Esercizi Fisica 4F

dott. Stefano Lacaprara lacaprara@pd.infn.it INFN LNL

Esercizio n. 1

Un'onda sonora armonica con $\nu=300~Hz$ si propaga in aria in condizione STP ($T=293~K,~P=1~atm,~V_m=22.4~l,~M_m=29~g,~\gamma=1.4$). L'ampiezza dell'onda di spostamento è pari a $\psi_0=3\dot{10}^{-8}~m$.

Determinare:

- a) L'ampiezza dell'onda di pressione Δp ;
- b) L'ampiezza dell'onda di densità $\Delta \rho$;
- c) L'intensità dell'onda $I(W/m^2)$ e B(dB);

Esercizio n. 2

Una sbarra di alluminio lunga L=1~m, vincolata al centro, è colpita in modo longitudinale ad una estremità e risuona ad una frequenza di $\nu=2500~Hz$. Sapendo che la densità dell'alluminio è $\rho_{Al}=2710~kg/m^3$, il modulo di Young $Y=70~GN/m^2$, la densità dell'aria è $\rho_a=1.3~kg/m^3$ e la costante adiabatica dell'aria è $\gamma=1.4$, (si ricordi inoltre che la velocità del suono in un solido è pari a $v=\sqrt{Y/\rho}$) determinare:

- a) La velocità del suono nell'alluminio v_{Al} ;
- b) La velocità del suono nell'aria v_{air} ;
- c) Dove si dovrebbe vincolare la sbarra per ottenere una frequenza di $\nu = 3750$;
- d) Spiegare qualitativamente come cambia la frequenza della sbarra se il colpo è trasversale invece che longitudinale e spiegare il perchè;

Esercizio n. 3

Un tobo sonoro aperto contiene aria (considerata gas perfetto) a 0 C, è lungo L=0.75~m e vibra alla frequanza del modo fondamentale. A seguito di una variazione della temperatura dell'aria Δt , la frequanza varia di $\Delta \nu = 10~s^{-1}$. Sapendo che la velocità del suono nell'aria a 0 C è pari a v=331~m/s, calcolate Δt .