bl0:2) = S ST ST |y~ @I @GN 01)

which in momentum space reads as
Lok, k) = (Jus(—k1 — k2)Jy (k1) o (k2)) (9.1.8)

where, with some abuse of notation, we denote the Fourier transform with the same symbol
of the corresponding term. The would-be conservation of the two currents, 8, J" = 9, J% =

0, would imply at the quantum level the relations
(kl + kz)“l—"wp = klfl“m,p = kgl—‘lwp =0. (9.1.9)

No contact terms arise in eqs.(9.1.9), because the axial and vector currents are classically
invariant under the U(1)y x U(1)4 transformations. As we will see, due to the anomaly,
it turns out to be impossible to impose all three conditions (9.1.9) simultaneously.

The two diagrams in fig. 9.1 contribute at one-loop level to I',,,. They give

d4
Lvp(kr, ko) = — /#tr (7#755(]9 +a+k)ySp+a+k)nSp+a)+

YusS(p 4+ b+ k)vS(p+ b+ k2)v,S(p + b)) ,(9.1.10)

where k = k1 + ko and S(p p// p* is the free fermion propagator for a massless fermion.
In eq. (9.1.10) a and b are arbltrary constant vectors, whose relevance will be clear in the
following. Let us first compute the divergence of the axial current, k*I',,,. It is convenient

to write
S(p+a)k S(p+a+k) = S(p+a)+d-+H——¢)S(p+a+k) = S(p+a)—S(p+a+k), (9.1.11)

so that

d4
BTl k) = | o)t [P0+ k2 b B) = fp 0t i)+ (p 0 v b b k)|
(9.1.12)

where
pu(a —0)y +ayby
(p+a)?(p+0)?

Noticing that f,,(p+c,a,b) = fo(p,a+c,b+c), the second term in eq. (9.1.12) becomes

fpu(p’ a,b) = tr (S(p + CL)’YPS(]) + b)'YV'VS) = 4i€7pwy (9.1.13)
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Figure 9.1: One-loop graphs contributing to the anomaly. All external momenta are
incoming. The wavy and dashed lines represent the external vector and axial sources,

respectively.

identical to the first one by shifting the virtual momentum p — p + b — a + ks, giving
naively k#I',,, = 0. However, these expressions are divergent and momentum shift is not

allowed. Indeed, for a generic function f(z), we have

/Oodx{f(x—ka)—f(x)} :/_(:dx[af'(a:)—k...} za[f(oo)—f(—oo) +.... (9.1.14)

—0
Equation (9.1.14) vanishes if f(+oo) = f/(+o0) = ... = 0, conditions automatically
satisfied for convergent integrals, but not for divergent ones. In the case at hand, the
analogue of f is p3fpl, and f,, ~ 1/p3, so f(o0) # 0. The integral is governed by the
asymptotic behaviour of f and thus it is easy to evaluate. Rotating the virtual momentum
p to euclidean values and applying Stokes theorem, we have

i
im [ k'ppppfo(pe)dy

4
Z/dﬂ |:fpl/(pE + k,a,b) - fpu(pEaavb) =

(27T)4 (271')4 PE—>OO
L Aieypon k(@ — b) TP Q4 w
~ 2n)f / Fublppy——" (EAE B = ek (@ =07, (9.1.15)

where Q4 = 272 is the volume of the unit four-sphere and in the last relation we have used

SO(4) invariance to write
w2 ore 2 2
Pepef(pp)di = — 4 ure f(pg)- (9.1.16)
Using eq. (9.1.15), the derivative of the axial current is easily computed:
1
BTk, k) = 5 qpun | (k2 b — @)% (=k1)7 + (ky + 0 — b)“k]

1
= gz G (k1 = k2 + 8)7 (k1 + k)7, (9.1.17)
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with A = a—b. It is now clear why we have introduced the otherwise redundant parameters
a and b. In a convergent expression, they would trivially be reabsorbed in a shift of the
virtual momentum p, but in the case at hand the final expression turns out to depend
on their difference A. Being A arbitrary, one could choose A = ky — kq, so that the
“anomalous” term (9.1.17) would cancel. However, care has to be paid on the divergence

of the two vector currents J, and .J,. Proceeding exactly as before, we can compute

KT (ki K) = #WM [(kl Y E)(b—a) — (b—a— kl)%g}

_ #e,ﬁml)k“f(A k), (9.1.18)
FET g (R, a) = éewy [+ k2) (@ = B = (@ = b= k) K]

_ #ewyk; (A — k)~ (9.1.19)

The choice A = k9 — k1 would then lead to the non-conservation of the two vector currents
J, and J,. Since three-point functions between 3 vector currents do not lead to any
anomaly, we insist in having vanishing divergence for the vector currents. This uniquely
fixes A = k1 — ko, opposite to the choice leading to the conservation of the axial current.
We can shift the anomalous term from one current to another, but what is important is
that there is no choice of A for which all three currents are conserved. Plugging A = k1 —ko
in eq. (9.1.17) gives

1
KT p (1, ko) = ﬁewwk‘fl{g. (9.1.20)

This is the final form of the chiral anomaly in momentum space. When K, are actual
external sources, the anomaly term in eq.(9.1.20) corresponds to a local counterterm for
these external sources and effectively do not lead to any non-conservation of currents in the
quantum theory. However, we can equally couple the free fermion theory to dynamical
gauge fields, gauging the U(1)y symmetry, in which case the vector currents K, are
nothing else than the U(1)y gauge fields A,, (modulo a coupling constant factor, depending
on the normalization chosen). The gauging of U(1)y does not break the U(1)4 symmetry,
that still remains at the classical level. In this case the wavy lines depicted in fig.9.1 are
actual photons and it is not difficult to reconstruct the local anomaly functional A(x)
entering in eq.(9.1.5). This should be such that, when taking two functional derivatives
with respect to the gauge fields A, gives, in momentum space, the term in the right hand
side of eq.(9.1.20). For canonically normalized gauge fields we get, in configuration space,

2
9 .
(Oudh) = =155 FuwFpo - (9.1.21)

This is the standard form of the chiral anomaly. We see that when gauge fields are coupled

to the fermion field the chiral current is not conserved.
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It is not difficult to generalize the above analysis to non-abelian global symmetries.
The Lagrangian for N massless free Dirac fields ¢; (i = 1,...,N) has an SU(N)y x
SU(N)a xU(1)a x U(1)y global symmetry. The vector and axial currents read

IS =Py T, o = VY57, (9.1.22)
where T% the U(N) generators, including the U(1) factor. We then evaluate the 3-point

function at one-loop level between two vector and 1 axial currents:

L0 (ki ko) = (S5 (—ky — ko) T (k)T (2)) - (9.1.23)

Similarly to eq. (9.1.10), we have

d*p
apy —
Fuup (klv kQ) /(27.‘.)4

Tt (3,050 + 0+ K)S(p -+ a+ S+ o)

(T T T ) 7,759 (p + b+ k)7 S(p + b+ ko), S(p + b)) (9.1.24)

Since the currents transform under a symmetry transformation, their classical conservation

turns in non-trivial WT identities, see eq.(4.4.13):

(0 (JSs (1) (22) ) (23)) = 6(x1 — 22) (0] (x2)J) (23)) + (21 — 23)(J] (22)60T] (23)) ,

(9.1.25)
where, under an infinitesimal chiral transformation, (5,1J5 = C’ga,le5. By parity invariance
the two-point function between a vector and an axial current vanishes, the contact terms

in eq.(9.1.25) then vanish and in momentum space we simply have'

(k1 + k2)"T007 = 0. (9.1.26)
It is convenient to write
1 1 j
tr(TTPTY) = 5tr({:ra,:rﬂ}iﬂ) + Etr([T“,Tﬁ]TV) = D7 4 %CW, (9.1.27)

where in eq.(9.1.27) we have introduced the factor

DY = —tr({T%, T°}T7), (9.1.28)

DN | =

symmetric under permutation of its indices. It can be shown that the terms proportional

to C*%7 do not give rise to anomalies, which are found in the terms proportional to D7,

! Contact terms will not vanish when taking the divergence of currents in other correlators, such as three
vector currents.These terms are always proportional to the structure constants C'zoy and can be shown to

not give rise to anomalies.
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These can be manipulated exactly as before and eventually lead to the same form of the
anomaly:

L0 (k1 k2)lano. = DT (K1, k2)ano. - (9.1.29)

As before, a non-conservation of currents in the quantum theory arises only when
we gauge some of the global symmetries. With non-abelian symmetries we have to pay
attention in the gauging procedure, because it can lead to an explicit violation of some
of the global symmetries. For example, gauging the whole U(N)y factor would break
SU(N)a, because the gauge coupling interaction is not SU(N)4 invariant. The U(1)4
symmetry is however classical preserved, so we might consider the case in which the axial
current is given by U(1) 4, while the vector currents are gauged and correspond to gauge

fields. In this case T can be taken equal to unity and we get
2
(BT = —49—7r26“up"8uA58pAZtr(T5T"). (9.1.30)

where Dogy — tr(TPT7). In the non-abelian case, additional one-loop (square and pen-
tagon) diagrams contribute to the anomaly and should be considered. When they are
summed to eq. (9.1.30), the whole non-abelian form of the field strength is reconstructed
and we get the final result

g2

(0, J8) = —m—Qeﬂ”P”Fquggtr(TﬁTV). (9.1.31)
s

Eq.(9.1.31) is the generalization of eq.(9.1.21) for non-abelian gauge fields and, as expected,
boils down to eq.(9.1.21) in the abelian case with 7% = T7 = 1.

In any given regularization, where all amplitudes are made finite and the shift in the
virtual momentum allowed, the anomaly would appear differently. For instance, in DR,
the anomaly arises from subtleties related to the definition of +5 in d # 4 dimensions
(see, e.g., ref. [1] for a computation of the anomaly in DR). In Pauli-Villars regularization,
where a heavy (PV) fermion is added, the anomaly is related to the explicit breaking
of the axial symmetry given by the PV fermion mass term. There is no regulator that
preserves at the same time the vector and axial symmetries and as a result an anomaly

always appears.

9.2 Gauge Anomalies*

As we have already mentioned, anomalies can also affect local symmetries, in which case
we refer to them as “gauge anomalies”. The latter can arise in chiral, parity non-invariant,

gauge theories, where left and right-moving fermions transform in representations of the
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gauge group that are not complex conjugate with each other. The simplest gauge anomaly

can be described by starting from the Lagrangian for a free chiral fermion )y

L= i, (9.2.1)

invariant under U(1) transformations 1y, — €9, 1y — ¥re™®, with U(1);, current
JH = rytapy = Py Prap, with Py, = (1 + 75)/2 the chirality projector. The 3-point

function at one-loop level between three currents is

4

d
gl ko) = = [0 [tr (wPLS(p + a+ k) PLS(p+a+ k) PLS(p+a)

+vuPLS(p+ b+ k), PLS(p+ b+ k2)v,PLS(p + b)) . (9.2.2)

where Ty, (k1. k2) = (Ju(—k1 — k2)Ju (k1) J,(k2)). Since P} = Pp, eq.(9.2.2) turns into
a sum of a non-anomalous 3-point correlators with no ~ys5 factors and an anomalous one
with one insertion of 5. The last term, modulo a factor 1/2 coming from Pj, equals
eq.(9.1.10). We then get

BT (1, ka) = 3B — o + A (b + £a) (0.2.3)
and similarly 1/2 of the divergences (9.1.18) and (9.1.19) for the J" and J” currents.
Gauging the chiral theory (9.2.1) amounts to couple the above three currents to a U(1)
gauge field. Since the theory is chiral, there are no vector and axial currents, but only
left currents to couple to the gauge field. As a result, there is no choice of the factor
A that allows us to conserve all the three vector currents at the same time. Because of
permutation symmetry of the three identical external currents, we should choose A so that
the anomaly is symmetric under the exchange of any of the three currents, as required by

Bose symmetry. This is achieved by taking

A=——(k — k), (9.2.4)

1

3
which gives an anomaly one-third smaller than the anomaly (9.1.21):
2

1 9" o
<auJ#> = —5@6# g F/»WFPU . (925)

This is the simplest form of a gauge anomaly. Such an anomaly is deadly for a theory.
The WT derived in section 4.4.3 no longer hold. In particular, the violation of eq.(4.4.44)
does not allow the decoupling of unphysical states. In scattering amplitudes the factor

I'up(k1, k2) is multiplied either by polarizations of the external photons or by internal
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photon propagators when the triangular graph is embedded within a more complicated
Feynman graph. For external photons the computation of the divergence of one of the
gauge currents is equivalent to replace the photon polarization vector by its momentum,
i.e. to consider longitudinal photons. A non-vanishing result implies that these states do
not decouple. If the line is internal, the longitudinal photon runs into the loop, yet we
have a problem, because unitarity (the optical theorem) would imply their non-decoupling
and a violation of unitarity (at any scale). In other words, minimally coupling a U(1)
gauge field to a chiral fermion is quantum mechanically inconsistent.

Similar considerations can be generalized to multiple fermions and to non-abelian gauge
theories. We will not enter into the details of non-abelian gauge anomalies. It is sufficient
here to say that the key coefficient governing the anomaly is the factor D7 defined in
eq.(9.1.28). When we have several fermions transforming in different representations r
of a gauge group G, the trace in D* should be taken over all fermions, each in the
corresponding representation r. Crucially, left-handed and right-handed fermions con-
tribute with an opposite sign to D7, due to the chiral nature of the gauge anomaly. A
gauge theory is non-anomalous if and only if in total D®Y = 0. The explicit form of the
non-abelian anomaly can be significantly constrained by demanding consistency with the
structure of the gauge group (see section 9.5 for some other detail) and cannot be written
in a covariant way in terms of field strengths only.

