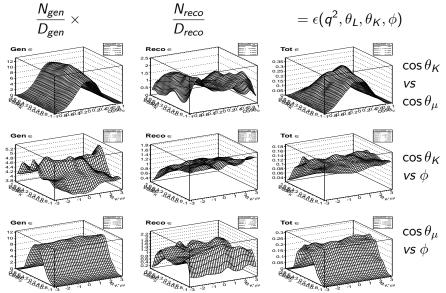
$B^0 o K^{0*}(K\pi)\mu\mu$ full angular analysis Status update

Stefano Lacaprara, Alessio Boletti

INFN Padova, Università di Padova

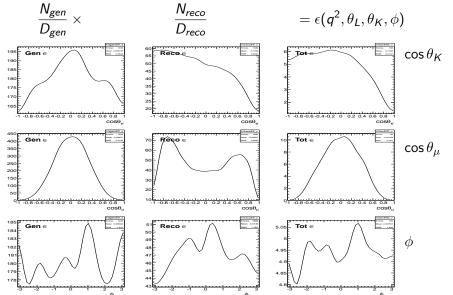
AFB meeting, CERN, 27 Aug 2015

Status update

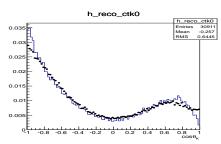

- following Mauro's suggestion at last meeting, we tried a workaround for our show stopper:
 - MAJOR issue and totally unexpected: root is not able to save the output pdf produced by RooNDKeysPdf
- sample the pdf as an 3D histogram (TH3) with suitable binning and save that to a root file;
- Get histograms for $N/D_{gen/reco}$;
- Get efficiency by dividing histograms
 - much faster than dividing the pdf and then get the histograms!
- perform closure test from the saved histogram.

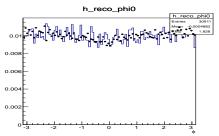
$$\epsilon(q^2, \theta_L, \theta_K, \phi) = \frac{N_{gen}}{D_{gen}} \times \frac{N_{reco}}{D_{reco}}$$

Efficiency for Q^2 bin 1: 2D projections



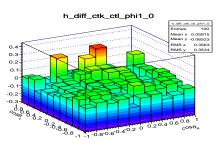
Efficiency for Q^2 bin 1: 1D projections

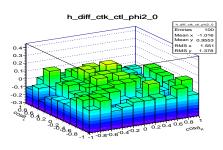


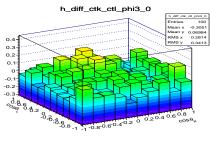


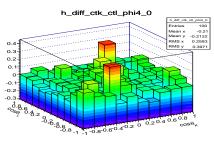


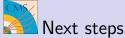
Closure test: 1D




- Very nice agreement;
- using binning $40 \otimes 40 \otimes 40$ seems fine;
- Still some problem at cos θ_K boundary, some tuning of RooNDKeysPdf needed




Closure test: 1D



- tuning of algorithm: try to play with gaussian width and mirroring at the boundaries;
- produce efficiency for all bins (running)
- also for
 - wrong tag;
 - J/ψ and ψ' control sample;
- try to convert back TH3 to rooAbsPdf for fitting (should be easy);
- Move to final choice of variables $(\cos \theta \text{ vs } \theta)$
- Move to final range for variables (folding)
- Document the work done