1.5 Condensatori

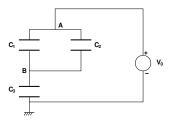
Esercizio 20

Quattro gocce d'acqua, uguali e sferiche, sono portate ad uno stesso potenziale $V_A=100\ V$ e poi isolate. Successivamente coalescono a formare una unica goccia.

- a. Quale è il potenziale della goccia?
- b. Quale è il rapporto tra l'energia elettrostatica finale e iniziale?

Esercizio 21

Due sferette metalliche uguali, S_1 e S_2 , lontane tra loro, con raggio $R_{1,2}=2~cm$ e massa $m_{1,2}=5~g$, inizialmente scariche, vengono collegate con fili conduttori ad una terza sfera metallica S_0 , R=0.5~m, lontana da entrambe, che è carica con Q_0 . Successivamente i fili vengono staccati e le sferette vengono sospese a due fili isolanti lunghi l=25~cm e si osserva che restano in equilibrio ad un angolo di $\theta=30^\circ$ con la verticale.


Calcolare, trascurando gli effetti di induzione mutua:

- a. le cariche $q_{1,2}$ sulle sferette;
- b. il potenziale della sfera S_0 prima del contatto;
- c. l'energia elettrostatica della sfera S_0 prima del contatto;

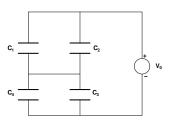
Esercizio 22

Dato il circuito in figura, con $C_1 = 1 \mu F$, $C_2 = 2 \mu F$, $C_3 = 3 \mu F$ e $V_0 = 100 V$, calcolare:

- a. carica sulle armature;
- b. energia elettrostatica totale del sistema;
- c. cariche e energia elettrostatica totale del sistema se il punto B viene messo a terra;
- d. cariche, energia elettrostatica e ΔV_{AB} se il punto A viene scollegato e poi B viene messo a terra.

Esercizio 23

Un condensatore è formato da due armature semicircolari di raggio R=50~cm, parallele, distanti d=2~mm, incernierate al centro. Le armature si sovrappongono per $\phi_0=60^\circ$ e sono collegare ad una $fem~V_0=50~V$.


Successivamente il generatore viene staccato e le armature sono ruotate in modo da sovrapporle di $\phi_1 = 120^{\circ}$.

Trascurando tutti gli effetti di bordo, calcolare:

- a. la ddp tra le armature;
- b. il lavoro delle forze esterne per fare la rotazione. Successivamente il generatore viene collegato e lo spazio tra le armature viene riempito con un dielettrico con $\kappa=3$.
- c. Determinare il lavoro compiuto dal generatore durante l'inserimento del dielettrico.

Esercizio 24

Il sistema di condensatori in figura è collegato ad una d.d.p. $V_0=15$ V e i valori dei condensatori sono, rispettivamente: $C_2=10$ pF, $C_3=4$ pF, $C_4=2$ pF. Ai capi di C_4 si misura una d.d.p. $V_1=10$ V.

Calcolare:

- a. Valore di C_1 ;
- b. energia elettrostatica totale del circuito. Nel condensatore C_1 si inserisce una lastra di dielettrico con costante dielettrica relative $\kappa=5$. Determinare:
- c. il lavoro svolto dal generatore.

Esercizio 25

Un sistema è costituito da un condensatore con piastre quadrate, di lato l=20~cm, distanti d=1~mm, alimentato con una ddp=10~kV. Una delle due piastre è collegata ad una molla di costante elastica $k=5\cdot 10^4~N/m$, inizialmente a riposo. Il condensatore viene caricato dal generatore e successivamente isolato.

- a. la posizione di equilibrio d';
- b. studiare il moto delle piastre;
- c. l'elongazione massima della molla.

Esercizio 26

Un condensatore piano ha armature quadrate di lato l=20 cm, e distanti h=1 cm. Lo spazio tra le due armature viene inserita una lastra conduttrice di spessore d=5 mm.