So far, we have only considered massless fermions. Fermion mass terms explicitly break
the axial symmetry (9.1.3), but it can easily be shown that they do not change the form
of the axial anomaly (9.1.30). In fact, left-handed and right-handed fermions contribute
the same to the axial anomaly, because the sign change due to the different chirality
of the fermions compensate their opposite charge with respect to the axial symmetry.
This explains why we got a non-vanishing axial anomaly starting from vector-like Dirac
fermions. The situation is different for gauge anomalies, that can receive a non-vanishing
contribution only from massless fermions. This is proved as follows. It is convenient to
consider all fermions as left-handed by defining, for each right-handed component g its

left-handed counterpart
v = Cvg, (9.2.6)
C being the matrix of charge conjugation in spinor space. If ¥r transforms under a

representation rr of a gauge group G, 9§ will transform as r%,. In the basis of left-handed

two-components spinors y;, a generic mass term reads
L = Xjo” Mijx; + h.c. (9.2.7)

where i run over all the fermions in the theory and M is a symmetric mass matrix. Let
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us focus on a subset of terms in eq. (9.2.7) coupling two left-handed fermion multiplets x1

and xs in irreducible representations 1 and 79 of the group G, with dimr; = dimrs:
L D Xio*Mys + h.c. (9.2.8)
where M is a non-singular mass matrix. The term (9.2.8) is gauge-invariant if
—TiM = MTy, (9.2.9)

where T} and Ty are the generators in the representations r1 and ry. Eq. (9.2.9) implies
that —T} and Ty are related by a similarity transformation, since —Tf = MT,M 1. Then

1 1
D(iﬁ'y = §tr{T1a7T1ﬁ}T1"/ = (_1)3§tr{T2ta7T2tﬁ}T2t’y = _Diﬁv . (9210)

The contribution to the gauge anomaly given by y; is then exactly cancelled by that of xo.
Let us clarify this result with a couple of simple examples. Consider a U(1) gauge theory
with a Dirac fermion with charge ¢q. In terms of left-handed fields, the Dirac fermion
consists of one left-handed fermion y; with charge ¢ and its conjugate yo with charge —¢q

and admits the mass term my;02x2 + h.c.. The total gauge anomaly is proportional to
+ q3 + (_q)3 =0. (9.2.11)

Similarly, Dirac fermions in any representation 7, of a gauge group consist of one left-
handed fermion multiplet in the representation 7, and its conjugate in the complex con-
jugate representation Ty = —T! and thus do not lead to anomalies. In manifestly parity-
invariant theories the absence of anomalies is obvious since all currents are manifestly
vector-like (i.e no 5 appears in a 4-component Dirac notation). Non-trivial anomalies can
only arise in non-parity-invariant theories, namely in so called chiral gauge theories, where
a fermion and its complex conjugate transform in representations of the gauge group that
are not complex conjugate of each other. The absence of anomalies in chiral gauge theories
requires a non-trivial cancellation between different fermion multiplets. The most impor-
tant example of a theory of this sort is the SM, where gauge anomalies cancel between
quarks and leptons, as we will see in the next section.

We can now come back to the fate of the U(1)4 symmetry in QCD, mentioned at the
end of section 8.7. QCD with ny massless quarks has actually an SU(ns)y x SU(ng)a x
U(1)y x U(1) 4 global symmetry, spontaneously broken to SU(ny)y x U(1)y by the quark
condensate. Let us compute the possible anomalies that we can have by looking at the
D,y coeflicients associated to the various groups. Since quarks are vector-like, the gauge

SU(3)? anomalies all cancel. Anomalies with one SU(N) non-abelian current of any kind
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also manifestly vanish, because tr'T = 0. The only possible non-vanishing anomalies are
of the form SU(3)? x U(1)y and SU(3)? x U(1) 4. In terms of left-handed quarks, a quark
and its conjugate have opposite charges with respect to U(1)y and equal charges with
respect to U(1), thus the SU(3)? x U(1)y anomaly vanishes while SU(3)% x U(1) 4 does
not. This is nothing else than the anomaly considered before in eq.(9.1.31), with Fg,
identified with the gluon field strengths. In QCD, then, the U(1)4 symmetry, in addition
of being spontaneously broken by the condensate, is also explicitly broken by the anomaly.
The latter breaking is large when the theory becomes strongly coupled (due to instantons)

and is responsible for the absence of a light 1’ in the QCD scalar meson spectrum.
Summarizing, we can have three qualitatively different scenarios:

e An anomaly involving three global currents — The theory is consistent, no real

effect, the global symmetry is preserved.

e An anomaly involving one global and two local currents — The theory is consistent,

the global symmetry is broken.

e An anomaly involving three local currents — The theory is inconsistent.

9.3 A Relevant Example: Cancellation of Gauge Anomalies in the SM*

The SM gauge group is Ggyr = SU(3) x SU(2) xU(1). Its fermion content, in terms of left-

handed fields, is composed by three copies (generations) of the following representations:

(37 2) + (37 1)72 + ("1 1)

1
3 3

+(1,2) 1 +(1,1) (9.3.1)

ol

corresponding to the quark doublet, up quark singlet, down quark singlet, lepton doublet
and charged lepton singlet, respectively. In principle there can be ten possible kinds of
gauge anomalies, associated to all possible combinations of SU(3) SU(2) and U(1) currents
in the trangular graph. Five of them, where a non-abelian group factor (SU(3) or SU(2))
appears only once, SU(3)%x SU(2), SU(3) x SU(2)?, SU(3)x SU(2)x U (1), SU(3) xU(1)?
and SU(2) x U(1)? are trivially vanishing, since for SU(n) groups the generators are
traceless: trT = 0. The SU(2)? anomaly is also manifestly vanishing because for SU(2)
the symmetric factor D7 vanishes. In the case at hand, with doublets only, this is easily
seen: DY = 1/2tr{t® tP}t7 = §°Ptrt7 = 0. In the general case, D*?7 vanishes because
all SU(2) representations are equivalent to their complex conjugates, namely there exists
a matrix A such that T = T* = —AT A~!. Using this relation, one immediately sees that

DY = ( for any representation.
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The remaining combinations SU(3)3, SU(3)? x U(1), SU(2)? x U(1) and U(1)? have to
be checked. Let us then compute the values of the symmetric coefficients D**7 in each of
the above 4 cases and show that they always vanish. In order to distinguish the different
coefficients, we denote by a subscript ¢, w and Y the SU(3), SU(2) and U(1) factors,
respectively. It is enough to consider a single generation of quarks and doublets, because
the cancellation occurs generation per generation. Let us start with the SU(3)? anomaly.

Only quarks contribute to it. We get

D = 203" + D7 4+ DY = 2Dg%" — DG — DgPT =0, (9.3.2)

cce
using that ng = —D§P. For SU(3)% x U(1) we have

1 2 1 1 2 1
D™ = 2trg 147 x Gt 17 x (— §) +trg tt7 x 5 =1rs t‘)‘tﬁ(g -3+ g) =0, (9.3.3)

with trg t*t? = trz t*t?. For SU(2)? x U(1), only doublets contribute. We get
1 1 1 1
DP = 3trg 117 x R 1% x ( - 5) = try tat5(§ - 5) =0. (9.3.4)
For U(1)? anomalies all quarks and leptons contribute and one gets

Dmy:3x2x(33+3x(—§f+3x(93+2x(—%f+wn3:o. (9.3.5)

There is actually a fifth non-trivial anomaly to check, that arises when we couple the SM to
gravity. It is an anomaly involving a U(1) current and two energy-momentum tensors, and
it is called a mixed U(1)-gravitational anomaly.? This anomaly is proportional to > on ns
where n runs over all fermions with charges ¢,. In the SM, the mixed U(1)-gravitational
anomaly is proportional to

3x2xé+3x(—g)+3x7+2x(—1>+1:. (9.3.6)

Notice how the fermion charges nicely combine to give a vanishing result for all the anoma-
lies, in particular the U(1)? and the mixed U(1)-gravitational ones.

The SM is then a chiral, anomaly-free gauge theory. More precisely, we have shown
that the SM is anomaly-free in the unbroken phase where all the gauge group is linearly
realized (i.e. no Higgs mechanism is at work). Since the anomaly does not depend on
the Higgs field, our results automatically imply that the SM is anomaly-free in the broken
phase as well. In particular, the unbroken gauge group SU(3) x U(1)gas is manifestly

anomaly-free being all currents vector-like.

2There also exist pure gravitational anomalies. These are vanishing in 4 space-time dimensions, but
can occur in 4n + 2 dimensions (n a non-negative integer). We will not discuss these anomalies, that are

beyond our course.
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9.4 Path Integral Derivation of the Chiral Anomaly*™*

In the path-integral formulation of field theory, anomalies arise from the transformation
of the measure used to define the fermion path integral. We will consider in what follows
path-integral in euclidean space-time.

Let 94(x) be a massless Dirac fermion defined on R*, in an arbitrary representation
R of a gauge group G (A =1,...,dimR). The minimal coupling of the fermion to the
gauge fields is described by the Lagrangian

L = (x)aiy" D g " (). (9.4.1)
The covariant derivative is given by
Dl =0, + AL T g, (9.4.2)

in terms of the gauge connection Az‘ and the anti-Hermitian generators Tf p of the group
G in the representation R (o = 1,...,dim G), with 7 satisfying the anticommutation
relations {v,, v} = 20 (v =1,2,3,4).

The classical Lagrangian (9.4.1) is invariant under the global chiral transformation
P — e, (9.4.3)

where v5 = Hi:l Yu, normalized so that 752 = I, and « is a constant parameter. The

chiral current
JE = payt st (9.4.4)

is classically conserved. At the quantum level, however, this conservation law can be
violated and turns into an anomalous WT identity. To derive it, we consider the quantum

effective action I' defined by
e T = / DyDipe J4wL (9.4.5)

and study its behavior under an infinitesimal chiral transformation of the fermions, with

a space-time-dependent parameter o(x), given by>

Sat) =iays1,  Oath = iot)ys . (9.4.6)

Since the external gauge fields A are inert, the transformation (9.4.6) represents a redefi-

nition of dummy integration variables, and should not affect the effective action: J,I" = 0.

3For simplicity of the notation, we omit the gauge index A in the following equations. It will be

reintroduced later on in this section.
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This statement carries however a non-trivial piece of information, since neither the clas-
sical action nor the integration measure is invariant under (9.4.6). The variation of the
classical action under (9.4.6) is non-vanishing only for non-constant «, and has the form
ba [ L = [JEO,a. The variation of the measure is instead always non-vanishing, be-
cause the transformation (9.4.6) leads to a non-trivial Jacobian factor, which has the
form 8, [DyYDyY] = exp{i [ «A} DYDY, as we will see below. In total, the effective action

therefore transforms as
5T = / d'v a(e) [iA(2) + (9,72 ()] (9.4.7)
The condition §,I" = 0 then implies the anomalous WT identity:
(0, J8) = —iA. (9.4.8)

In order to compute the anomaly A, we need to define the integration measure more
precisely. This is best done by considering the eigenfunctions of the Dirac operator i) =
iv*D,,. Since the latter is Hermitian, the set of its eigenfunctions 1y (x) with eigenvalues

Ak, defined by @D, = A1y, form an orthonormal and complete basis of spinor modes:
[avlr@ur@ = b, X ult @) = 50w - ), (9.4.9)
k

where we have made explicit the spinor indices a and b. The fermion fields v and 1/, which

are independent from each other in Euclidean space, can be decomposed as
b= app, U= ZBWL ) (9.4.10)
k 2

so that the measure becomes

DYDY = [ [ dardb, . (9.4.11)
kil

Under the chiral transformation (9.4.6), we have
5aak = i/d4$ Z?ﬁlzavg,wlal, 50[51@ = i/d41‘ 261¢;a75¢k, (9.4.12)
l l
and the measure (9.4.11) transforms as

b [DtzZJ] =DyDy det(dp + i / Azl arsy) 2
_ (9.4.13)
=DyD exp {— 2 Z /d4a: w;;avg,l/}k + (’)(042)} .
k
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For simplicity we can take « to be constant. This formal expression is ill-defined as it
stands, since it decomposes into a vanishing trace over spinor indices (trys; = 0) times
an infinite sum over the modes ()", 1 = c0). A convenient way of regularizing it is to

introduce a gauge-invariant Gaussian cut-off. The anomaly A can then be defined as
= —21j T yse PPy 9.4.14
A Ly Zk: Yy ¥5€ Vi ( )

Using the completeness relation in eq. (9.4.9), we can write

4

— o lim i 8] 50 (1 _ ) = _21i i B4/’
A Qéﬂr});}ﬂﬂ[%e }5 (x—y) Qéli% (2w)4Tr[’y5e ], (9.4.15)

where the trace is over the spinor and the gauge indices. By using the commutator

properties of the v matrices, we can rewrite

. . 1_.
O +iD)* = (k +iD)* = L F" [y, 3] (9.4.16)
Rescaling the momentum k — k/+/f3, we get
.1 d'k —(K2+2iy/BD-k—BD?—BF

where F' = FM[y,,7,]/4. The trace over spinor indices is vanishing unless at least two
factors of F' (i.e. 4 4’s) are included in the trace. In this way, we get two powers of 5 that
compensate for the overall factor 1/3? in eq. (9.4.17). Hence, in the limit 8 — 0, we can

safely neglect the terms proportional to D - k and D? in the exponential. In this way, we

finally get
A= 105 P E B (T Tp) - (9.4.18)
In Minkowski space, with 95 = —idp, and in terms of hermitian (rather than anti-

hermitian) generators and canonically normalized gauge fields (AT — —igAT') the non-

conservation of the axial current takes the form

2
g
(8,0 = fﬁe"DPUF&ngtr(TaTg) : (9.4.19)

Anomalies in the chiral transformation (9.4.3) occur in any number of even space-
time dimensions (in odd-dimensional space-times, chirality is not defined, since there is
no analogue of the matrix 75). The derivation of the anomaly reviewed here, due to
Fujikawa, is easily generalized to any number of dimensions. In 2n dimensions, we define
the chiral matrix yo,,4+1 as yoptr1 = " Hiil Yu so that va. 41 = I for any n. All the steps
are essentially identical to the 4d case and we get the generalization of eq. (9.4.17):

. 1 "k —(k%+2i\/BD-k—BD?*—iB3F
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In 2n dimensions, spinors have 2" components, so we get for the anomaly

A= —

(477)"11'6”1 ”2”E711H2 Fﬁg’; 1Mntr(Tal T - (9.4.21)

The anomaly (9.4.21) can more elegantly be rewritten in a compact form in terms of
differential two-forms. Let us introduce auxiliary anticommuting variables ¢!, ..., ¢*"
and define .

