Results for profiled FC for $B^0 \to K^* \mu \mu$

Alessio Boletti, Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

no meeting, work, January 16, 2017

What's new since last week presentation at the BPAG

- We did some interaction with Phys Coords ("this is insane")
- interaction with ARC: "ah, good, you did sone progress, let us now when all is finished so we can look at it"
- interaction with Olaf: quite concernend with the 2d gaus fit
 - ▶ not because it can be tricky and maybe it is not the proper way to find the toy LogL minimum
 - but instead suggesting fancy way to fit a damn 2D gaus!
 - You are trying to solve the WRONG problem man!!
- no comments whatsoever about the fact that this crazy method
 - is insane
 - is not giving clear results
 - \blacktriangleright when it does, the 1 σ is the same as what we called "custom minos"
- my personal feeling that no one is really taking care to look at the big picture anymore
 - ▶ We have this insane FC bul***it to perform and that's it
 - ▶ when we will finish we'll be not a inch closer to understanding the problem, but who cares?

- Run a non negligible number of new GenPoint
 - babysitting is now a bit easier but not painless
- Fixed (mostly) the problem of the non converging 2d gaussian fit
 - ▶ Alessio had put a requirements for σ_{P_1} < 0.9, $\sigma_{P_2'}$ < 0.9, ρ < 0.99,
 - no idea why
 - removing that requirement allow to recover most of the 2d gaus fit, now only $\sim 5\%$ is failing (fit status 3)
- Added a linear fit to the ratio vs $P_1(P_5')$
 - \blacktriangleright A possible way to determine the 1 σ border
 - ▶ is not helping much if the ratio trend is not clear

Debug and GenPoint

debug a number of problematic Gen Points

- eg Bin 2, region P_5' up
- one point has ratio \sim 0.3, between ones with \sim 0.7: why?
- It is a "displaced point", namely with a P_1 not aligned with the other
- actually is happens that that is the true minimum along the profile, but it does not correpondo to the minimum of the parabola of the LogL.
- possibly a fluctuation or whatever.

Are we using the correct Gen Point?

- So it seems that is we move just a bit away from the "ideal" line of profiled minimum the L
 is changing significantly
- and so the DLL computed for Data and Toys can be tricky
- it could also explain the non monothony of the ration vs P1/P5'

solution

- ► Instead of considering the absolute minimum of a profile (that is the bin with the minimum LogL), fit a parabla to the LogL distribution and take the vertex
- the vertex x is the coordinate of the Gen Point to be generated
- ▶ the vertex y is the LogL to be considerate for the $\Delta \log \mathcal{L}$ computation
- ▶ Pros: these Gen Point are much more aligned that the one computed previously.
- ► Cons: we (I) have to redo most of the work
- ▶ Will try to to that for one region which is not problematic, and we will see

S.Lacaprara (INFN Padova) FC Padova 30/12/2016 5 / 20

DLL vs P1 for one GenPoint

- \bullet Following Mauro's idea: look at P_1 distribution for toys, instead of DLL
- build a 68% region for P_1 and see if P_1 for data is inside that region or not
- \bullet problem with P_1 physical boundary
- DLL vs P_1 is parabolic (as expected?), so comparing DLL is the same as comparing P1 ranges (but easier)

Additional or backup slides