- a. Calcolare la forza esercitata sulle piastre se il condensatore è carico e isolato.
- b. Lo stesso se è il condensatore è collegato ad un generatore con ddp costante.

Esercizio 27

Un condensatore piano con piastre di superficie $\Sigma=200~cm^2$, e distanza h=5~mm è connesso ad generatore con $\Delta V=500~V$. Appoggiata all'armatura superiore si trova una lastra di dielettrico con la stessa superficie Σ e spessore d=2~mm, costante dielettrica relativa $\kappa=2$.

Nello spazio vuoto tra le armature c'è un elettrone che viaggia orizzontalmente con $v = 5 \cdot 10^4 \ m/s$, parallelamente alle armature.

- a. Calcolare il campo elettrico dentro il dielettrico.
- b. la carica totale presente sulla superficie inferiore del dielettrico;
- c. la forza sull'elettrone.

Esercizio 28

Un condensatore sferico ha raggio interno R_1 , ad un potenziale $V_1 = 1 \cdot 10^4 V$, e raggio esterno $R_2 = 1 m$, collegato a terra. L'energia elettrostatica del generatore è $W_1 = 5 \cdot 10^{-2} J$.

La sfera esterna, inizialmente a potenziale V=0, viene portata al potenziale $V_2=3\cdot 10^4~V$ rispetto alla terra, lasciando la sfera interna isolata.

L'intercapedine viene infine riempita, ad armature isolate, con un dielettrico liquido con costante dielettrica relativa $\kappa=2$.

- a. Calcolare R_1 .
- b. L'energia del campo elettrico interno ed esterno con l'armatura esterna a potenziale V_2 .
- c. Trovare l'energia elettrostatica del sistema con il dielettrico.

Esercizio 29

Un condensatore a facce piane e parallele, quadrate L=5 cm, distanza h=3 mm è collegato ad una ddp $\Delta V=1$ kV. Una lastra di dielettrico, di spessore s=1 mm, $\kappa=4$, viene inserita tra le armature con veleocità costante v. Calcolare:

- a. v sapendo che nel circuito, durante l'inserimento, scorre una corrente di $I=1~\mu A;$
- b. la forza esterna F_{ext} cui la lastra è sottoposta;

c. la densità di carica di polarizzazione sul dielettrico quando è completamente inserito.

Esercizio 30

Un condensatore piano, con armature quadrate ($\Sigma=0.1~m^2,~h=1~cm$) è riempito con un dielettrico non omogeneo la cui costante dielettrica relativa κ varia in modo continuo da $\kappa=3$ a $\kappa=5$, passando dall'armatura positiva a quella negativa. E' alimentato con una $ddp~\Delta V=1~kV$. Calcolare:

- a. La capacità C del condensatore;
- b. la densità di carica di polarizzazione sul dielettro.

Soluzione esercizio 20

a. $V_A = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$, $Q_4 = 4Q$, il volume è quattro volte quello della singola goccia, quindi il raggio è $R_4 = R4^{1/3}$. $V_4 = 4^{2/3}V = 252 V$

b. $R = 4^{5/3} = 10.1$.

Soluzione esercizio 21

- a. All'equilibrio $\tan \theta = \frac{F_e}{F_p} = \frac{1}{4\pi\epsilon_0} \frac{q^2}{(2l\sin\theta)^2 mg} |q| = 0.44 \cdot 10^{-6} C$
- b. Dop il contatto, il potenziale delle sfere è lo stesso: $Q_0' = \frac{R_0}{R_i} q_i$. $Q_0 = Q_0' + 2q_i = 1 \cdot 10^{-6} \ C$. Il potenziale della sfera S_0 all'inizio del processo $V_0 = \frac{1}{4\pi\epsilon_0} \frac{Q_0}{R_0} = 1.8 \cdot 10^{-6} \ V$
- c. $U_0 = \frac{1}{2}Q_0V_0 = 0.9 J.$