F=sFudh N (9.4.22)

Then eq. (9.4.21) becomes simply
A=-2 / d* g tr e/ (9.4.23)

where the integration over the auxiliary fermion variables ¢* automatically selects the
correct number of field strengths F. In evaluating the integrated form of the anomaly,
Ik d*"z A, we can replace the auxiliary fermion variables ¢ by the differentials dz*, so that

we have
/ "z A= -2 / d*"z ch(F), (9.4.24)

where
ch(F) = tre/(m (9.4.25)

is the so-called Chern character of the gauge connection. There is a deep connection

between anomalies and certain mathematical results that will not be discussed here.

9.5 The Wess-Zumino Consistency Conditions**

In this section we will consider some more formal developments about anomalies. It is
convenient in this context to consider the effective action I'(A) arising upon integration

of the fermions:

o T(A) _ / DyyDipeSWPA) (9.5.1)

In presence of an anomaly, T'(A) is not gauge invariant. Indeed, under an infinitesimal

gauge transformation A — A + De;

/d4 6Aa /d4xD JH e :—/d4x.Aae‘f‘=—/ xS FaT(A),

(9.5.2)

where the third equality defines the anomaly term A, and we have defined the functional

operator
(9.5.3)



Under a further infinitesimal transformations, we have

udal(A) = [dla [ty (y)ef (0)Fa(w) Fal@ (4). (9.5.4)

Due to the group structure, performing the commutators of the two infinitesimal transfor-
mations parametrized by €; and ey should be equivalent to perform a single infinitesimal
transformation with parameter [e1, €3], where €12 = e‘f"QTa. In other words, we should
have

[Oe1 5 0es JT'(A) = 0y e T'(A) (9.5.5)

identity that can easily be verified to hold in general. The relation (9.5.5) implies a

non-trivial condition for the anomaly, known as the Wess-Zumino consistency conditions:
Fal@)As(y) — Fs(y) Aa(z) = —Cas Ay (2)5(x — y). (9.5.6)

These conditions can be more conveniently expressed in terms of BRST transformations
by defining
Glw, A) = /d% o) Aa() (9.5.7)

Equations (9.5.6) imply that G is BRST-invariant, namely
sG(w,A) =0. (9.5.8)

This is easily shown by recalling the BRST transformations (6.3.3) of w and A, according
to which

sG(w, A) = /d4a: ( - % gy (T)wy () Ag ()

~eale) [ty D Ounto) + CrnsA)0)es() (95.9)
n

= ity (= Junteron(s)) [~ 0)Cusr s () + Fali) As(s) ~ Folhdalr)]

which vanishes if eq. (9.5.6) is satisfied.

We have extensively seen in the previous sections that there is some arbitrariness in
computing anomalies, related to the fact that we can shift the latter from one current to
another. From an effective action point of view, this shift corresponds to the possibility of
adding local, non-gauge invariant, counter-terms to I'(A) that change 6.I'(4) and hence

the anomaly. The impossibility of keeping all currents conserved corresponds to the im-
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possibility of finding a local* counter-term such that §.I'(4) = 0. We can now be more
precise exploiting eq. (9.5.8). If there existed a local functional of the gauge fields F/(A),
such that G(w, A) = sF(A), namely suppose that G(w, A) would be BRST-exact, then the
anomaly would be cancelled by adding to I'(A) the counter-term —F(A). Anomalies then
form an equivalence class. Two anomalies related by the addition of a local functional
F(A) are equivalent and belong to the same cohomology of the BRST operator s. Thanks
to the Wess-Zumino consistency conditions, it is possible to reconstruct the whole form
of the non-abelian anomaly by only knowing the terms quadratic in the gauge fields. The
procedure does not uniquely fix the anomaly since, as we have just said, the latter can be
changed by adding local counter-terms to the action.

We finally mention about the existence of an elegant formalism, known as the Stora-
Zumino descent equations, that allows, in any number of even dimensions, to get anomaly
functionals A, that automatically satisfy the conditions (9.5.6). The descent equations
make also manifest the close relationship between chiral anomalies in 2n + 2 dimensions

and gauge anomalies in 2n dimensions.

9.6 ’t Hooft Anomaly Matching and the Wess-Zumino-Witten Term*

Asymptotically free gauge theories are strongly coupled in the IR and can give rise to con-
finement of its fermion constituents, like quarks in QCD. At low energies the propagating
degrees of freedom are bound states of the elementary high energy (UV) states, such as
mesons and hadrons in QCD. What is the fate at low energies of possible global anomalies
coming from the elementary constituents at high energy? t’Hooft has answered to this
question by arguing that anomalies must arise in the low energy effective theory as well.
For concreteness, let us consider a gauge theory coupled to fermions with local symmetry
G, and global symmetry Gy and denote schematically by Dy, the associated anomaly
coefficients, where a,b,c = s, f. We assume that the theory in the IR becomes strongly
coupled. For the theory to be consistent Dyss = 0 so that no gauge anomalies arise. We
also have Dy, = 0, which means that we keep in Gy only the quantum global symmetries
of the theory, not the classical ones. For instance, in QCD we should not include U(1) 4
in Gy. We can however have Dy # 0 since, as we have seen, no real effect occurs for

anomalies involving purely global currents. Although these anomalies do not lead to any

4Locality is crucial. By using non-local functionals, any anomaly can be cancelled. For instance, a

gauge U(1)% anomaly would be cancelled by adding to T'(A) the non-local functional

—F(A) = g’ 1

= 562 D@“AuﬁaﬂwFangs. (9.5.10)
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effect, 't Hooft has shown that they should appear in the IR description of the theory and
might then be useful to put constraints on the IR theory. Such anomalies are sometimes
called 't Hooft anomalies.

The 't Hooft anomaly matching condition states that if in the UV theory Dysp # 0
then the same anomaly should appear in the IR theory. While the UV anomaly is induced
by the elementary UV fermion fields, the IR one should be given by the appearance of
massless fermion bound states with suitable quantum numbers to have the same D¢, # 0.
If G is spontaneously broken (like chiral symmetries in QCD), the NG bosons can replace
the role of the massless fermion bound states that are no longer required. ’t Hooft’s
argument is very simple. Let us assume of (weakly) gauging the group Gy (or a subgroup
of it) of the UV theory. In this way the innocuous global anomalies turn into deadly
gauge anomalies making the theory inconsistent. We might cancel the gauge anomaly
Dy by adding suitable additional massless “spectator” fermions that give a contribution
D;’}?}Ct' = —Dyyy to the anomaly. Crucially, these spectators can be taken neutral under
G, and charged only under the weakly gauged symmetries Gy. At low energies, when
the strong gauge group G confines, the spectrum of the theory will include IR bound
states plus the “spectator” fermions that, being neutral under Gy, are unaffected by the
condensation of Gg. The UV theory with the spectators is, by construction, consistent and
it has to remain so for all values of the gauge coupling constant. Hence, at low energies,
there must be an anomaly contribution equal to —D?}ef“' = Dyyy, canceling that of the
fermion spectators. The argument is valid for an arbitrarily weak gauging and thus has
to also apply in the original theory where Gy is a global symmetry.

Given the quantum numbers of the elementary constituents, the possible quantum
numbers of the massless fermion bound states can be argued. It might happen that there
is no choice of quantum numbers for the bound states to reproduce the anomaly of the
constituents. In this case, the 't Hooft anomaly matching conditions can be used to prove
that our original assumption of unbroken global symmetries is necessarily violated, and
some global symmetries are spontaneously broken. Notably, one can show in this way that
in QCD the SU(3)y x SU(3)4 x U(1)y global symmetry must be spontaneously broken,
see e.g. section 22.5 of ref.[2].?

As we mentioned, when G is spontaneously broken the anomaly of the UV fermions
can be reproduced by the effective action of the (pseudo) Goldstone bosons. The latter
situation is actually realized in Nature in QCD, in which case the weak gauging used

in 't Hooft argument can be identified with the electromagnetic interactions. Consider

5The argument requires n ¢ = 3. Solutions for the bound states quantum numbers can instead be found

when ny = 2.
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for simplicity ny = 2 (up and down quarks only). The quantum global symmetry group
is Gy = SU(2)y x SU(2)a x U(1)y. This is explicitly broken by the electromagnetic
interactions to Hy = U(1)y x U(1)gy x U(1)a, where U(1)4 C SUA(2) is the abelian
subgroup generated by 3. Consider now the U(1)%,, x U (1) 4 axial anomaly. We get

DIt = —1]6\:‘;2 HUPTE  F {(23—6)2 %1+ (%6)2 x (_1)}

B N.e?

152" FuFpo (9.6.1)

Anomaly matching requires that a similar anomaly should show up in the IR. Since no
massless fermion bound states occur Nature, this should appear in the low-energy effective
chiral Lagrangian £, describing the dynamics of the m mesons interacting with photons.
Under the U (1)4 chiral transformation above, d.L, should then not vanish, but rather
reproduce the axial anomaly (9.6.1). Considering that 5.7 = €fr, L, should include the

coupling ,
N.e

Le >~ 52 fr

VP F Foor® . (9.6.2)

The axial anomaly (9.6.1) has allowed to resolve the puzzle of the m°

— 27 decay. In
absence of any anomaly, the term (9.6.2) would still appear in the chiral Lagrangian £, but
with a much more suppressed coupling. On the contrary, anomaly considerations uniquely
fix its coefficient and it turns out that the experimental rate I'(7® — 27) is successfully
reproduced with N, = 3. We have seen in section 8.7 that the chiral Lagrangian £, should
be described in terms of the matrix of fields U = exp(2in®t®/ f,), rather than by the 7’s
mesons themselves. The anomalous term (9.6.2) should then be rewritten in terms of the
U’s. This rewriting is not totally straightforward and will not be done here. The ending
result goes under the name of the gauged version of the Wess-Zumino-Witten term. The

latter includes many other couplings, including the term (9.6.2).

9.7 Anomalous Breaking of Scale Invariance*

As we have mentioned at the beginning of this chapter, in most QFT’s the symmetry
under scale transformations, if present at tree level, is broken by quantum effects due to
the energy dependence of the couplings.® Let us formalize a bit better this observation.
We know that the energy-momentum tensor is the conserved tensor associated to the
translational symmetries. In general, under an infinitesimal symmetry transformation of

the action, the Lagrangian density is not necessarily invariant, but can change by a total

The analysis in this section closely follows section 19.5 of ref. [1].
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derivative: £ — L + €0,J", with J* a given tensor.” The associated conserved Noether
current in this case is given by

Y
50,0

JH S — JH. (9.7.1)

Under an infinitesimal translation x# — x#4¢e*, the Lagrangian, being a scalar, transforms
as L — L + "9, L. The Noether energy-momentum tensor reads

e
= 00,0

TH d— L, (9.7.2)

and is conserved: 0,7 = 0. In general, the Noether energy-momentum tensor 7#" is not
symmetric, TH” £ TYF. A new, symmetric, energy-momentum tensor 0*” can be defined

by adding a trivially conserved term to TH":
o1 =TH 4 0,M""P (9.7.3)

where M"P is a tensor antisymmetric in p and p, so that 0,,0,M""* automatically van-
ishes. The symmetric energy-momentum tensor *” can directly be derived by coupling

the QFT to gravity and noticing that #¥ minimally couples to gravity. We have
2 48

o = —— , (9.7.4)
) 59'“” Jur="pv
where g,,,, is the metric and g = det g,
Let us see this how this works for the massless ¢* theory. In this case we have
T = 0" = 9 po" o — L. (9.7.5)
Coupling to gravity we have
1 A
S = / d4m\/7—g(§gw,8“¢8”¢ - W4) . (9.7.6)
Noticing that
V=g _ 0 /a1 tog(~g)u _ ,lguv\/f7 (9.7.7)
6g;w 59;“/ 2

we immediately recover eq. (9.7.5).
A QFT is (classically) scale invariant if its Lagrangian density £(x) — e~ L(z) when
¥ — e?z#, with o a real constant parameter, so that the action S = f d*z £ remains

invariant. The transformations of fields are dictated by their classical dimension A:

P(x) = e Pop(x). (9.7.8)

In fact, this is not the most general possibility. A conterexample is provided by the transformation of

the Lagrangian density under scale transformations considered below.
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The classical scaling dimension A coincides with the power counting dimension of a field,
A = +1 for scalars and vectors, and A = 3/2 for fermions in four space-time dimensions.
Given the action on the coordinates, each derivative acting on a field increases by one the

scaling dimension of the operator:
O - O () — e 7BIG, 9, d(x). (9.7.9)

A QFT is classically scale invariant if only marginal operators appear in its Lagrangian
density. In particular, any mass term explicitly breaks the symmetry. The current asso-
ciated to scaling transformations is called the dilatation current D,. Finding its explicit
form with the Noether method is non-trivial, because the Lagrangian density is not in-
variant, even up to total derivatives. On the other hand, it is easy to find D,, by using the
same trick used before of coupling the QFT to gravity. In this way, we can reinterpret the

20

scaling transformation z# — e?x# as a rescaling of the metric g, — ™7 g,,,. Multiplying

eq. (9.7.4) by dg,,, = —2€g,, we get that the action variation vanishes if and only if
0, =0. (9.7.10)

The dilatation current is
DH = x, 0" (9.7.11)

and is in fact conserved if 0" is traceless. Notice that 6#¥ entering eq. (9.7.11) does not in
general coincide with the 6#” in eq. (9.7.4), but is related to it by a total derivative of the
form (9.7.3). This is the case even in the simplest theories. For instance, in the massless
¢* theory,
A
0t = (0u9)* — AL = —(0u0)* + gqf* #0. (9.7.12)

