# $B^0 o K^{0*}(K\pi)\mu\mu$ full angular analysis Status update

#### Stefano Lacaprara, Alessio Boletti

INFN Padova, Università di Padova

AFB meeting, CERN, 13 Aug 2015

#### Status update

- Alessio showed our progress for the efficiency as 3D  $(\theta_L, \theta_k, \phi)$  and  $2D \times 2D \times 2D$   $((\theta_L, \theta_k) \times (\theta_L, \phi) \times (\theta_k, \phi))$
- and corresponding closure test
- next step in our plan was to try 3-dim Kernel Estimator
  - Cranmer KS, Kernel Estimation in High-Energy Physics. Computer Physics Communications 136:198-207,2001 - e-Print Archive: hep ex/0011057
  - Basic idea is to describe any unbinned distribution as a superposition of N 3-dimensional gaussian kernels, each contributing to 1/N to the total pdf
  - ► available in RooFit class RooNDKeysPdf
- being unbinned, we cannot use it directly on the efficiency, but we have to work separately on numerator and denominator, and the take the ratio.
- this is possible and have been done.



## A 1D toy example to describe the method





 unbinned distribution of numerator

unbinned distribution of denominator



### A 1D toy example to describe the method





- unbinned distribution of numerator
- with kernel estimation pdf obtained with roofit
- unbinned distribution of denominator
- with kernel estimation pdf obtained with roofit



## A 1D toy example to describe the method





- unbinned distribution of numerator
- with kernel estimation pdf obtained with roofit
- unbinned distribution of denominator
- with kernel estimation pdf obtained with roofit
- "efficiency" pdf defined as pdf-numerator/pdfdenominator.



## What is the efficiency



#### Definition as in 2-D angular analysis

$$\epsilon(q^2, \theta_L, \theta_K, \phi) = \frac{N_{gen}}{D_{gen}} \times \frac{N_{reco}}{D_{reco}}$$

where, for each bin of  $q^2$ ,  $\theta_L$ ,  $\theta_K$ ,  $\phi$ :

 $D_{gen}$  # of GEN events with  $P_T(B_0) > 8$  GeV and  $|\eta(B_0)| < 2.2$ ;

 $N_{gen}$  of GEN events with  $\oplus$  #  $P_T(\mu_{1,2}) > 3.5$  GeV and  $|\eta(\mu_{1,2})| < 2.2$ ;

 $D_{reco}$  # of RECO events with a  $B_0 o K^*(K\pi)\mu\mu$  candidate;

 $N_{reco}$  # of RECO events with  $\oplus$  all final cuts;



# Actual implementation for $q^2$ bin 2 of signal sample $U^{NFN}$





Showing only the pdf as returned by RooNDKeysPdf



## Efficiency GEN and RECO separated



#### **GEN Efficiency**



### Still some problem of smoothness

#### **RECO Efficiency**







- The actual computation of pdf is complex
  - 2 numerator and 2 denominator
  - two ratios (GEN and RECO)
  - one product (Total)
  - or just  $N_{gen}/D_{gen} \times N_{reco}/D_{reco}$
- Both implemented: working but very slow
  - hours for each bin, mostly due to the integration of the pdf needed to compute the ratio or the product;
  - possibly some optimization in the integration algo;
- MAJOR issue and totally unexpected: root is not able to save the output pdf produced by RooNDKeysPdf
  - ▶ A solution promised since as long as 2009, but none available!
  - asked again, no answer yet (vacation time?)





- further investigate if the output of RooNDKeysPdf is writeable (and readable) somehow
- investigate other implementation of Kernel Estimator
- try to use a legendre polynomial expansion of the binned efficiency (as done by LHCb) within root