Soluzione esercizio 22

- a. C_3 è in serie con il parallelo di C_1 e C_2 . $Q_1=0.5\cdot 10^{-4}~C,\,Q_2=1.0\cdot 10^{-4}~C,\,Q_3=1.5\cdot 10^{-4}~C.~U=0.75\cdot 10^{-2}~J$
- b. Resta solo il parallelo di C_1 e C_2 alimentato da ΔV $Q_1=1\cdot 10^{-4}~C,~Q_2=2\cdot 10^{-4},~U=1.5\cdot 10^{-2}~J.$
- c. Parallelo di C_1 e C_2 con carica uguale a quella presente prima di scollegare il generatore. $\Delta V_{AB} = \frac{Q_{1+2}}{C_1+C_2} = 50~V$. $Q_1 = 0.5 \cdot 10^{-4}~C,~Q_2 = 1.0 \cdot 10^{-4}~C$ $U = \frac{1}{2}(C_1 + C_2)\Delta^2 V_{AB} = 3.75 \cdot 10^{-3}~J$

Soluzione esercizio 23

- a. $C_i = \frac{\epsilon_0 S}{d} = \frac{\epsilon_0}{d} \pi R^2 \frac{\theta_i [rad]}{2\pi} = 23 \ pF \ C_f = 2C_i$. Le armature sono isolate, quindi la carica è costante. $V_f = \frac{C_i}{C_f} V_0 =$
- b. $L_{ext} = +\Delta U = \frac{1}{2}C_fV_f^2 \frac{1}{2}C_iV_i^2 = -1.44 \cdot 10^{-8} \ J$ Rotazione è
- c. $L_{gen} = V_0 \Delta Q = V_0 (Q'_f Q_f) = V_0^2 C_f (\kappa 1) = 2.3 \cdot 10^{-7} J$

Soluzione esercizio 24

- a. $C_1 = 2 pF$;
- b. $U_{tot} = 4.5 \cdot 10^{-10} J$;
- c. $L_{gen} = 1.4 \cdot 10^{-10} J$.

Soluzione esercizio 25

- a. La forza elettrostatica è costante $F_{es}=\Sigma\frac{\sigma^2}{2\epsilon_0}=\frac{l^2\epsilon_0\Delta^2V}{2d}=17.7~N,$ la forza elastica $F_{el}=-kx$. Equilibrio quando $kx=F_{es}$: $x_{eq}=$ $0.354 \ mm.$
- b. Il moto è armonico, attorno alla posizione di equilibrio del punto precendete. $x(t) = x_{eq}(1 - \cos(\omega t))$
- c. $x_{max} = 2x_{eq} = .708 \ mm$

Soluzione esercizio 26

a. Mentre la lastra di conduttore viene inserito per una profondità x, considero il sistema come due condensatori in parallelo, uno con e uno senza lastra di conduttore. Quello con il conduttore è equivalente a due condenzsatori in serie, con una distanza totale tra le lastre h-d. La capacità equivalente del sistema risulta:

$$C_{eq} = \frac{\epsilon_0 l}{h} (x(\alpha - 1) + l) \text{ dove } \alpha = \frac{h}{h - d}$$

 $C_{eq} = \frac{\epsilon_0 l}{h} (x(\alpha - 1) + l)$ dove $\alpha = \frac{h}{h-d}$ L'energia elettrostatica risulta $U_{es} = \frac{Q^2}{2_{Ceq}}$

Nel caso di carica costante, l'energia totale è solo quella elettrostatica del condensatore, quindi la forza che subisce la lastra è $F_x = -\partial U_{es} \partial x = \frac{Q^2 h}{2\epsilon_0 l} \frac{\alpha - 1}{(x(\alpha - 1) + l)^2}.$ La forza è positiva, la lastra viene risucchiata.

$$F_x = -\partial U_{es} \partial x = \frac{Q^2 h}{2\epsilon_0 l} \frac{\alpha - 1}{(x(\alpha - 1) + l)^2}.$$

Si può anche calcolare il lavoro totale durante l'inserimento della

$$L = -\frac{Q^2 h}{2\epsilon_0 l} \left[\frac{1}{l\alpha} - \frac{1}{l} \right] > 0$$