We can fix this problem by redefining the energy-momentum tensor. By adding a mani-

festly conserved tensor, we have for the A¢?* theory
1
o — grv — g(a“a” —p0)e?. (9.7.13)
The trace of the redefined energy-momentum tensor reads
0 = (00 + 504+ (06 + 606 = 9(06 + 5.6°) =0 (9.714)
C " 3! 1 B 3! - o

where in the last equality we used the equation of motion of ¢. One can easily show that

by adding a mass term to the ¢* theory, one gets

ot =m?¢”. (9.7.15)
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No redefinition of 0 can get rid of the mass term, which is in fact a genuine source of
explicit violation of the scale symmetry. Alternatively, we can keep the energy-momentum

tensor as defined in eq. (9.7.4) and change the definition of the dilatation current as
DV = g, 0" + V| (9.7.16)

The field V# is denoted the field virial. For the ¢* theory V# = ¢o* .
At the quantum level, scale invariance is typically broken by quantum effects. The

“would-be” WT identities implied by scale invariance are

<95(Q)¢1 (P1) - Gu(pn)) = — Z A(o1(p1) -+ dr(Pr + @) - - ulpn)) (9.7.17)

where A, is the scaling dimension of the field ¢,. Quantum corrections responsible of the
anomalous dimensions of the field do not violate the WT identities (9.7.17), that continue
to hold with a redefinition of A, that includes the anomalous dimension contribution.
The actual breaking arises from the energy-dependence of couplings, namely from their
B-function. Invariance of the quantum action under scaling transformations would imply
that
/ d*z L(¢(x), 0u0(x), Mz)) = / d*z Le P ple 7x), e " ATDY, p(e x), M)
(9.7.18)
= /d4x e L(e P g(x), 67”(A+1)8u¢(m), Ae%x)),

where A\ denotes a coupling constant and in the last equality we have redefined the coordi-
nates 2 — e“z#. For a classically scale invariant theory £(e "2 ¢(x), e ATV, 6(x), \) =

e 1L (¢(z),0,¢(x),\). Under an infinitesimal transformation,
Mz +ex) = Ma) + eS(N), (9.7.19)

and the violation of the scaling symmetry is given by

oL
35 = [t (£(0(2), 8,6(0) Ao + ) ~ L(0(2),8,0(2) M) = ¢ [atoTZ500).
(9.7.20)
Correspondingly, the divergence of the dilatation current is anomalous, with the anomaly

given by 3:
oL

m .
Let us see how this explicitly works for the usual ¢* theory. We work in DR with d = 4 —e.

8,D" = B(N) (9.7.21)

First of all, since we are no longer in 4 dimensions, we have to reconsider how to redefine
0 like in eq. (9.7.13). Let

0% — 0 + (019" — v 0)eT, (9.7.22)

210



where the subscript B stands for bare quantities. On-shell, the trace of the redefined

energy-momentum tensor reads

d AB
o = (1 — 5 +2a(1- d)) (Bu05)% — (d +8a(l — d)) ok (9.7.23)
Let us choose « so that the term proportional to (9,¢p)? vanishes:
_ (-9
We get
AB
0%, = (d - 4)I¢4B . (9.7.25)
We now have
A\pdE = Z (9.7.26)
with a1
Zy=14—+5— 9.7.27
A + 1672 € ( )
at one-loop level. Substituting in eq. (9.7.25) gives
3321 oL
I = H = —_—-— 4 = —_—
0 = 0%, 1672 4i B(N) o\ (9.7.28)

which is the expected result. Notice that 6, eventually is finite with no need of any wave
function renormalization, in agreement to the general result that conserved currents do

not renormalize, Z; = 1, and correspondingly have vanishing anomalous dimensions.

9.8 The Strong CP Problem and a Possible Solution: Axions

Strong interactions seem to respect to a high degree of accuracy invariance under parity
P, charge conjugation C and time reversal T. On the other hand, the QCD Lagrangian
might contain a gauge and Lorentz invariant dimension four operator of the form

0 g

) A*2€1p0 GH () G (2) (9.8.1)
where G4 are the (non-canonically normalized) gluon field-strengths and 6 is a real pa-
rameter. The parameter € in eq.(9.8.1) is actually not physical. Under a chiral rotation
of the quark fields

Qp — P Qy, (9.8.2)
where f is a flavour index, the QCD action is not invariant due to the global anomaly
(9.1.31). The non-invariance of the action corresponds to a redefinition of the parameter
0:

0—0+2> ay. (9.8.3)
!
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The chiral transformation (9.8.2) affects also the quark masses:
my — X my. (9.8.4)
Hence the invariant parameter 6 is the combination

0 =0+ilog[[my. (9.8.5)
f

If any of the quark masses was zero, the parameter 6 would not be observable, since we
will always have the freedom to set it to zero by rotating the massless quark. If my # 0,
as it appears to be in the real world, € is a genuine physical source of parity and time
reversal violation (and hence also of CP by the CPT theorem) in the strong interactions.
The term (9.8.1) can be shown to be a total derivative and is completely irrelevant at
the perturbative level.® Yet, at low energies, when QCD confines, it is expected to give
rise to CP violating operators. A particularly relevant CP odd operators is the neutron

electric dipole moment operator,
idnNo" s NF,, (9.8.6)

where N is the neutron fermion field. Needless to say, computing dy from first principles
is an hard task, considering also that the neutron has a mass of order Agcp and cannot
be straightforwardly included in the meson low energy action described in section 8.7. A
rough simple estimate of the order of magnitude of dy is however possible. Since dy has

to vanish if any quark mass is zero, eq.(8.7.9) and dimensional analysis suggest that

2
~m
ldn| ~ el0]—3- (9.8.7)
My
The current experimental upper bounds on the neutron electric dipole moment is |dy| <

2.9 x 10726 e cm. Using the theoretical guess (9.8.7) gives the bound
1] < 10719, (9.8.8)

More refined estimates confirm the order of magnitude bound given in eq.(9.8.8).
According to the naturalness criterium reviewed in section 7.5, a dimensionless coupling

can be very small if a symmetry is restored in the limit it vanishes. This would indeed be

the case for f in QCD, in isolation. In the real world, however, the electroweak interactions

break both P and CP and the naturalness of a small 6 is not guaranteed. We are left with

8This term plays an important role when studying non-perturbative configurations in QCD), instantons.

We will not consider such effects in these lectures.
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the question: why is § so small?® This naturalness problem is often denoted strong CP
problem.

An elegant solution is achieved by introducing a new field a(x), called the axion, that
is supposed to be the NBG of a spontaneously broken U(1) symmetry (at energies much
larger than Agcp). The original formulation of this idea was due to Peccei and Quinn
and for this reason this U(1) symmetry is often denoted Peccei-Quinn (PQ) symmetry.

Under a U(1)pg transformation parametrized by w, the axion shifts
a(z) — a(z) + fuw, (9.8.9)

where f, is the axion decay constant. According to the analysis made in sections 8.6 and
8.9, the non-linear realization of the U(1)pg symmetry requires the axion to have only

derivative interactions. The only allowed non-derivative term is an interaction of the form

1

s [ 4 ) O @G ). (9810

From the discussion above, it is clear that the coupling (9.8.10) breaks U(1)pg only at the
non-perturbative level. In presence of this interaction, the 6 term (9.8.1) can trivially be
reabsorbed in eq.(9.8.10) by the U(1)pg symmetry (9.8.9). We have essentially promoted
0 to be a field, so the problem of the value of € becomes now a dynamical one. We have
to compute the low-energy effective potential for the axion a(z) and find its minima. The
best way to study the axion potential is by exploiting the QCD NGB Lagrangian already
introduced in section 8.7. For simplicity consider ny = 2, keeping only the up and down
quarks. By a chiral rotation, we can eliminate the VEV of a(z) from eq.(9.8.10) and
reabsorb it in, say, the up quark mass term. As we have seen, quark mass terms are
sources of explicit violation of the chiral symmetry, responsible for the pion masses and,
more generally, for a pion potential. The leading terms are given in eq.(8.7.8). When the
axion VEV is reabsorbed into M, this term can be seen as the leading axion-pion effective
potential term:

Via,7) = —cf2tr(UM + MTUY) (9.8.11)

where U = exp(ioc®m?®/ fr) and

—iL 0
M = ( e ) . (9.8.12)

9Notice that this naturalness problem is qualitatively different from the one affecting the Higgs mass

(or more generally, relevant operators). There, a delicate cancellation (or fine-tuning) has to occur to get
a small number out of big ones, induced by quantum corrections. Here 6 is radiatively stable and we have

“simply” to understand the smallness of its classical value.
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In eq.(9.8.12), a is the axion VEV. By setting 7= = 0, the explicit form of V reads

V(a,m) = —2¢f3 (md cos (?) + my,, cos (% - %)) . (9.8.13)

The extrema of V are found at a = 0 mod 7 f, and mg = 0 mod nf;. A straightforward

computation shows that the minimum is at
a=my=0. (9.8.14)

Hence the 6 angle dynamically vanishes, providing a solution to the strong CP problem.
From the potential (9.8.13) we can easily compute the axion mass. Expanding for f, >

Sy My, mg we get (assuming a canonical kinetic term for a)

2
I My Mmq
2 ™ m2

ms = L .
“ fg (mu+md)2 "

(9.8.15)

Once again, we see the power of an effective description of NGB, that has allowed us to
compute the axion mass in a few simple steps. The axion decay constant f, governs all the
derivative interactions that the axion can possibly have in the UV theory with quarks and
gauge fields, and with mesons, baryons and photons in the IR. Astrophysical constraints

coming from red giant cooling puts a lower bound on f,:
fa>10° GeV. (9.8.16)

Given eq.(9.8.15) and the above bound, we conclude that the axion must be an extremely
light particle:
me <1073 eV, (9.8.17)

The axion has the added virtue of being also a viable dark matter candidate. Upper
bounds, coming mainly from cosmological considerations, also exist. They depend on

some details about the early evolution of the universe, and will not be discussed here.
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Chapter 10
Some Formal Developments*

10.1 Asymptotic Nature of Perturbation Theory*

Most of the considerations made in these notes are based on perturbation theory. It is
natural at this stage to ask what are the convergent properties of the associated series.
Perturbative expansions in QFT give rise to power series in some coupling constant A or
to h, if we consider the analogous loopwise expansion. It is useful to recall here some basic
mathematical properties of power series of holomorphic functions. If f()\) is analytic at a

point Ag, in a small disc around Ag the function is given by the power series

(o)
FO)V =D 1), ) =ca(X =X (10.1.1)
n=0
The radius of convergence R of the series (10.1.1) is given, e.g., by
R = lim (10.1.2)
n—oo CTL+1

If A\g is a regular point of f(A), R is non-vanishing and is given by the distance of Ay from
the closest singularity of f(\). Viceversa, if R is non-vanishing, necessarily )¢ is a regular
point of the function f. The power series (10.1.1) is uniformly convergent for any |A\| < R
and divergent for |A| > R. The convergence at |A\| = R depends on the particular cases,
but necessarily there is at least a point where the series diverges, corresponding to the
singular point of f(A) closest to Ag.

F. Dyson in 1952 presented an argument that led to the conclusion that the pertur-
bative series expansion in QED has zero radius of convergence. It is worth to sketch here
Dyson’s original simple and brilliant argument. Recall that the QED expansion is a power
series in o o €% and not in the charge e. Suppose now that the QED expansion has a

non-vanishing radius of convergence. This would imply that the point a = 0 should be a
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regular point of a physical observable O(«), seen as an analytic function of . As we re-
called, this would imply that O(«) has a finite radius of convergence where the function is
analytic, including regions where a < 0. A world with o < 0 is however unstable, because
electrons and positrons would repel each other destroying any vacuum in an uncontrolled

1 We conclude that sensible physical observables

production of electron-positron pairs.
cannot be analytic for & < 0 and thus the point a = 0 itself cannot be analytic. In turn,
this implies that the series around a = 0 has zero radius of convergence.

A modern and more general version of Dyson’s argument can be obtained by consid-

ering the euclidean path integral formulation in QFT. Consider a generic n-point function
G (x1,29,...Tp;h) = /D(b d(x1)p(x2) ... p(xy) e S@/h (10.1.3)

where we denote collectively all the fields in the action by ¢.2 In euclidean space the action
is positive definite and the path integral converges.? Consider now the loopwise expansion,
that is the expansion of G in powers of h. The point i = 0 is necessarily non-analytic
because for any value of i < 0 the Green function G blows up. We conclude that
loopwise perturbative expansions in QFT have generically zero radius of convergence and
are divergent. A similar conclusion applies for the coupling constant expansion, that upon
rescaling of the fields is equivalent to the loopwise expansion. Considering for simplicity
a single coupling constant A, we write the action as S = Sy + AAS, where Sy is the free

theory and AS the interaction term. Simplifying the notation, we have

o0 —A ” S8} —A
G :/D¢¢1...¢n Z(ﬂe—% Z ZAP/D¢¢1...¢n ﬂe—&)
=0 P p=0 " (10.1.4)

=Y G,
p=0

What we typically compute in perturbation theory are the correction terms GI(,n) to the
exact Green function G(™. But since the power series in X is never uniformly convergent,
having zero radius of convergence, we are not allowed to exchange the order of sum and
integration in the second identity above. Despite we know this is an improper step, this

is often the only thing we can do to make concrete computations and is indeed what we

LA similar event occurs for o > 0 in presence of a constant electric field. We will study in some quite

detail this phenomenon in the subsequent sections of this chapter.
2This argument works also in presence of fermions. We integrate them out and identify the resulting

effective action with S in eq.(10.1.3).
3With an appropriate measure and upon renormalization. Strictly speaking a full non-perturbative

definition of the path integral requires a lattice discretization of space-time.
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have tacitly done all the times so far. The divergent power series appearing in the second
row of eq.(10.1.4) is generally an asymptotic series. For sufficiently small values of the
coupling such series reproduces quite accurately the exact result G and this explains

why perturbation theory in QFT is useful, despite being divergent.

