$B^0 o K^{0*}(K\pi)\mu\mu$ full angular analysis A plan for a plan

Stefano Lacaprara, Alessio Boletti

INFN Padova, Università di Padova

AFB meeting, CERN, 28 May 2015

1 / 10

Intro

Team Stefano (staff), Alessio (PhD student)

Goal Provide suitable description of the signal efficiency vs. θ_L, θ_K, ϕ to be used for fully angular fit of $B^0 \to K^{0*}(K\pi)\mu\mu$ decay.

Status: very fruitful full-day discussion with Mauro at Milano (many thanks!)

- learned how the 2D analysis was performed, in particular as far as efficiency is concerned;
- learned how to run Mauro's code and macros (almost);
- ▶ got all ntuple used for BPH-13-010 (2012 and 2011, data and MC)
 - ntuple have been copied to Legnaro-Padova T2, and available to be copied elsewhere if needed.
- Mauro's ntuple have all the needed information (including ϕ). No need to re-access data!
- ullet Some initial distribution for efficiency vs ϕ already available!

2 2D efficiency vs $(heta_{L},\phi)$ for the various q^{2} bins

extstyle 2D efficiency vs $(heta_{\mathcal{K}},\phi)$ for the various q^2 bins

Deliverable:

- ullet Final deliverable: $\epsilon(heta_L, heta_K,\phi)$ as a RooAbsPdf
 - ► For correct-tag and wrong-tag separately
 - to be used directly by the fitting procedure;
 - ▶ following current (2D) fit implementation;
 - \star to be discussed and agreed with fit-team
 - ► Focus on 2012 (8 TeV) data

Plan

- Study parametrization of $\epsilon(\theta_L, \theta_K, \phi)$
- Start with trivial MC closure test

Unit test Compare MC-RECO with MC-GEN $\otimes \epsilon(\theta_L, \theta_K, \phi)$ for various kinematic variables;

Longer term Compare parameters from MC-GEN-fit to MC-RECO-fit (as done in 2D analysis) once the 3D-fit is in place;

Ideas about parametrization of $\epsilon(heta_L, heta_K, \phi)$

Unit test

- Setup unit test using directly ϵ histogram (first step);
- Which histograms?
- What about MC statistics?
 - 3D histogram?
 - 2D histograms?
 - $\bullet \ \epsilon(\theta_L, \theta_K, \phi) = \epsilon(\theta_L, \theta_K) \times \epsilon(\phi)$
 - $\bullet \ \epsilon(\theta_L, \theta_K, \phi) = \epsilon(\theta_L, \theta_K) \times \epsilon(\theta_L, \phi) \times \epsilon(\theta_K, \phi)$
- Mostly to test machinery and look at ϵ distribution as well as histogram statistics;
 - is $\epsilon(\phi)$ symmetric wrt to $\phi = 0$?

Parametrization

Parametrization

- Try to expand actual polynomial parametrization to 3D
 - 2D Now is pol-5×pol-3: 24 parameters with $6 \times 5 = 30$ bins;
 - 3D If pol-5×pol-3×pol-3: 96 parameters with $6 \times 5 \times 4 = 120$ bins;
- Alternatives:
- LHCb used a Legendre polynomial expansion, using principal moment analysis;

Cranmer Kernel estimator: unbinned and non-parametric arXiv:hep-ex/0011057

- * should be done independently for numerator and denominator (unbinned) $\epsilon = \frac{N}{D}$;
- implemented in TMVA;
- ★ should work also for 2 and 3D distribution.

Slides stolen to Marco Ciuchini (INFN-Roma3)

B physics: B → K*ℓ*ℓ

LHCb claims P_5 ' to be 3.7σ off for $4.3 < q^2 < 8.7$ GeV²

Factorized formulae cannot fully reproduce the data:

a fit shows that P₅' can be addressed but deviations ≥2σ are present in the other angular coefficients

		+ constraints on the r							
$\mathbf{Bin}\ \mathbf{q^2}\left[GeV^2/c^4\right]$	$\mathbf{A_{FB}}$	$\mathbf{F}_{\mathbf{L}}$	S_3	S_4	S_5	S_7	S_8	S_9	
[0.1, 0.98]	1.6			0.6			1.0	-1.4	
[1.1, 2.5]	0.1	-0.6	-0.9	-0.6	-0.8	-2.2	-0.8	-1.3	
[2.5, 4]	-0.6	0.7	0.8	-1.1	-0.1	0.6	0.2	-0.8	
[4, 6]						-0.2			
[6, 8]	-1.4	-1.6	1.4	(-2.3)	0.2	-0.7	-1.2	-0.4	
[1.1, 6]						(-1.5)			

Slides stolen to Marco Ciuchini (INFN-Roma3)

Non-factorizable terms may be important:

BSM sensitivity could be hindered by q^3 hadronic uncertainties. Inclusive $B \rightarrow X_s \mu^+ \mu^-$ may help shedding light on this issue

Bin $\mathbf{q^2} \left[GeV^2/c^4 \right]$	$\mathbf{A_{FB}}$	$\mathbf{F}_{\mathbf{L}}$	S_3	S_4	S_5	S_7	S_8	S_9
[0.1, 0.98]	(1.7)	0.1	-0.2	0.6	-0.8	0.2	0.9	-1.1
[1.1, 2.5]	-0.2	-0.4	-0.9	-0.6	0.1	(-2.0)	-0.9	-1.3
[2.5, 4]	-0.8	1.4	0.6	-1.1	0.3	0.4	0.1	-0.8
[4, 6]	-0.8	-0.5	1.3	-1.2	-0.3	-0.2	(1.5)	-0.4
[6, 8]	0.1	0.1	0.5	(-2.3)	-1.3	-0.4	-1.3	0.4
[1.1, 6]				-1.3				

- We have a team;
- We have data;
- We have code;
- We have a plan;