Results for approximate profiled FC for $B^0 \to K^\star \mu \mu$ or "How we spent our xmas vacation"

Alessio Boletti, Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

no meeting, work, January 9, 2017

- After discussion with StatCom, the outcome was that none of the many methods we
 proposed to estimate the statistical uncertaities are good enough;
 - the proposed solution is to build the Neyman construction
 - due to the slowness of our fit, the full construction is simply impossible
 - instead, we agreed upon a 1D FC approach by profiling the likelihood on data at fixed P_1 (P_5') values.
 - here will describe the procedure and the results;
- CAVEAT! most of the work has been done by Alessio, which is now in well deserved vacation. He described the full procedure to me and I started from his work, but I might have missed something...

2 / 20

S.Lacaprara (INFN Padova) FC Padova 30/12/2016

procedure description in the PAS

To ensure correct coverage for the uncertainties of the angular observables, the Feldman-Cousins method ^[?] is used with nuisance parameters. Two main sets of pseudo-experimental samples are generated to compute the coverage for the two angular obervables P_1 and P_5' , respectively. The first (second) set, used to compute the coverage for P_1 (P_5'), is generated by assigning values to the other observables as obtained by profiling the likelihood on data at fixed P_1 (P_5') values. When fitting the pseudo-experimental samples the same fit procedure as in data is applied.

Procedure description

- ullet We start from the 2D likelihood computed on data as a function of P_1 and P_5'
- taking into account the physical boundaries
 - ▶ The \mathcal{L} is computed in each point of the grid fixing P_1 and P_5' and maximizing the \mathcal{L} for yields and A_5^s
 - lacktriangle Or the minimization failed or it is outside the pyhisical region (which depends on A_5^s)
- Then we profile it vs P_1 and P'_5 , respectively
 - e.g. suppose we want to check on P_1 : then P_5' is the one which minimize the profiled likelihood.
 - lacktriangle We start from a reasonable point for P_1 , close to the $\Delta \log \mathcal{L} = 0.5$ line for the data.
 - ▶ if we hit a physical boundary, the minimum can be along the boundary itself
- ullet Then we generate toys using as input parameters P_1 and P_5' .
- We generate 100 toys (data-like size)

Procedure description (cont'ed)

Each toy is fitted with the full pdf as done for data

- ullet we repeat the fit with 20 different set of 20 initial values of P_1 and P_5'
- the 20 points are choosen randomly a 2D gaussian distribution around a central value as follow
 - we try a fully free fit (leaving also P_1 and P'_5)
 - if the fit converge, then we use the best fit value;
 - if not the central point is the generated one.
- the results of the 20 fits provide 20 likelihood values in 20 sets of (P_1, P_5') ,
- to find the absolute minimum, we fit the 20 values with a 2D gaus function
 - ▶ Need some more detail on the 2D gauss fit
- Eventually, we have 100 toys, and 100 values for the likelihood.

Procedure description (cont'ed)

- We compute for each of the 100 toys the $\Delta \log \mathcal{L}$ between the toy best fit (min of the 2D gaus fit) and the max value of the \mathcal{L} computed along the profile
 - ightharpoonup that is with the value of $\mathcal L$ of the gerenated point.
- We compute $\Delta \log \mathcal{L}$ of the data as the difference between the \mathcal{L} computed in the data best fit with that computed in the point used to generate the toy.
- We compute how many times the DLL(toy) is greater that DLL(data), and divided by the total of toys
 - ▶ In principle there should be 100 toys, this is not true for two reason:
 - ★ the 2D gaus fit fails: to be looked at.
 - ★ problem with the job (batch-system related): now are very few
 - ★ The yellow hist in the following page show the number of sucessfull toys
- If the ratio is > 68.27% then the toy generation point is outside the 1σ boundary for data, otherwise it's inside.
- the ratio is shown in the 4 graphs in next slides
- We repeat the procedure to compute the lower/higher uncertainties for both P_1 and P_5' (4 "directions")

- ullet 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$
- blue dots: likewise for P_5'

- profiled log ${\cal L}$ for roughly log ${\cal L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

- ullet 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$
- blue dots: likewise for P_5'

- profiled log ${\cal L}$ for roughly log ${\cal L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

- ullet 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- red dots: min profiled $\log \mathcal{L}$ along P_1
- blue dots: likewise for P_5'

- profiled log ${\cal L}$ for roughly log ${\cal L} \sim 0.5$
- P₁ (red solid/dash)
- P_5' (blue solid/dash)

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

LEFT:

- ullet 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$
- blue dots: likewise for P_5'

- profiled $\log \mathcal{L}$ for roughly $\log \mathcal{L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

- 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- red dots: min profiled $\log \mathcal{L}$ along P_1
- blue dots: likewise for P_5'

- profiled log ${\cal L}$ for roughly log ${\cal L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

- ullet 2D $\log \mathcal{L}$ for data
- ⋆ best fit
- magenta: physical limit
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$
- blue dots: likewise for P_5'

- profiled log ${\cal L}$ for roughly log ${\cal L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

- ullet 2D $\log \mathcal{L}$ for data
- * best fit
- magenta: physical limit
- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \bullet \end{tabular} \begin{tabula$
- blue dots: likewise for P_5'

RIGHT

- profiled $\log \mathcal{L}$ for roughly $\log \mathcal{L} \sim 0.5$
- P_1 (red solid/dash)
- P_5' (blue solid/dash)

-0.7 -0.6 -0.5

Additional or backup slides