10.1.1 Asymptotic Series and Optimal Truncation*

A series expansion associated to a function Z(\) is asymptotic if, at any fixed order N,

N-1
ZOA) = > ZA"=0(\), as A—0. (10.1.5)

n=0
Notice the crucial difference with respect to convergent series where for N — oo the sum
ZnN:o Zn A" approaches Z()\) for any A within the domain of convergence. For convergent
series different functions lead to different series. This is not the case for asymptotic
expansions, where different functions can have the same asymptotic expansion. Indeed, if

Z()) has the asymptotic expansion (10.1.5), any other function of the form, say,

Z\) = Z(\) + e Ya(n), (10.1.6)
with a()) sufficiently regular, will have exactly the same expansion as Z(\). Asymptotic
series are anyhow useful because they approximate the true result with an accuracy that
depends on the value of the coupling A and on the behaviour of the series coefficients Z,,
for n > 1. Contrary to convergent series, where the more terms are added in the series
and the more accurate is the result, in asymptotic series there is an optimal number of
terms one should keep, after which adding more terms results in worse and worse accuracy.

This is called optimal truncation. Suppose that for n > 1
Zn ~nla"n®, (10.1.7)

for some real parameters a and c¢.* The best accuracy for Z()) is obtained by finding the
value N = Npest that minimizes the error, estimated as the value of the last term not

included in the expansion (10.1.5):
Ay~ ZyAN. (10.1.8)

Recalling Stirling approximation

nl = \/%n”e*"(l + O( )) , (10.1.9)

1
n

4The analysis that follows can easily be generalized for large-order behaviours of the kind Z, ~

(nhY*a™ne.
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one has
1
Znin ~ el f(N) = =N 4 Nlog(aAN) + (c + 5) log N . (10.1.10)

Since by assumption N > 1, the minimal error will be given by the minimum of the
function f(N):
O f(N) = log(aAN) + (c+ 1)i — 0 = Npey = i(1 + o(i)) . (10.1.11)
2/ N a\ N
Plugging back in eq.(10.1.8) we find

Ay ~e ax, (10.1.12)

independently of ¢ at leading order. We see that the smaller is the coupling and the smaller
(exponentially) is the error, but no matter how many terms we compute in perturbation
theory, asymptotic series fail to reproduce the exact function by (at best) exponentially
suppressed terms. This is consistent with the intrinsic ambiguity related to asymptotic
series shown in eq.(10.1.6). Keeping more than Npes terms in the asymptotic series would
lead to an increase in the error.

It has been shown that generally the coefficients of the perturbative expansion in QFT
behave at parametrically large order as in eq.(10.1.7), due to the exponentially growing

number of Feynman diagrams as the number of loops increases.

10.1.2 Borel Summation*

Borel summation is a summation method for asymptotic series. Suppose that a function
Z () admits an asymptotic expansion of the form (10.1.5) with coefficients Z,, that at large
order goes like in eq.(10.1.7). We define the Borel transform as the function obtained by

dividing the original series by a factorially growing factor:
BZ(t)=) =", (10.1.13)

Thanks to the division by n!, the series in eq.(10.1.13) has a non-zero radius of convergence
where it defines an analytic function BZ(t). If the analytic continuation of BZ(t) over the

complex ¢ plane is free of singularities for ¢ > 0, the integral
o0
Zp(\) = / dte 'BZ(t\) (10.1.14)
0

defines a function of A that is said to be the Borel resum of the original asymptotic series.

Recalling the definition of Gamma function

I'(z) = / dte tto1, (10.1.15)
0
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it is immediate to verify that Zp(\) has the same asymptotic expansion as Z(A). On the
other hand, it is also clear that if we approximate the series defining BZ () in eq.(10.1.13)
with its truncated version, Zg(\) boils down to the original asymptotic expansion of Z(\)
and no progress is achieved. The Borel resummation method works when we can resum the
whole series (10.1.13) or estimate the function BZ(t) by some other means. In general the
Borel resummed function Zg(\) is not guaranteed to coincide with the original function
Z(A). Indeed, if different functions can admit the same asymptotic series, it is clear that
manipulating the latter cannot be enough to uniquely fix Z (). The uniqueness (and hence
the condition Zp(A) = Z())) is ensured by a theorem provided that certain analyticity
properties of Z(\) near the origin are assumed. When BZ(t) is free of singularities and
gives rise to a well-defined Zg(\) we say that the associated asymptotic series is Borel
resummable. When Zg(\) = Z(\) we say that the asymtptotic series is Borel resummable
to the exact result.

We can get some intuition on Borel functions by working out the Borel transform of
an asymptotic series with coefficients as in eq.(10.1.7), with ¢ = 0. The Borel series in this
case collapses to a simple power series and gives

1

(10.1.16)

that has a simple pole at ¢ = 1/a. The radius of convergence of the Borel series is given
by R = 1/|a|, but the function can be analytically continued over the whole t-plane.
Borel summability depends on the sign of a. If a > 0 (same sign series) the singularity is
on the positive real ¢t axis, the integral (10.1.14) is divergent and the series is not Borel
resummable. If a < 0 (alternating series), the singularity is over the negative real ¢ axis,
the integral (10.1.14) is finite and the Borel resummed series is given by Zg(A). More in
general, eq.(10.1.7) gives only the asymptotic form of the coefficients of the series, while
the precise form of the latter might be unavailable. When the exact Borel function BZ(t)
is not known, some information on its analytic structure can still be deduced, because the
large order behaviour of the asymptotic series determines the position of the singularity
closest to the origin. If a < 0 the series is no longer guaranteed to be Borel resummable,
because further singularities on the positive real axis might occur, depending on the next
to leading large order behaviour of the series coefficients. On the other hand, for a > 0
the series is certainly not Borel resummable.

The order of sum and integration in the Borel function cannot be inverted because
the Borel series expansion has generally a finite radius of convergence while the integral

is taken over the whole positive ¢ axis. Indeed, if we erroneously interchange the two
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operations, we get back the asymptotic divergent series we started with:
0 o 7 o0 [e%e}
Zp(\) = / dte " BZ(M) # —T/\”/ dtt"e™ =" Z,\". (10.1.17)
0 n=0 n' 0 n=0

Unfortunately the asymptotic series in the coupling in four dimensional gauge theories
in four space-time dimensional are generally not Borel resummable. Examples of Borel
resummable series include the A¢?* theories in two and three space-time dimensions, im-

portant in the study of critical phenomena in statistical physics.

10.2 Vacuum Decay in the Presence of External Fields*

In this section we discuss the issue of the stability of the quantum vacuum in the presence
of external static and constant electric and magnetic fields. Heuristically, the various
fields in the quantum vacuum fluctuate around their (vanishing) mean values and these
fluctuations are responsible for some measurable effects, which are particularly important
in QED: (i) the Lamb shift in atomic physics, due to the quantum corrections to the
vacuum polarization, (ii) the Casimir effect due to the spatial confinement of fluctuations
imposed (at the semiclassical level) by conducting bodies, and (iii) pair production due to
applied external electric fields. Here we focus on this last case, also known as Schwinger
effect. In particular, one can think of this phenomenon as the analogous of the ionization
of a neutral atom: in vacuum the virtual pairs of particles (of mass m) form “bound”
pairs of energy & = 2m and are confined within a potential well of a typical extension set
by the Compton length A. = 1/m. In order for an electric field of strength E to unbound
this pair and make the constituent particle “real”, it is necessary that it makes the bound
pair overcome the energy barrier, such that \.eE > &, i.e., E has to exceed the critical
value Eo, = &,/(Ace) = 2m? /e which, for electrons, turn out to be Ee ~ 2 x 107 V/m.
In a sense, this phenomenon requires a tunneling of that potential barrier and therefore it
is expected that in the expression for the occurrence probability of such a tunneling the
field strength F will appear in the denominator of an exponential law, as it happens for
thermally activated processes. Still on this heuristic intuition, one expects the phenomenon
to be controlled by E/FE.,. Note that this pair production implies the decay of the vacuum,
which we are going to study in the rest of the section. However, before discussing in details

this issue in Sec. 10.2.2, we consider first a seemingly unrelated problem.
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10.2.1 Landau Levels by Path Integral*

Consider a charged particle of mass m in the presence of a magnetic field. Its classical
Lagrangian is

m -2
L=2
2

¢ +eq AQ (10.2.1)

where (t) is the particle coordinate and § = dg/dt. The corresponding Hamiltonian H is
given by
. 5— eA(d))2
H=p-¢-L= (P ed@) ; (10.2.2)
2m
where H has been expressed in terms of the momentum p = 5L/5(j': mg+ e /T(q_)

A classical problem in quantum mechanics is the determination of the energy levels of a quan-
tum particle when it is confined in the z-y-plane while being subject to a constant magnetic field

B = Bé, (where €; is the unit vector along direction ¢). Given that B =V x ff, one can choose

A = Bzé,, such that eq. (10.2.1) in terms of operators becomes

2 - ~\2
S < —eBz
_ P (Dy ) '

H= 10.2.
2m 2m (10.2.3)

Translation invariance of H along &, implies [H,p,] = 0 and therefore one can look for the eigen-

states of H in the form of plane waves with definite momentum p, = hk,, for which

2 Rz a2 2
_ P (Pky —eBI Py e e (10.2.4)

H

2m 2m - 2m 2

where
eB

= (10.2.5)

We =

is the cyclotron frequency and the harmonic oscillator is centered around zy = hk,/(eB). For a
given k,, the energy levels of this harmonic oscillator are given by E, = hw.(n + 1/2) with n =
0,1,... (Landau levels). Each of these levels has a degeneracy g determined by the corresponding
possible values of k,. In order to determine g consider a two-dimensional rectangular area with
edges of length L, and L,. Assuming periodic boundary conditions, one finds that k, = 2wn,/L,,
with n, = 0,1, ..., each corresponding to an harmonic oscillator centered at xg = h2wn,/(eBLy).
Requiring that z( is within the rectangle 0 < 2y < L, one finds that n, < eBL,L,/(2rh) and
therefore g = eBA/(27h), where A = L, L, is the area of the surface across which B flows. The
fact that g is an integer implies a magnetic flux quantization in multiple integers of the quantum

of flux 277 /e. Below we recover this result via a path-integral approach.

Consider a gas of non-interacting particles with Hamiltonian given by eq. (10.2.2) and

at temperature S~!. The corresponding single-particle partition function is given by

2(6) = re " = [dg, (Gl ). (10.2.6)
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The matrix element (7, |e"?#|q, ) can be obtained via a Wick’s rotation of the standard
propagator of quantum mechanics (G, |e = (®—ta) |, ) which quantifies the probability am-
plitude for a particle with Hamiltonian H to propagate from the position ¢, at time ¢,
to the position ¢, at time t,. This propagator can be represented as a Feynman path-
integral with an exponential weight determined by the action associated to Lagrangian L
in eq. (10.2.1):

(@ e Ht g, ) = A D(t) e ful L, (10.2.7)

By setting t, = 0 and by continuing ¢, — —i7, with q;—> idq/dr one gets
Z=Tre PH = N/dzja / D(r) e~ foar Le, (10.2.8)
7(8)=q(0)=4a
where the Euclidean Lagrangian Lp is given by

N 2 S
m ([ dq o dq -,

L= 7L|q;»—)idcj‘/d‘r =3 <d7’) —ie A(q(T)). (10.2.9)
The path integral in eq. (10.2.8) is calculated by summing over all closed paths originating
in a certain point ¢, = ¢(0) = ¢(f), over which one eventually integrates. These paths are
in a one-to-one correspondence with periodic functions of period 8 and therefore can be

expressed in terms of their Fourier transforms:

(o @]
2 2mnT 2mnT
q(t) = qo + \/7<€ cos ———— + &, sin), 10.2.10

where 5, = (Szn,8yn;S2n) and &, = (Cum,Cyn,C2n) are the vector coefficients of the

transform which can be obtained by inverting it, i.e.,
I G, A 2 5(2
@ = —/ drgr), b= / ar )y 2 4 csCmT/B) (10.2.11)
B Jo 3y, 0 B | sin(2mnT/B)

Note that because the Fourier transform is a unitary transformation, one has

+o0 ©
7(0)=7(8) et

—00

Assume now that this gas of particles is constrained to move on the z-y-plane with
¢-(7) = 0 (and therefore ¢, ,, = 5., = 0) subject to a constant magnetic field B = Bé., as
in the case of the Landau levels discussed above. As before, we can choose A= Bzxe, and,

by representing the trajectories as in eq. (10.2.10), one can easily express the (Euclidean)
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action Sp = foﬂ drLg associated with the (Euclidean) Lagrangian in eq. (10.2.8) in terms

of the coefficients ¢,, and §),. In particular, it is useful to note that

/dT—q ch’) B/ dT qm—BZ% —CenSyn + SenCyn), (10.2.13)

B d 9 2
q ™
/() dr <d’7’) - Z < ﬁ ) (cim + 05771 + Si,n + Sz,n)v (10214)

and therefore

27rn 21n
2 2 2 -
x,n + Cyn + St Sy,n) —ieB 3 (Sx,ncy,n - Cz,nsy,n)

2 .21
<7> Cym T 592“1) - 26B75x,ncy7n}
m
2

oo
n=1 2
00 9 9
A (Y (2t 0 + B2 s
n=1 ﬂ ﬂ
1 =1 c
:Zf(cyn,sxn)M ( ) 25 anasy, n( Sx,n >7
n=1 Sz,n n=1 y,n
(10.2.15)
where
2 2 jeB(2
My, = m{2mn/B) - ieB(2mm/B) : (10.2.16)
ieB(2mn/B) m(2mn/B)?
As expected, Sg is independent of gy. Accordingly, eq. (10.2.8) becomes
+o00o
7 = N/ dqz.0dgy.0 H deg ndcy ndsy ndsy , e F
" , . (10.2.17)
~ VATl et e~ Al o+ wc) |
g Vdet M, \/det M;; H 2mn

where w, is defined in eq.(10.2.5), we used the fact that the integral over ¢y renders the

det M, = m? <27r—">4 1+ <5%)2 (10.2.18)
" B 2mn o

(see eq. (10.2.5)), while we included all the factors which do not depend on B in the overall

area A, and

normalization N of the path integral. In turn, this constant can be easily calculated by

considering the same problem for B = 0, i.e., by calculating the partition function Zy(3)
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of a free quantum particle with Hamiltonian Hy = p?/(2m) which is confined in a d-

dimensional space with volume A:

[ dGdp gy, m \%?
ZO(,@)_/(%ﬁ)de _A<2ﬂw> . (10.2.19)

By requiring that Z in eq. (10.2.5) reduces to Zy for w. = 0 (with d = 2), one fixes the
value of A and finds that

B m pw./2  AeB > —Buwe(n+1/2)
2(B)=A 2rhf3 sinh(fw./2)  27h n:Oe ’ (10.2:20)

where we used the identity

o0 2 . h
I1 (1 + %) = 2z (10.2.21)
nel mT™=n xr

and the expansion of sinh in terms of exponentials. Recalling the definition of Z(3) in
eq. (10.2.6) one can alternatively calculate it in the basis of the eigenstate of the energy H
(with eigenvalues E,, and degeneracy g, ), finding that Z(3) = 3, gne ?Fr. By comparing
this general expansion with eq. (10.2.20) it is possible to identify FE,, = fuv.(n + 1/2) and
gn = AeB/(27h), which are readily recognized to be the Landau levels that we discussed
before. Note that, due to the fact that g, has to be an integer, one concludes that the flux
AB of a magnetic field trough a certain surface of area A has to be a multiple integer of
the elementary flux 27 /e. This is nothing but the Dirac quantization condition for a flux

of B through a (large) close surface enclosing a magnetic monopole.

