

Status report on B->hh'

U.Gasparini, <u>S. Lacaprara</u>, M. Margoni, P. Ronchese, F. Simonetto, M. Tosi

INFN and Universita' Padova

B->MuMu CheckPoint #5

CERN, 15/3/2013

Introduction

- Use different trigger path wrt standard analysis:
 - μ (pt>12 GeV) + 2 jets (pt>40, 20) + 2 b-tagged jets
 - MuHad (RunA) and SingleMu (RunB/C/D)
- Use same normalization sample as standard analysis:
 - B⁺->J/ΨK⁺
 - Using same trigger as for signal sample
- Strategies:
 - Look for B->hh' and B⁺->J/ΨK⁺ in jets w/o the triggering muons (probe jets)
 - Fast) Use the secondary vertex in jets
 - Update today
 - Strong) Build secondary vertex from hh' candidates
 - As in the standard B-> $\mu\mu$ analysis.
 - We are making progress, but will show no results today on this.

Results for normalization channel B+->J/ΨK+ INFN

Results signal channel B°->hh'

Acceptance and efficiency per channel

Sample	F _{uls} * BR	Acc (%)	ε _{Απа} (%)	Acc*e _{Anc}
B ⁰ ->KK	1 * 1.3e-7	10.2	1.51±0.39	1.54±0.4 e-3
B ⁰ ->Kπ	1 * 1.95e-5	5.76	1.38±0.04	0.79±0.02 e-3
Β ⁰ ->ππ	1* 5.19e-6	14.6	1.42±0.09	2.07±0.13 e-3
B _s ⁰ ->KK	0.267 * 2.54e-5	4.92	1.32±0.03	0.65±0.01 e-3
B _s ⁰ ->Kπ	0.267 * 5.0e-6	6.1	1.40±0.12	0.85±0.07 e-3
B _s ⁰ ->ππ	0.267 * 7.3e-7	5.12	1.50±0.15	0.77±0.08 e-3
Combined (weighted with f*BR)				0.96±0.04 e-3
B+->J/ψK+		100 (no filter)	0.169±0.006	1.69±0.06 e-3

Formula

$$N_{hh'} = \left(\frac{N_B +}{N_B + (PD)}\right) \left(\frac{Acc * \epsilon_{ana}(B^+)(PD)}{Acc * \epsilon_{ana}(B^+)}\right) \left(\frac{\epsilon_{trig}(B^+)(PD)}{\epsilon_{trig}(B^+)}\right)$$

$$\left(\frac{Acc * \epsilon_{ana}(B^0)}{Acc * \epsilon_{ana}(B^0)(PD)}\right) \left(\frac{\epsilon_{trig}(B^0)}{\epsilon_{trig}(B^0)(PD)}\right)$$

$$\omega_{\mu}(B^0) N_{hh'}(PD)$$

PADOVA: normalization

 $N(B^+-J/\Psi K^+) = 809 \pm 34$

 $Acc*\epsilon_{Ana} (B^{+}) = 0.169 \pm 0.006\%$

 $\varepsilon_{\text{Trig}}(\mathbf{B}^{*}) = ? \text{ soon}$

Standard: normalization

N(B⁺) = 192562 (33968) barrel (endcap)

 $Acc^* \varepsilon_{Ana} (B^*) = 0.294 \pm 0.005\% (0.096 \pm 0.004\%)$

ε_{Trig} (B⁺) = 53.2±0.1% (37.5±0.1%)

PADOVA: signal

 $N(B^{\circ}-hh') = 94 \pm 14$

Acc* ϵ_{Ana} (B^o) = 0.096 ± 0.004%

 $\varepsilon_{\text{Trig}}(B^{0}) = ? \text{ soon}$

Standard: signal

N(B^o) = 13336 (2045) barrel (endcap)

Acc* ϵ_{Ana} (B^o) = 0.76% (0.41%)

 ϵ_{Trig} (B^o) = 62% (45%)

• For standard analysis efficiency get weighted average of barrel/endcap ones

- with #events in barrel/endcap as weights
- Same trigger efficiency for B⁰ and B⁺ for Padova analysis
 - We do use the same trigger for both sample
 - We look only at probe jets, no trigger bias on $\boldsymbol{\mu}$
- $\omega_{\mu\mu}$ (B⁰) [probability to mis-id as μ both daughter of a B⁰] from Danek
 - From D* (2012)
 - ω_μ(K) = 3.18(44)e-3
 - ω_μ(π) = 1.38(36)e-3
 - $\omega_{\mu\mu}$ (B⁰->K π)=4.39(0.13)e-6 [for K π hypotesis]

CMS

- Mostly to see if we are playing in the same ballpark!
- We predict for the standard analysis
 - $N_{hh'}$ =147'000 x ω_{μ} (B⁰) events
 - $N_{hh'} = 0.65$ events in the B⁰->µµ analysis
- Uncertainties:
 - For our analysis:
 - Statistical ~10%
 - Systematics: hard to say, expect ~30% ???
 - From Muon-Id
 - σ_ω / ω_μ(B⁰) ~ 30%
 - Combined:
 - Maybe ~50% ????