10.2.2 Vacuum Instability for a Constant Electric Field*

In order to address the issue of the vacuum instability in the presence of external fields,

we consider first the case of a scalar field, i.e., the scalar QED with Lagrangian
1 vV
L=—FuF" + (D,d) DHé — m?¢?, (10.2.22)

where D, = 0, — ieA, is the covariant derivative and the field A, is assumed to be
assigned from the outset. (We neglect here the self-interaction of the scalar field as it only
provides a small correction to the phenomenon of vacuum instability.) Denoting by |0)
the vacuum of the system (of large volume V'), its decay rate in the presence of the field
can be determined by looking at the effective action Sg[A] obtained by integrating out

the fluctuations of ¢, i.e.,

ciSaqlAl _ <0|67iHT|0> _ /D¢D¢*€ifd4$L~ (10.2.23)
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In fact, as long as the vacuum is stable, the probability amplitude (0]e=*#7|0) has unit

modulus and therefore
SolA] = *i /d4:17 E F" 4+ ASglA] (10.2.24)

is real, whereas if ASg acquires an imaginary part, the vacuum decays with a rate per

unit volume given by
2Im ASqg[A]

VT '

the same relationship applies to the case of QED, discussed further below. Let us mention

r

(10.2.25)

that according to the heuristic picture of the Schwinger effect provided at the beginning
of this section, the rate I can be interpreted as the rate (per volume) of production of real
pairs from the virtual ones of the vacuum.

Most of the results presented hereafter were originally derived by J. Schwinger in
ref. [28].

10.2.3 Instability of a Scalar Field Vacuum*

The one-loop contribution ASg[A] to the quantum action Sg[A] due to the interaction of
the complex scalar field with the background field A, is given, according to egs. (10.2.22)
and (10.2.23), by

iANSo[A] = In {J\/ / DDy* ¢t/ 4= ¢*<D2m2>¢} . (10.2.26)

In order to calculate the Gaussian integral on the r.h.s. it is convenient to perform a
Wick’s rotation by introducing a coordinate x4 such that xg = —iz4 and correspondingly
by replacing the temporal component Ag of the vector potential by iA4. As a result,
Dy = 8y —ieAy = iDy with Dy = 04 — ieAy and D> = D — D2 = —(D? + D?) =
—D?%, where we define Dg, = 0, —ieAg, with p =1, 2, 3, 4, and Euclidean metric.
Correspondingly, one defines A'E = A and Ap4 = —iAp. As a result, ifd4x ¢*(—D2 —
m?)¢ = — [dzp ¢*(—D% + m?)¢ and the Gaussian integral can be easily calculated,

leading to
—D% +m?

iASQlA] = ~Trin —£,

(10.2.27)

where henceforth we neglect irrelevant constants and we introduce a convenient momentum
scale p. Note that the operator D% cannot be trivially diagonalized in momentum space,
due to the spatial dependence of A,,. However, the problem of calculating Tr In(---) can

be conveniently related to the one we discussed in Sec. 10.2.1, i.e., to the calculation of
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Tr e~ (), by noticing that

a m@ —at _ _—bt
In = /O t(e e ) (10.2.28)

By using eq. (10.2.28) we get
o0
d
iASq[4] =/ ge—ﬁmg Tr e #(-PB) 4 const. . (10.2.29)
0

The constant term in eq. (10.2.29) is independent of A. It simply provides a regularization
of the first term and can be neglected in what follows. The connection with the problem

discussed in Sec. 10.2.1 is apparent by noticing that

— D% = (—id — eAp)? (10.2.30)
formally coincides with the Hamiltonian reported in eq. (10.2.2) of a quantum particle in 4
spatial dimensions, with momentum p'= —i(‘;, mass m = 1/2, in the presence of an external
field Ap. Accordingly, Tr e P(=D%) can be identified with the partition function Z(3) of
this particle and it can be calculated as explained in Sec. 10.2.1 (see eqs. (10.2.8) and
(10.2.9)), where now the position vector ¢(7) of the fictitious particle has 4 components
instead of 2. This fact introduces a slight complication in the calculation, which we
discuss here. In order to carry out the calculation we need to specify the form of the
vector potential A E. Assuming that the corresponding Euclidean field Fg ,, = 0,Ap,, —
0,AE, = —Fg,, is constant in space and time, a possible choice of the vector potential
is

Apu(7) = %FE,qu, (10.2.31)
such that the Euclidean Lagrangian (see eq. (10.2.9)) of this particle becomes
N 2 AT
Lp= % <Z—f_) — e <%) % q(r), (10.2.32)
where Fp is the (antisymmetric) matrix of the field and T indicates the transposition.
With this Lg, the path integral in eq. (10.2.8) can be calculated by decomposing ¢ as in
eq. (10.2.10) and by expressing the corresponding Euclidean action Sg in terms of the

coefficients §,, and ¢,, taking into account the natural generalizations of egs. (10.2.13) and
(10.2.14), i.e.,

/ﬁd By ) EOO BT Sy + SunCom) (10.2.33)
T (7)) = —Cpu,nSy, nCun) "
0 dr Z B unSvn w,nCrn

B dq 2 o] 27 2

dr [ =£) = =) ( 2. 10.2.34
/0 T<d7> ,;(5) s+ S1r) (10-2:34)



As the term on the Lh.s. of the first equation is contracted in Sg with the antisymmetric

matrix Fg, the two terms on the r.h.s. eventually give the same contribution and therefore

oo 2 4 4
m (27n . [ 2mn
Sy = Z B <7> Z(cin + sin) —ie (7> Z SunFEweun ¢ (10.2.35)

n=1 pr=1

Accordingly, the partition function can be written as

4 00
Z=N / 11 (dqu,o 1T dcp,ndsw> e 5p (10.2.36)
pn=1 n=1

where the integral over ¢y renders the Euclidean space-time volume 7'V, while the integral

over each single s, , is a Gaussian integral in the presence of a linear term of the form

/ ds, e S TS0 — \/geWQ/ (4a) (10.2.37)

with a = (7n/B)? (with m = 1/2), and v = e(2mn/B) FE 1uCpn- After this first integration,
one finds (up to irrelevant constants which are absorbed in the definition of A and then

N//)

00 4
7 = ./\/'/iTV/ H H dey,n exp {—(ﬂn/ﬁ)QcH,an,cy,n}
n=1 \pu=1

(10.2.38)

(o]

= N"iTV ] (det M,,) ="/
n=1
where we introduced the 4 x 4 matrix
2
ef

Moy = Oy — <%) (F2) - (10.2.39)

As in the case discussed in Sec. 10.2.1, the normalization constant N can be fixed by
comparing this result with the one in the absence of the coupling to the field Ag ,, i.e.,
for e = 0, which reduces to the partition function of a free particle (with mass m = 1/2)
calculated in eq. (10.2.19) for generic dimension d, with an area .4 given by the Euclidean

volume iV'T'. Accordingly,

oo
Z(B) =TV (4xB) > [ [ (det M,,)~*/2. (10.2.40)
n=1
In order to proceed further we have to specify the fields E and E, which enter the tensor

F,, as Fy; = E; with j = 1, 2, and 3, while F}j;, = €;;B;. Accordingly, the components
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of the Euclidean tensor are given by Fg4; = —ily; = —il; and Fgj, = Fjp = B
Without loss of generality, we consider here the case in which the electric field E = Eé, is
directed along the x-axis, while the magnetic field B = B,é, + B,é, is on the z-y-plane,
which result in the Euclidean field

0 0 -B, iE

Fg= , (10.2.41)

with
—B2+ E* B.B, 0 0
B,B —B? 0 0
F2 = Y ’ : (10.2.42)
0 0 —B2-B? iB,E
0 0 iByE E?

Due to the block-diagonal structure of Fz, the 4 eigenvalues of this matrix are given by
the 2 eigenvalues of the upper left 2 x 2 matrix and by those of the lower right 2 x 2 matrix.
However it is easy to see that these two 2 x 2 matrices have the same eigenvalues, which

therefore have multiplicity two and which are solutions of the equation

N4 (B2—E)\— (B-E)>=0, (10.2.43)
ie.,
Lz *2\/"2 722 B2 = 42
Ap= g |B = B2 \[(B2 - B2 + A(B - E)?| = +al. (10.2.44)
Accordingly
232 ) 2 232 ) 2
det M,, = (1— 7T2n2a+> (Hw?n?“—) : (10.2.45)

and Z in eq. (10.2.40) can be calculated by using eq. (10.2.21):

TV eBay efa_

— —B(=DE) —
2(8) = Tre ~ (47B)? sin(eBay ) sinh(efa_)’ (10.246)
Note that _— 5 o
Z(B—0) = (Lrﬁ)? {1 + e(f (E* - B?) + 0(54)] , (10.2.47)

and therefore the integral over § in eq. (10.2.29) (which defines iASg[A]) displays a leading
divergence ~ 372 for 3 — 0 which is independent of the field and therefore of the coupling
constant e and which is cured by the regularizing term that was omitted in that equation.
The next, subleading logarithmic divergence is proportional to E? — EQ, i.e., it depends on

the fields and therefore it cannot be taken care of by the additive counter-terms mentioned
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above. In order to understand the origin of this divergence it is convenient to generalize the
present analysis to generic dimensionality d close to 4. The primary effect of having d # 4
is to change the determination of the normalization constant N by comparison with the
case of a free particle. Going back to eq. (10.2.19) one concludes that this generalization
amounts at multiplying the r.h.s. of eq. (10.2.46) by the factor (473)%>~%2, while VT
has to be understood as the volume of space-time in the corresponding dimensionality.

Accordingly, from eq. (10.2.29), one finds

00 202
ASg[A] = VT/ 5 —om? (4nB)~ %% |1 4 %(EQ — B%) + O(B%)| + const. (10.2.48)

0

which contains a dimensional pole for e = 4 — d — 0, as expected. In particular, the part

proportional to the fields turn out to be

e2

ASg[A] = VTW(EQ ~ B?) x % ... (10.2.49)
and we expect this dimensional pole to be cured by a suitable renormalization of the field
amplitude. In fact, by introducing the field-strength renormalization constant Z3, the
quantum action in eq. (10.2.24) for spatially and temporally constant fields can be written
as

E? — B? e?

. 2
Al =VTI——— 7 T—— (E>—B*)x = +... 10.2.
SQlA] = VI=—5—Zs + VT s )%+ (10.2.50)

where we used the fact that F,, F*" = —F,, F"" = —Fg ,,Fg,, = —Tr FI% = 2(§2 — E_Q)
(see eq. (10.2.42)) on the field configuration that we are discussing. Accordingly, within
the minimal subtraction scheme, one can remove the divergence by fixing

2

(42)2£ +0(e*), (10.2.51)

Zy=1-—

which is indeed the field-strength renormalization constant that one determines by a di-
rect renormalization of the photon propagator in scalar QED. Accordingly, the expression
of Sg[A] which follows from egs. (10.2.29) and (10.2.46) can be made finite with suit-
able renormalizations. Having established this, let us focus on the one-loop contribution
directly in d = 4:

VT [*du _ eay ea_
ASplA] = — —e 10.2.52
SqlAl 16%2/0 u sin(eua, /m?) sinh(eua_ /m?2)’ (10-2.52)

where the integral has been expressed in terms of the variable v = Bm?. Even after
renormalization, a close inspection of this integral reveals that it does not converge be-

cause of the presence of zeros of the denominator also for v > 0 and corresponding to
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u = u, = m?mn/(eay). However, one should remember of the Feynman prescription for
regularizing the path integral (as when calculating propagators), which effectively amounts
at substituting m? — m? — ie with ¢ — 0. With this prescription, the singularities just
mentioned move out of the real axis and the integral can be safely calculated. However
— as it is the case when studying the decay of unstable particles — this also implies the
emergence of an imaginary part in ASg[A], which is eventually responsible for the vac-
uum decay. In particular 1/sinz ~ (—1)"/(x — 7n) for z — 7n and taking into account

eq. (2.1.26) one concludes that

1 00
— = -1)"(x — . 10.2.
sin(z + ie) anzo( )"l —mn) (10-2:53)
Accordingly,
n+1 e—m‘rm2/(ea+)

Im ASg[A] = %e%@a, Z (_17)1 (10.2.54)

— sinh(nma_/ay)’
(where the contribution due to n = 0 is discarded, being cancelled by the renormalization
discussed above) and, according to eq. (10.2.25), we find that the decay rate of the vacuum
is , - . )

r_¢ a+2a— Z (—1)n+ .e’mm /(eat) '
87 n  sinh(nma_/ay)

n=1

(10.2.55)

Note that this expression is non-perturbative in the coupling constant e, due to the es-
sential singularity associated with the exponential factor. Consider now the two relevant
cases in which either field (a) E or (b) B is present: from eq. (10.2.44) one concludes that
ay = |E| and a_ = 0 in the former case, whereas ay = 0 and a_ = |B| in the latter.
As a consequence of the vanishing of a, the decay rate ' of the vacuum vanishes in the
presence of B alone, as it could have been expected on the basis of the fact that a mag-
netic field does not do any work on a charged particle and therefore it cannot provide the
necessary energy to transform virtual pairs into real ones. On the other hand, an electric
field E induces a decay of the vacuum even in the absence of a magnetic field B and, in
fact, eq. (10.2.55) becomes

r— B & (71)71+167nwm2/(e|ﬁ\)

10.2.56
83 — n2 ( )

for B =0. As expected from the heuristic discussion presented in the introduction to the
issue of vacuum instability, I'/m? in this equation is a function \E |/ Eer with Eg = 2m?/e.
Figure 10.1, presented at the end of next section, provides a plot of I'/(e| E|)? as a function

of |E |/ Ec; and compares it with the case of QED which we discuss next.
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10.2.4 Instability of a Fermion Field Vacuum**

Consider now the case in which the vacuum is that one of fermions, i.e., the case of
QED with fermions of mass m. Following the same line of argument as in the previous

subsection, the decay rate is determined by the effective quantum action
iASg[A] =1n {N /D1/)D1/_1 exp [i/d4x PP — m)w] }
T In <M) .
o
Here we note that in taking the trace Trp over Dirac matrices of a generic scalar func-

tion f of ID one has that Trpf(i)) = Trpf(—ilp) because Trp (i) = Trpvys (D) ys =
Trp(ys5iDvs)™ = Trp(—idp)"™ (being (75)? = I and Y5,V = 0). Accordingly,

Tr In (#) = %Tr In (dp ; m _ﬂpu_ m) - %Tr In (W) . (10.2.58)

which renders an expression quite similar to eq. (10.2.27). Using the facts that {v,,7,} =

(10.2.57)

20wy [Yu, W] = —2i0,,, and that the convariant derivative satisfies [D,,, D, ] = ieF),,, we
can write

1 e
P* = 5 ({vw} + b W) D' DY = D* 4 S oy . (10.2.59)

As in the case discussed in Sec. 10.2.3, it is convenient to perform a Wick’s rotation by
introducing, in addition to the Euclidean coordinates and fields discussed right before
eq. (10.2.27), also a set of Euclidean v matrices vg such that v = yg; with ¢ = 1, 2,
3, while 79 = iyg4. As a result, § = 400y — 7 - J = —(vB,404 + 7 - 5) = —{Pp with
Euclidean metric. In addition, we introduce [’yE#,PyE,l,] = —2i0p  With o, = —ioo
and g, = o, with [, k € {1,2,3}, such that F,, 0" = Fg ,,05 ;.. Using the chiral

representation for the v matrices one has, in terms of Pauli matrices {o;};=1,2,3,

01 0 o =0 0 or O
= ; = , o =1 , 04 = €5 )
= 0) T s 0 . 0 o TR oy
(10.2.60)

and therefore

7 (-iE+B) 0 ) . (10.2.61)

Fr o =2 Lo
Ty ( 0 G- (iE + B)
Now it is possible to express the quantum action ASg with the help of egs. (10.2.57),

(10.2.58), (10.2.59), and (10.2.28), as

_ N2 2
iASQ[A] = %T& ln< D% + (¢/2)Frog +m >

112

1 [>*dsg —Bm? _B(—D2) —
= 2/0 _ﬁe [r {e Ele ]+const

(10.2.62)
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The trace in the integrand involves a differential operator e~B(=D%) acting on the coor-
dinate space which is the same as the one discussed in Sec. 10.2.3 and which does not
affect the spinorial structure; the operator e~ (3¢/2FeoE ingtead, acts only on the spino-
rial structure while it does not affect the coordinate space. As a result, the trace factorizes
into the traces over these two different spaces and the only new element in the analysis
compared to the case of scalar QED is the calculation of Trp e~ (8¢/2Fe9E  This can be

easily done because of the simple structure of Fgop (see eq. (10.2.61)), which yields

-7 0 N
Trexp|’ " =T (¢ ") =2(cosh|2| + cosh [§]), (10.2.63)
0 F-7 0 77

where we used the facts that e”% = [ cosh |Z| — (¥ - &/|#|) sinh |Z] and Trpay; 07 = 0, with
Trpaui | = 2. (In the previous relation |Z| = vVZ - Z.) Accordingly, using eq. (10.2.63) in
eq. (10.2.61), we find

Trp e~ (Be/DFeoE — 9 [cosh(ﬁe| —iE + B|) + cosh(Bel|iE + §|)}

—iE+B|+iE+B —iE+B|-|iE+ B
:4cosh<ﬁe s ‘2+|l + |>Cosh<ﬁe| s |2 iE + > (10.2.64)

= 4 cos(feay ) cosh(Bea_),

where a4 were introduced in eq. (10.2.44).5
Accordingly, on the basis of egs. (10.2.46) and (10.2.64), one can express eq. (10.2.62)

as

ASqlA] =

T [ 1 20 a_
V / db —pm? € a+d (10.2.65)
0

82 FW‘E tanh(Bea_ ) tan(Beay )
As in the case of the analogous expression for the scalar vacuum, the last factor in the
integrand behaves as ~ 24 (B2 — E2) /3+0(52) for B — 0, the leading field-independent
term of which is regularized by additional additive terms that we have omitted; the next
term of the expansion, instead, is responsible for the emergence of a field-dependent loga-
rithmic divergence (equivalently, of a dimensional pole in DR) which can be cancelled by
a suitable renormalization of the field. Repeating the analysis presented in Sec. 10.2.3 for
the scalar case it is not difficult to recover in this way the field-strength renormalization
constant of QED

2
e 8
Zs=1— ——— +0(e*), 10.2.66
3 (47)? 3e +0(e) ( )
®Indeed, indicating by ¢+ = [| — iE + B| £ [iE + B||/2 = {[|B)® — |E|? — 2E - B]**> £ [|B]*> - |E|* +

2A%E - §]1/2}/2 the factors in the arguments of cosh on the second line of eq. (10.2.64), the last equality in
that equation follows from the fact that a comparison with eq. (10.2.44) yields the equality ¢7 = Fa2 and

therefore ¢+ = ia4+ and ¢q— = a— (a possible ambiguity in the overall sign does not affect the final result).
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Figure 10.1: Vacuum decay rate I" per unit volume as a function of the strength E of the
electric field (in the absence of a magnetic field), for scalar QED (sQED, red lines) and
QED (blue lines). The solid curves correspond to egs. (10.2.56) and (10.2.68) for sQED and
QED, respectively, while the dashed lines indicate the corresponding asymptotic values
for E > E;, with E, = 2m?/e.

as the reader can easily verify. Once these divergent terms have been properly subtracted
from eq. (10.2.65), its renormalized expression can be used in order to calculate the vacuum
decay rate T' (via egs. (10.2.25) and (10.2.53)), which turns out to be given by the expres-
sion in eq. (10.2.55) corrected by an overall factor —2 (compare eq. (10.2.65) for d = 4
to eq. (10.2.52)) times the residue of the factors cos(euay /m?) cosh(eua_/m?) at u = u,

(see after eq. (10.2.52)) introduced by the trace over the spinorial structure; accordingly,

—nmm?/(ea4)

elaya_ 1 e
= —— R TS S 10.2.67
472 Z ntanh(nma_/ay) ( )

n=1
As in the case of T" in eq. (10.2.55) one can easily verify that the presence of a sole magnetic
field B is not sufficient to give a non-vanishing I'. On the other hand a finite electric field
E , with B = 0, is responsible for a decay rate I' which can be easily determined according

to the discussion reported after eq. (10.2.55) and which is given by
62“;‘2 2 ,—nwm?/(e|E|)

473 n2
n=1

T

(10.2.68)

Figure 10.1 compares, as a function of E/E. the vacuum decay rate I' per unit vol-
ume (normalized as T'/(eE)?) with E # 0 and B = 0 of QED (blue lines, given by the
equation above) with that one of scalar QED (red lines, see eq. (10.2.56)). Due to its

non-perturbative nature, the Schwinger effect is practically absent as long as E does not
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exceed ~ E (as it is clearly shown by the behavior of the solid curves in Fig. 10.1 for
E < E.;), which makes its observation a long-standing experimental challenge. Consider,
for example, the typical electric field within an atom, i.e., E, = e¢/a3 ~ 6-10'V/m (where
ap ~ 5-107 ' m is Bohr’s radius): its ratio to the critical field E; is E,/Ee ~ 3- 1079 and
eq. (10.2.68) would render the I'/m* ~ 10719°; the pair creation rate ~ from the vacuum

surrounding an atom of volume a% would therefore be v = I‘ag ~ 10710%

! which results
in a number of produced pairs that is surely negligible even for an observation time of the

order of the age of the universe (~ 4 - 10'7s).
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Chapter 11

Final Project: The Abelian Higgs
Model*

In this last chapter we study the abelian Higgs model, along the lines of ref. [10]. This
chapter should be seen as a sort of long exercise in which many of the notions and tech-
niques introduced in these notes (effective potential, background field method, ghosts,
gauge-fixing, CS equations, S-functions and anomalous dimensions) are considered to-
gether.

The Lagrangian is

1 A
L= -3FuF" + D0 - Z(@1e), (11.0.1)

where D, ® = 0,9 — ied,®. Our aim will be to understand the vacuum of this theory,
namely whether the U(1) gauge symmetry is broken or not, and the RG flows of the two
couplings e and . First of all, we have to gauge fix the theory. Since we want to study
the effective potential as a function of the VEV of ®, it is convenient to use a generalized
&-gauge which is valid for any value of (®):

1

28
where ® = ¢ + ¢, with ¢g the VEV of ® and ¢ its quantum fluctuation. It is straight-

By i I 2
Lgy = [%A + ie&(¢ ¢0f¢¢0)} ; (11.0.2)

forward to verify that the quadratic mixing terms between ¢ and A, vanish when L ;. is
added to the Lagrangian (11.0.1). Even if the local symmetry is abelian, the ghosts do
not decouple in the &-gauge we have chosen. The ghost Lagrangian, as usual, is derived
by taking the infinitesimal variation of £,y with respect to a U(1) transformation. One
gets

Lghosts = 0u 0w — 2w 200 + (6o + 6l6)| (11.0.3)
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In the Landau gauge 9,A4* = 0, reached for { — 0, the ghosts are free and decouple,
whereas in the unitary gauge £ — oo they are infinitely massive and decouple again. We
will not fix in the following a specific value of £, so that the ghosts should be taken into

account. The total Lagrangian is

£tot - E + ng + Lghosts- (11.0.4)

11.1 One-loop Effective Potential*

The 1-loop effective potential is completely determined by the terms in L4, quadratic in

the field fluctuations. In momentum space, we have

Luonquad(p) = ~5 A DA DL (B) + ()£ )lp) + 50i(-p)LY ()65 (0),

(11.1.1)
where ¢ = (¢1 +i¢2)/V/2, and
‘C;(j?/)&)) = 77;w(l’2 - 262|¢0‘2) - (1 - %)pupua
L) (p) = p* — 26?0, (11.1.2)
£ () = <p2 — 0P+ B) + (@ oNS - ) il )G - 0 ) |
g i(63 — 52 (%5F — %) P2 — ool (%€ + B — <¢o+¢ (%~ )

Modulo irrelevant factors,

det LG (p) = (p* — 2¢%|¢0[*)* (p* — 2¢2€|90l?) ,

det £ (p) = (p* = Meol?) [pQ — |¢ol*(2€*¢ + %)] : (11.1.3)

Summing over all contributions (gauge, ghosts and scalar fields), we get

1 [d*
Viclop(p) = 5 / (%)E {310g(p%+62p2) — log(pj; + &e?p?)
A A
+log(pk + 5p2) + log (p?; + (¢e* + 6)/)2)] : (11.1.4)

where p? = 2|¢o|?. We renormalize V;_j,0, by demanding that

dQ‘;l% =0, ﬁgipjf”"p - =0 (11.1.5)
p=0 p=p
After some simple algebra, we obtain
p> 25
Vets(0) = Viree D)+ Vi toop(p) = 7+ 55 (36 4223242602 (1o o8l )- (1116)
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Figure 11.1: One-loop graph leading to a Ap* coupling.

Let us study the minima of Vs, assuming that A ~ e, so that at leading order we can
neglect the A\? and £\e? terms in eq. (11.1.6). It is important to emphasize here that at
tree-level (or, alternatively, at any given energy scale) we can assume any relation we like
of the form A ~ €™ for any n, but such relations at the quantum level cannot generally hold
at any energy scale for any n. Indeed, radiative corrections will nevertheless generate the
Ap? coupling in the theory. The leading one-loop correction arises from virtual photons as
illustrated in fig. 11.1. Being this correction of O(e*), we see that A ~ e”, with n < 4, are

the only radiatively stable assumptions we can make. The extrema of V. ; are

2

dVepr _ 5(A e p
et _ 3 (24 ° (31062 —11) ) =0. 11.1.
ap PG T 16 (3 8 2 ) 0 (11.1.7)

Taking 1 = (p) in eq. (11.1.7), we get p = 0 and

M(p) = e

((p)). (1L.L8)

Equation (11.1.8) is an instance of dimensional transmutation: we have traded the VEV

of p for the coupling A. Plugging back in Vs gives

3et p? 1
Vss = o0 (mw -3)- (11.1.9)

The extremum (11.1.8) is a minimum. The photon and scalar masses are

4
5 3

m) = W@)% (11.1.10)

m2 = e*(p)?,

We conclude that in this theory a dynamical spontaneous symmetry breaking of the U(1)
gauge symmetry can occur. In order to firmly establish that, we have to compute the RG
evolutions of A and of the charge e to check the existence of an energy scale (p) where

eq. (11.1.8) is valid. This computation will be the subjects of the following sections.
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11.2 The Quantum Effective Action*

An instructive way of computing the S-functions of A and e, as well as the anomalous
dimensions of A, and ¢, makes use of a functional form of the CS equations (5.4.3), which

reads:

uzz <u— + ﬁ— - 7/d4 )F(¢) =0, (11.2.1)

where I'(¢) is the quantum effective action. For a smgle real scalar field, keeping up to

two derivative terms, the latter reads

= /d4x (%Z( )(0,0)% — eff(¢)) (11.2.2)

where V. is the Coleman-Weinberg potential and Z is the radiative correction to the
kinetic term. Once T is known, eq. (11.2.1) gives us 8 and . It is straightforward to see

that eq. (11.2.1) encodes all eqgs. (5.4.3) for any n, by recalling that

= i % /d%1 o dr e, D (2w d(x) - () (11.2.3)
n=0
In the case at hand, with two fields and two couplings, eq. (11.2.1) generalizes to
(kg + gy + ﬁeﬁ —a fatado)
— /d4 o) 5 ( ) ol )Mf(x)))r(qso,flw) —0, (1124

where ¢, qﬁg and A, are the background field configurations. Invariance under the
background U(1) gauge invariance implies that the lowest dimensional operators appearing

in I' are of the form
1
(00, Au) =[] = LR + Z()IDutol ~ Viss(0)] (11.25)

The effective potential V,¢; has been already computed and is given by eq. (11.1.6). We
have then to determine H and Z only. This can be done by decomposing the gauge field
as well in terms of background and fluctuation fields: A, — Ag + A,

Let us start by computing H, in which case we can take ¢g = constant. The relevant

interaction terms are

LD ieAl (10,0 — ,0'0), (11.2.6)

and H is determined by the contraction of the two scalar currents. The contractions of the
form (p¢) or (¢pT¢t), although non-vanishing for ¢g # 0 due to mass terms of the form ¢
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and (gZ)T)Q, give only rise to irrelevant divergent contact terms. In DR, for instance, they
all trivially vanish. The only relevant contraction is the usual one, of the form (¢'¢). The
computation essentially boils down to the one-loop photon vacuum polarization in scalar
QED. Two diagrams contribute. The first reads

q

e [P0+ 20)u(p + 20),
(p) = (ie)"p /(%)d @D+ 9 —m] (11.2.7)

p+q

2, ei&) . (11.2.8)

2 2 2
m- =m =
() =p ( s+
By performing the usual manipulations (introduce the Feynman parameter x, shift ¢ —

q — xzp and Wick rotate to euclidean momentum), we get

- v e [ A% P0+29)u(p+29), ielpt [ -
anlw(p) = (ie)*p /(27)(1 (2 — mQ)[(pN_,_ Q2 —m?  (4n)i” /0 dz [m® — p*z(1 — z)]
<D (350) (a1~ 20 = 52l — a1~ ). (11.2.9)

The second diagram is a tadpole, that does not depend on the external momentum p. It

can be cast in a form close to eq. (11.2.9) by multiplying and dividing it by (p+ ¢)? —m?.

Using the same manipulations as before, we get

dq i (p+qP-m? 2ie?

_ 'H2 =9 2 € 1// = — v
t uu(P) el Ny m)d g —m2 (p+ q)2 — m? (4r)d/2 s

A877p
(11.2.10)

1
- 4—d d
X / dx [m? — p?z(1 — :c)]%F(—> ((1 —x)?p* —m? — ——[m? - p*x(1 — :c)]) .
0 2 2—d
Summing the two contributions, we have

2 L2l 2,2
) , ) ie 1 ie m* — px(l — x)
ZH/_LV = ZH}U/ + ZH/QU’ = m(pupl/ - 77;1,1/]72) (E + COHSt.) — 16? /O dx log T

X (plup,,(l —22)% — y,,p*(d2? — 6z + 2)) . (11.2.11)

We are interested in computing H, which is the coefficient of the F? term, quadratic in

the external momentum p. The last term in eq. (11.2.11) is already quadratic in p, so we
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can safely neglect the p? term inside the log and keep only the mass term m?2. In this way

we get
ie?
2472

where we have reabsorbed in the arbitrary constant the p-independent factors coming from

. 1
il = (Pupv — Npd”) (g + const. — 10g(p/u)) ; (11.2.12)

eq. (11.2.8). As expected, II,, is transverse. We now perform a non-minimal subtraction,

i.e. we add the counter-term! i(Z — 1)(p,p, — nwp?) and require that
i +i(Z = 1) (pupy — nuwp®) =0, at p = pu. (11.2.13)

The renormalized one-loop photon vacuum polarization is then

ie? p
e = — (0% — pupy) log & =i Ap*P,,, 11.2.14
il = 5 (Nuwp ppp)ogu iAp*Puy ( )

where A = €2 /(247%)log ¢/ and we have defined the projector

bup
Puv = Ny — ~5— - (11.2.15)
p
The tree-level photon propagator is
i Pup
Gu(p) = —F(Pum% ZQ”)- (11.2.16)

Iterating the one-loop correction (11.2.14) in the tree-level expression (11.2.16) we get

*prpu i gpupu

Guw(p) = P-4 2 p (11.2.17)
from which we see that
- iFﬁy,O — —3(1 — A)F3,, (11.2.18)
finally giving the desired H(p):
e? p
H(p)=1-A(p)=1- 502 log e (11.2.19)

Let us now determine Z, the wave-function renormalization of ¢y. In this case we can
set A, 0 = 0 but of course ¢g can no longer be taken constant. The tadpole graph given
by the quartic scalar interaction induces only a mass renormalization, so we need only to
consider the contribution induced by the gauge interactions. These are of the form A, ¢¢o,
given by

L D 2ie A" (310,00 — 0,000) . (11.2.20)

1Of course, the counter-term Z should not be confused with the finite Z(p) appearing in the effective
action (11.2.5).
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We have
q

d .
ﬁ_ﬁ = iD(p) = (2ie)2ufpﬂp”/ 9 ! 11.2.21)

. bt (27T)d ;LV(Q) (p + q)2 —m2 7(

where G, (q) is the photon propagator in the generically broken phase, as given by in
eq.(8.4.13), with ;ﬁ{ =¢e2p2.2 For £ # 1, up to three denominators appear in eq. (11.2.21)
and the computation is a bit involved. We can greatly simplify it by noticing that i)
the log 1 (and hence the logp) terms we are looking for can be detected by finding the
residues of the appropriate 1/¢* poles in the integrand, as explained in section 3.4 and
il) we can set p = 0 in the scalar propagator since we already have two powers of the
external momentum coming from the vertices. After Wick rotating to euclidean momenta
and using SO(d) invariance of the integrand, we get

_4Z.€2M6p2/dqu ( 1 (1-9g} ) 1
@m)?\ap+ 12 dlag +En3)(ap + 12) ) g +m?

1 /1 £+3
(42,2 L
= (—4ie?) 87T2(€+10g,u+...) T

where the ... include the p-dependent terms we are looking for plus additional finite pieces.

i%(p)

(11.2.22)

The renormalized scalar two-point function reads then
_ ie?

ZZR(p) - 87'('2

(3+&)p? logﬁ =ip’B, (11.2.23)

where, as before, we demand that £%(p) = 0 when p = p. Iterating the one-loop correction
in the tree-level scalar propagator, as in the photon case, gives
z% = p72(1l+ 5 (11.2.24)
from which we extract Z(p):
Z(p) =1+ B(p) =1+ i(3+§) log 2. (11.2.25)
82 1
The form of the effective action (11.2.5) is finally determined and we can proceed to use
it to compute the RG evolution of the couplings e and A. It is worth to emphasize that
the effective action (11.2.5) should be gauge invariant, but on the contrary it seems gauge-
dependent, since ¢ enters in both Z(p) and in V¢f(p). This apparent paradox is explained

by noticing that ¢q is not a canonically normalized field and the rescaling

1
— 11.2.26
o — (p) ®o ( )

2Pay attention in not confusing the photon mass {1 with the sliding scale p!
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is needed. The potential (11.1.6) is then rescaled by a factor 1/Z(p)? and we have

1 A e? P pt 5 1 P
—V = Zpt1-—=@3 log — L _(3et+ =N+ —eXe?) log &
APEAGIAL 4’ ( TG olos u> + 327r2( ST UL ) 8

Ay pt 4, 9y o p

and the {-dependence cancels. In eq. (11.2.27) we have focused on the log terms only, since
the constant term is scheme-dependent and we have not been careful in systematically

using a given scheme.

11.3 RG equations and Their Solutions*

For a single real scalar field, the functional RG equation (11.2.1) splits into two ordinary

differential equations for Z and V:

0 0 0
<M8u+68)\_7¢6¢_27)2_0’
0 7 0
(M% + /65 - ’qu)%> ‘/;ff =0. (1131)

In dealing with quartic potentials, like in our case, it is actually convenient to write an

RG equation for VW = O'WVepp/0¢" rather than Vs itself. Given that 335('y¢8¢) =
478(‘; + 7¢5¢5‘§, we have
3] 0 3]
— 4 B — Ay —yp=— | VW =0. 11.3.2
(“aﬂﬁa/\ v Waqz)) ( )

The RG equation (11.3.2) can further be simplified by noting that V® depends on ¢ only
through the dimensionless combination ¢/u. Then ¢8¢V(4) = —M3HV(4) =9,V where
t =log ¢/u and thus we get

g -0
_Y I I 74 CONN 11.3.
( 8t+58)\ 7)‘/ 0 (11.3.3)
where 5
2 _ B
=— =— 11.3.4
P 1+~ TTIY vy ( )
Using the same manipulations, the RG equation for Z becomes
g -0
- — —25)Z=0. 11.3.
(370 5o

In the situation at hand, the functional RG equation is given by eq. (11.2.4). It is clear

that there can be no cancellations between the three terms (11.2.5) appearing in T', so

242



eq. (11.2.4) splits into three independent equations. Let us first focus on the scalar kinetic
term | Dgyl?:

4 0 9 51D, b0
|D”‘¢0|2 < - & + ﬁe% - 7¢paP>Z + Z(ﬂe%D,ud)O2 — YA /d4xA”’0(x)75|A:O¢((;l)
o 5
0 [ @0 g+ 5 (x)>> IDugol* =0, (11.3.6)
0

where we have used the fact that Z depends on constant p only, with ¢04 + gbfaw = p0,.
The term in the second line of eq. (11.3.6) equals —2v,|D,¢o|?, while the last two terms
in the first line of eq. (11.3.6) gives rise to a different operator. As such, two independent
equations arise from eq. (11.3.6). Requiring the vanishing of the coefficient proportional

to | D, ¢o|* gives

0 5 0
—— 4+ Pe=——275 | Z =0, 11.3.
( ot + ﬁl@e ’Y¢> 0 ( 3 7)
with 8
> e _ Vo
= , =% 11.3.8
Pe=117, =14, (11.3.8)
It is straightforward to see that
5D, ¢ol? 0
4 14 2
A ————— =e—|D 11.3.
/d € 1/7(](33) 6141,70((@) eae| N¢O| ( 3 9)

and hence the vanishing of the coefficient multiplying 9| D, ¢o[?/0e gives

Be = eya. (11.3.10)
Consider now the gauge kinetic term F 31,70. We get
1 5 0 0 1 o
_ ZFW,O< — o+ Bese — %pap)H - 27AH( - ZFM)) ~0, (11.3.11)

that gives rise to
VA
L+vs

- 11.3.12
py (11.3.12)

Finally we have the potential term. As explained before, we write an RG equation for

0 -0
( +5ea——2’YA)H=07 YA =
e

V@ rather than Vet , which is the obvious generalization of eq. (11.3.3):

o -8 -0
—_ —_— _— ~ (4) —
< o+ Brgy + s 4%) 1% 0. (11.3.13)

Equations (11.3.7), (11.3.10), (11.3.12) and (11.3.13) are enough to determine S, By, va
and 4. Let us recall below the explicit form of Z, H and V@ the latter computed from
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eq. (11.1.6):

2

Z({t)=1+ #(54&3)15

62

2472
1 5
@) (1) — L (o4 242 2
VE) =2+ (9e + N+ e )t
), (11.3.10) and (11.3.12)

H(t) =1 t (11.3.14)

One immediately gets from egs. (11.3.7

2
e

Yo =T + O(e?) = _16?(5 +3)+0(e"),
2

T
3

- e
T 4872

Ya =74+ O(e*) +0(e"),

Be = Be + O(e") +0(e%), (11.3.15)

Plugging the values (11.3.15) in eq. (11.3.13) allows us to determine Sy:

_ 1
Br=Fr+ O €A ) = (964 n gv . 3A62) L O, N €202, (11.3.16)
/I8

Notice how all £-dependent factors have cancelled in 8y as it should be, being the latter
gauge invariant, like 3. (and 74). The scalar field anomalous dimension vy, instead, does
depend on £. This is expected since ¢ changes by a phase under a gauge transformation
and at the quantum level there is no gauge invariant notion of .

The RG flow of e is easily computed from G.. We get
A(t) = —2—. (11.3.17)
1-— ﬁt

The RG flow of A requires some more work. It is convenient to define R(t) = \(t)/e?(t)

and write an RG equation for R. One gets

. 64
E(tR(t) = %(ERQ(Q - %R(t) + 9) : (11.3.18)

which is further simplified by considering R = R(e?), so that

. dR et dR
= %= — """ 11.3.1
R de?“°° T 2472 de? (11.3.19)
Our desired final equation reads
dR(e?
e? di‘; ) _ 5R%*(e?) — 19R(e?) + 54, (11.3.20)
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0.05

a0 20 20 40

Figure 11.2: Comparison between the RG behaviour of €2(¢) (red line) and A(¢) (blue line)
over 100 orders of magnitude. We have taken €%(0) = A(0) = 1/10.

whose solution is

1
R(e?) = % (19 + V719 tan (§v71910g e + 9)) (11.3.21)
giving
e*(t) 1 2
M) = 552 (19 + VTT9 tan (5\/719loge (t) + 9) : (11.3.22)

where 6 is an integration constant. Both e and A grow in the UV but, as explicitly
shown in fig. 11.2, the quartic coupling A varies significantly over a range in which the
electric charge remains essentially constant. We can then conclude that for a wide range
of initial conditions for e and \ there exists an energy scale where A ~ e, and in particular
eq. (11.1.8) is valid.
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